Search results for: thermal non-equilibrium model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19123

Search results for: thermal non-equilibrium model

18733 PTFE Capillary-Based DNA Amplification within an Oscillatory Thermal Cycling Device

Authors: Jyh J. Chen, Fu H. Yang, Ming H. Liao

Abstract:

This study describes a capillary-based device integrated with the heating and cooling modules for polymerase chain reaction (PCR). The device consists of the reaction polytetrafluoroethylene (PTFE) capillary, the aluminum blocks, and is equipped with two cartridge heaters, a thermoelectric (TE) cooler, a fan, and some thermocouples for temperature control. The cartridge heaters are placed into the heating blocks and maintained at two different temperatures to achieve the denaturation and the extension step. Some thermocouples inserted into the capillary are used to obtain the transient temperature profiles of the reaction sample during thermal cycles. A 483-bp DNA template is amplified successfully in the designed system and the traditional thermal cycler. This work should be interesting to persons involved in the high-temperature based reactions and genomics or cell analysis.

Keywords: polymerase chain reaction, thermal cycles, capillary, TE cooler

Procedia PDF Downloads 432
18732 A Techno-Economic Simulation Model to Reveal the Relevance of Construction Process Impact Factors for External Thermal Insulation Composite System (ETICS)

Authors: Virgo Sulakatko

Abstract:

The reduction of energy consumption of the built environment has been one of the topics tackled by European Commission during the last decade. Increased energy efficiency requirements have increased the renovation rate of apartment buildings covered with External Thermal Insulation Composite System (ETICS). Due to fast and optimized application process, a large extent of quality assurance is depending on the specific activities of artisans and are often not controlled. The on-site degradation factors (DF) have the technical influence to the façade and cause future costs to the owner. Besides the thermal conductivity, the building envelope needs to ensure the mechanical resistance and stability, fire-, noise-, corrosion and weather protection, and long-term durability. As the shortcomings of the construction phase become problematic after some years, the common value of the renovation is reduced. Previous work on the subject has identified and rated the relevance of DF to the technical requirements and developed a method to reveal the economic value of repair works. The future costs can be traded off to increased the quality assurance during the construction process. The proposed framework is describing the joint simulation of the technical importance and economic value of the on-site DFs of ETICS. The model is providing new knowledge to improve the resource allocation during the construction process by enabling to identify and diminish the most relevant degradation factors and increase economic value to the owner.

Keywords: ETICS, construction technology, construction management, life cycle costing

Procedia PDF Downloads 409
18731 Polypropylene/Red Mud Polymer Composites: Effects of Powder Size on Mechanical and Thermal Properties

Authors: Munir Tasdemir

Abstract:

Polymer/clay composites have received great attention in the past three decades owing to their light weight coupled with significantly better mechanical and barrier properties than the corresponding neat polymer resins. An investigation was carried out on the effects of red mud powder size and ratio on the mechanical and thermal properties of polypropylene /red mud polymer composites. Red mud, in four different concentrations (0, 10, 20 and 30 wt %) and three different powder size (180, 63 and 38 micron) were added to PP to produce composites. The mechanical properties, including the elasticity modulus, tensile & yield strength, % elongation, hardness, Izod impact strength and the thermal properties including the melt flow index, heat deflection temperature and vicat softening point of the composites were investigated. The structures of the composites were investigated by scanning electron microscopy and compared to mechanical and thermal properties as a function of red mud powder content and size.

Keywords: polypropylene, powder, red mud, mechanical properties

Procedia PDF Downloads 317
18730 Molecular Dynamics Simulation Studies of Thermal Effects Created by High-Intensity, Ultra-Short Pulses Induced Cell Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of electric fields with high intensity (~ 100kV/cm or higher) and ultra short pulse durations (nanosecond range) has been a recent development. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal effects that drive for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations of a lipid layer with constant electric field strength of 0.5 V/nm at 25 °C and 47 °C are implemented to simulate the appropriate thermal effects. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. The high background electric field is typically used in MD simulations to probe electroporation. It serves as an accelerated test of the pore formation process since low electric fields would take inordinately long simulation time. MD simulation shows no pore is formed in a 1-ns snapshot for a DPPC membrane set at a temperature of 25°C after a 0.5 V/nm electric field is applied. A nano-sized pore is clearly seen in a 0.75-ns snapshot on the same geometry, but with the membrane surfaces kept at temperatures of 47°C. And the pore increases at 1 ns. The MD simulation results suggest the possibility that the increase in temperature can result in different degrees of electrically stimulated bio-effects. The results points to the role of thermal effects in facilitating and accelerating the electroporation process.

Keywords: high-intensity, ultra-short, electroporation, thermal effects, molecular dynamics

Procedia PDF Downloads 35
18729 Thermal Assessment of Outer Rotor Direct Drive Gearless Small-Scale Wind Turbines

Authors: Yusuf Yasa, Erkan Mese

Abstract:

This paper investigates the thermal issue of permanent magnet synchronous generator which is frequently used in direct drive gearless small-scale wind turbine applications. Permanent magnet synchronous generator (PMSG) is designed with 2.5 kW continuous and 6 kW peak power. Then considering generator geometry, mechanical design of wind turbine is performed. Thermal analysis and optimization is carried out considering all wind turbine components to reach realistic results. These issue is extremely important in research and development(R&D) process for wind turbine applications.

Keywords: direct drive, gearless wind turbine, permanent magnet synchronous generator (PMSG), small-scale wind turbine, thermal management

Procedia PDF Downloads 677
18728 Modeling of Full Range Flow Boiling Phenomenon in 23m Long Vertical Steam Generator Tube

Authors: Chaitanya R. Mali, V. Vinod, Ashwin W. Patwardhan

Abstract:

Design of long vertical steam generator (SG) tubes in nuclear power plant involves an understanding of different aspects of flow boiling phenomenon such as flow instabilities, flow regimes, dry out, critical heat flux, pressure drop, etc. The knowledge of the prediction of local thermal hydraulic characteristics is necessary to understand these aspects. For this purpose, the methodology has been developed which covers all the flow boiling regimes to model full range flow boiling phenomenon. In this methodology, the vertical tube is divided into four sections based on vapor fraction value at the end of each section. Different modeling strategies have been applied to the different sections of the vertical tube. Computational fluid dynamics simulations have been performed on a vertical SG tube of 0.0126 m inner diameter and 23 m length. The thermal hydraulic parameters such as vapor fraction, liquid temperature, heat transfer coefficient, pressure drop, heat flux distribution have been analyzed for different designed heat duties (1.1 MW (20%) to 3.3 MW (60%)) and flow conditions (10 % to 80 %). The sensitivity of different boiling parameters such as bubble departure diameter, nucleation site density, bubble departure frequency on the thermal hydraulic parameters was also studied. Flow instability has been observed at 20 % designed heat duty and 20 % flow conditions.

Keywords: thermal hydraulics, boiling, vapor fraction, sensitivity

Procedia PDF Downloads 129
18727 A Crystallization Kinetic Model for Long Fiber-Based Composite with Thermoplastic Semicrystalline Polymer Matrix

Authors: Nicolas Bigot, M'hamed Boutaous, Nahiene Hamila, Shihe Xin

Abstract:

Composite materials with polymer matrices are widely used in most industrial areas, particularly in aeronautical and automotive ones. Thanks to the development of a high-performance thermoplastic semicrystalline polymer matrix, those materials exhibit more and more efficient properties. The polymer matrix in composite materials can manifest a specific crystalline structure characteristic of crystallization in a fibrous medium. In order to guarantee a good mechanical behavior of structures and to optimize their performances, it is necessary to define realistic mechanical constitutive laws of such materials considering their physical structure. The interaction between fibers and matrix is a key factor in the mechanical behavior of composite materials. Transcrystallization phenomena which develops in the matrix around the fibers constitute the interphase which greatly affects and governs the nature of the fiber-matrix interaction. Hence, it becomes fundamental to quantify its impact on the thermo-mechanical behavior of composites material in relationship with processing conditions. In this work, we propose a numerical model coupling the thermal and crystallization kinetics in long fiber-based composite materials, considering both the spherulitic and transcrystalline types of the induced structures. After validation of the model with comparison to results from the literature and noticing a good correlation, a parametric study has been led on the effects of the thermal kinetics, the fibers volume fractions, the deformation, and the pressure on the crystallization rate in the material, under processing conditions. The ratio of the transcrystallinity is highlighted and analyzed with regard to the thermal kinetics and gradients in the material. Experimental results on the process are foreseen and pave the way to establish a mechanical constitutive law describing, with the introduction of the role on the crystallization rates and types on the thermo-mechanical behavior of composites materials.

Keywords: composite materials, crystallization, heat transfer, modeling, transcrystallization

Procedia PDF Downloads 178
18726 The Effect of Smart-Nano Materials in Thermal Retrofit of Healthcare Envelope Layout in Desert Climate: A Case Study on Semnan

Authors: Foroozan Sadri, Mohammadmehdi Moulaii, Farkhondeh Vahdati

Abstract:

Smart materials can create a great revolution in our built environment, as living systems do. In this research, the optimal structure of healthcare building envelopes is analyzed in terms of thickness according to the utility of the smart-nano materials as nontoxic substances in the region. The research method in this paper is based on library studies and simulation. Grasshopper program is employed to simulate thermal characteristics to achieve the optimum U-value in Semnan desert climate, according to Iranian national standards. The potential of healthcare envelope layouts in thermal properties development (primarily U-value) of these buildings is discussed due to the high thermal loads of healthcare buildings and also toxicity effects of conventional materials. As a result, envelope thicknesses are calculated, and the performance of the nano-PCM and gypsum wallboards are compared. A solution with comparable performance using smart-nano materials instead of conventional materials would determine a decrease in wall thickness.

Keywords: energy saving, exterior envelope, smart-nano materials, thermal performance, U-value

Procedia PDF Downloads 155
18725 Dependence of Free Fatty Acid and Chlorophyll Content on Thermal Stability of Extra Virgin Olive Oil

Authors: Yongjun Ahn, Sung Gyu Choi, Seung-Yeop Kwak

Abstract:

Selective removal of free fatty acid (FFA) and chlorophyll in extra virgin olive oil (EVOO) is necessary to enhance the thermal stability in the condition of the deep frying. In this work, we demonstrated improving the thermal stability of EVOO by selective removal of free fatty acid and chlorophyll using (3-Aminopropyl)trimethoxysilane (APTMS) functionalized mesoporous silica with controlled pore size. The adsorption kinetics of free fatty acid and chlorophyll into the mesoporous silica were quantitatively analyzed by Freundlich and Langmuir model. The highest chlorophyll adsorption efficiency was shown in the pore size at 5 nm, suggesting that the interaction between the silica and the chlorophyll could be optimized at this point. The amino-functionalized mesoporous silica showed drastically improved removal efficiency of FFA than the bare silica. Moreover, beneficial compounds like tocopherol and phenolic compounds maintained even after adsorptive removal. Extra virgin olive oil treated by aminopropyl-functionalized silica had a smoke point high enough to be used as commercial frying oil. Based on these results, it is expected to attract the considerable amount of interest toward facile adsorptive refining process of EVOO using pore size controlled and amino-functionalized mesoporous silica.

Keywords: mesoporous silica, extra virgin olive oil, selective adsorption, thermal stability

Procedia PDF Downloads 222
18724 A Comparative Analysis about the Effects of a Courtyard in Indoor Thermal Environment of a Room with and without Transitional Space Adjacent to Courtyard of a House in Old Dhaka, Bangladesh

Authors: Fatema Tasmia, Brishti Majumder, Atiqur Rahman

Abstract:

Attaining appropriate comfort conditions in a place where the climate is hot and humid can be perplexing. Especially, when it is resided at a congested place like old Dhaka Bangladesh, the provision of giving cross ventilation and building with proper orientation is quite difficult. Courtyards are the part of buildings which are used as space for outdoor household activities, social gathering and it is also proved to have indoor thermal comfort as an effect of courtyard. This paper aims to investigate the effect of courtyard in indoor thermal environment of a room adjacent to the courtyard and a room next to transitional space after a courtyard through field measurements of a case study house. The field measurement was conducted in a two-storey house. Among different aspects of thermal environment, the study of this paper is based on the analysis of temperature in both situations. Ventilation or air movement was considered to have no impact because of the rooms’ layout and location. Other aspects and their variables were considered as constant (especially material) for accuracy and avoidance of confusion. This study focuses on the outcome that can ultimately contribute to the configuration of courtyards and in its relation to indoor space while achieving thermal comfort.

Keywords: courtyard, old Dhaka, temperature, thermal comfort, transitional space

Procedia PDF Downloads 202
18723 Thermal Stability of Hydrogen in ZnO Bulk and Thin Films: A Kinetic Monte Carlo Study

Authors: M. A. Lahmer, K. Guergouri

Abstract:

In this work, Kinetic Monte Carlo (KMC) method was applied to study the thermal stability of hydrogen in ZnO bulk and thin films. Our simulation includes different possible events such as interstitial hydrogen (Hi) jumps, substitutional hydrogen (HO) formation and dissociation, oxygen and zinc vacancies jumps, hydrogen-VZn complexes formation and dissociation, HO-Hi complex formation and hydrogen molecule (H2) formation and dissociation. The obtained results show that the hidden hydrogen formed during thermal annealing or at room temperature is constituted of both hydrogen molecule and substitutional hydrogen. The ratio of this constituants depends on the initial defects concentration as well as the annealing temperature. For annealing temperature below 300°C hidden hydrogen was found to be constituted from both substitutional hydrogen and hydrogen molecule, however, for higher temperature it is composed essentially from HO defects only because H2 was found to be unstable. In the other side, our results show that the remaining hydrogen amount in sample during thermal annealing depend greatly on the oxygen vacancies in the material. H2 molecule was found to be stable for thermal annealing up to 200°C, VZnHn complexes are stable up to 350°C and HO was found to be stable up to 450°C.

Keywords: ZnO, hydrogen, thermal annealing, kinetic Monte Carlo

Procedia PDF Downloads 319
18722 Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures

Authors: Kewen Li

Abstract:

Much attention has been paid to the application of low temperature thermal resources, especially for power generation in recent years. Most of the current commercialized thermal, including geothermal, power-generation technologies convert thermal energy to electric energy indirectly, that is, making mechanical work before producing electricity. Technology using thermoelectric generator (TEG), however, can directly transform thermal energy into electricity by using Seebeck effect. TEG technology has many advantages such as compactness, quietness, and reliability because there are no moving parts. One of the big disadvantages of TEGs is the low efficiency from thermal to electric energy. For this reason, we redesigned and modified our previous 1 KW (at a temperature difference of around 120 °C) TEG system. The efficiency of the system was improved significantly, about 20% greater. Laboratory experiments have been conducted to measure the output power, including both open and net power, at different conditions: different modes of connections between TEG modules, different mechanical structures, different temperature differences between hot and cold sides. The cost of the TEG power generator has been reduced further because of the increased efficiency and is lower than that of photovoltaics (PV) in terms of equivalent energy generated. The TEG apparatus has been pilot tested and the data will be presented. This kind of TEG power system can be applied in many thermal and geothermal sites with low temperature resources, including oil fields where fossil and geothermal energies are co-produced.

Keywords: TEG, direct power generation, efficiency, thermoelectric effect

Procedia PDF Downloads 227
18721 Mathematical Model for Output Yield Obtained by Single Slope Solar Still

Authors: V. Nagaraju, G. Murali, Nagarjunavarma Ganna, Atluri Pavan Kalyan, N. Sree Sai Ganesh, V. S. V. S. Badrinath

Abstract:

The present work focuses on the development of a mathematical model for the yield obtained by single slope solar still incorporated with cylindrical pipes filled with sand. The mathematical results obtained were validated with the experimental results for the 3 cm of water level at the basin. The mathematical model and results obtained with the experimental investigation are within 11% of deviation. The theoretical model to predict the yield obtained due to the capillary effect was proposed first. And then, to predict the total yield obtained, the thermal effect model was integrated with the capillary effect model. With the obtained results, it is understood that the yield obtained is more in the case of solar stills with sand-filled cylindrical pipes when compared to solar stills without sand-filled cylindrical pipes. And later model was used for predicting yield for 1 cm and 2 cm of water levels at the basin. And it is observed that the maximum yield was obtained for a 1 cm water level at the basin. It means solar still produces better yield with the lower depth of water level at the basin; this may be because of the availability of more space in the sand for evaporation.

Keywords: solar still, cylindrical pipes, still efficiency, mathematical modeling, capillary effect model, yield, solar desalination

Procedia PDF Downloads 108
18720 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.

Keywords: Adomian’s decomposition method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load

Procedia PDF Downloads 133
18719 MIM and Experimental Studies of the Thermal Drift in an Ultra-High Precision Instrument for Dimensional Metrology

Authors: Kamélia Bouderbala, Hichem Nouira, Etienne Videcoq, Manuel Girault, Daniel Petit

Abstract:

Thermal drifts caused by the power dissipated by the mechanical guiding systems constitute the main limit to enhance the accuracy of an ultra-high precision cylindricity measuring machine. For this reason, a high precision compact prototype has been designed to simulate the behaviour of the instrument. It ensures in situ calibration of four capacitive displacement probes by comparison with four laser interferometers. The set-up includes three heating wires for simulating the powers dissipated by the mechanical guiding systems, four additional heating wires located between each laser interferometer head and its respective holder, 19 Platinum resistance thermometers (Pt100) to observe the temperature evolution inside the set-up and four Pt100 sensors to monitor the ambient temperature. Both a Reduced Model (RM), based on the Modal Identification Method (MIM) was developed and optimized by comparison with the experimental results. Thereafter, time dependent tests were performed under several conditions to measure the temperature variation at 19 fixed positions in the system and compared to the calculated RM results. The RM results show good agreement with experiment and reproduce as well the temperature variations, revealing the importance of the RM proposed for the evaluation of the thermal behaviour of the system.

Keywords: modal identification method (MIM), thermal behavior and drift, dimensional metrology, measurement

Procedia PDF Downloads 382
18718 Improved Thermal Comfort in Cabin Aircraft with in-Seat Microclimate Conditioning Module

Authors: Mathieu Le Cam, Tejaswinee Darure, Mateusz Pawlucki

Abstract:

Climate control of cabin aircraft is traditionally conditioned as a single unit by the environmental control system. Cabin temperature is controlled by the crew while passengers of the aircraft have control on the gaspers providing fresh air from the above head area. The small nozzles are difficult to reach and adjust to meet the passenger’s needs in terms of flow and direction. More dedicated control over the near environment of each passenger can be beneficial in many situations. The European project COCOON, funded under Clean Sky 2, aims at developing and demonstrating a microclimate conditioning module (MCM) integrated into a standard economy 3-seat row. The system developed will lead to improved passenger comfort with more control on their personal thermal area. This study focuses on the assessment of thermal comfort of passengers in the cabin aircraft through simulation on the TAITherm modelling platform. A first analysis investigates thermal comfort and sensation of passengers in varying cabin environmental conditions: from cold to very hot scenarios, with and without MCM installed in the seats. The modelling platform is also used to evaluate the impact of different physiologies of passengers on their thermal comfort as well as different seat locations. Under the current cabin conditions, a passenger of a 50th percentile body size is feeling uncomfortably cool due to the high velocity cabin air ventilation. The simulation shows that the in-seat MCM developed in COCOON project improves the thermal comfort of the passenger.

Keywords: cabin aircraft, in-seat HVAC, microclimate conditioning module, thermal comfort

Procedia PDF Downloads 176
18717 Computational Fluid Dynamics (CFD) Modeling of Local with a Hot Temperature in Sahara

Authors: Selma Bouasria, Mahi Abdelkader, Abbès Azzi, Herouz Keltoum

Abstract:

This paper reports concept was used into the computational fluid dynamics (CFD) code cfx through user-defined functions to assess ventilation efficiency inside (forced-ventilation local). CFX is a simulation tool which uses powerful computer and applied mathematics, to model fluid flow situations for the prediction of heat, mass and momentum transfer and optimal design in various heat transfer and fluid flow processes to evaluate thermal comfort in a room ventilated (highly-glazed). The quality of the solutions obtained from CFD simulations is an effective tool for predicting the behavior and performance indoor thermo-aéraulique comfort.

Keywords: ventilation, thermal comfort, CFD, indoor environment, solar air heater

Procedia PDF Downloads 613
18716 ANSYS FLUENT Simulation of Natural Convection and Radiation in a Solar Enclosure

Authors: Sireetorn Kuharat, Anwar Beg

Abstract:

In this study, multi-mode heat transfer characteristics of spacecraft solar collectors are investigated computationally. Two-dimensional steady-state incompressible laminar Newtonian viscous convection-radiative heat transfer in a rectangular solar collector geometry. The ANSYS FLUENT finite volume code (version 17.2) is employed to simulate the thermo-fluid characteristics. Several radiative transfer models are employed which are available in the ANSYS workbench, including the classical Rosseland flux model and the more elegant P1 flux model. Mesh-independence tests are conducted. Validation of the simulations is conducted with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation. The influence of aspect ratio, Prandtl number (Pr), Rayleigh number (Ra) and radiative flux model on temperature, isotherms, velocity, the pressure is evaluated and visualized in color plots. Additionally, the local convective heat flux is computed and solutions are compared with the MAC solver for various buoyancy effects (e.g. Ra = 10,000,000) achieving excellent agreement. The P1 model is shown to better predict the actual influence of solar radiative flux on thermal fluid behavior compared with the limited Rosseland model. With increasing Rayleigh numbers the hot zone emanating from the base of the collector is found to penetrate deeper into the collector and rises symmetrically dividing into two vortex regions with very high buoyancy effect (Ra >100,000). With increasing Prandtl number (three gas cases are examined respectively hydrogen gas mixture, air and ammonia gas) there is also a progressive incursion of the hot zone at the solar collector base higher into the solar collector space and simultaneously a greater asymmetric behavior of the dual isothermal zones. With increasing aspect ratio (wider base relative to the height of the solar collector geometry) there is a greater thermal convection pattern around the whole geometry, higher temperatures and the elimination of the cold upper zone associated with lower aspect ratio.

Keywords: thermal convection, radiative heat transfer, solar collector, Rayleigh number

Procedia PDF Downloads 103
18715 Modeling and Design of a Solar Thermal Open Volumetric Air Receiver

Authors: Piyush Sharma, Laltu Chandra, P. S. Ghoshdastidar, Rajiv Shekhar

Abstract:

Metals processing operations such as melting and heat treatment of metals are energy-intensive, requiring temperatures greater than 500oC. The desired temperature in these industrial furnaces is attained by circulating electrically-heated air. In most of these furnaces, electricity produced from captive coal-based thermal power plants is used. Solar thermal energy could be a viable heat source in these furnaces. A retrofitted solar convective furnace (SCF) concept, which uses solar thermal generated hot air, has been proposed. Critical to the success of a SCF is the design of an open volumetric air receiver (OVAR), which can heat air in excess of 800oC. The OVAR is placed on top of a tower and receives concentrated solar radiation from a heliostat field. Absorbers, mixer assembly, and the return air flow chamber (RAFC) are the major components of an OVAR. The absorber is a porous structure that transfers heat from concentrated solar radiation to ambient air, referred to as primary air. The mixer ensures uniform air temperature at the receiver exit. Flow of the relatively cooler return air in the RAFC ensures that the absorbers do not fail by overheating. In an earlier publication, the detailed design basis, fabrication, and characterization of a 2 kWth open volumetric air receiver (OVAR) based laboratory solar air tower simulator was presented. Development of an experimentally-validated, CFD based mathematical model which can ultimately be used for the design and scale-up of an OVAR has been the major objective of this investigation. In contrast to the published literature, where flow and heat transfer have been modeled primarily in a single absorber module, the present study has modeled the entire receiver assembly, including the RAFC. Flow and heat transfer calculations have been carried out in ANSYS using the LTNE model. The complex return air flow pattern in the RAFC requires complicated meshes and is computational and time intensive. Hence a simple, realistic 1-D mathematical model, which circumvents the need for carrying out detailed flow and heat transfer calculations, has also been proposed. Several important results have emerged from this investigation. Circumferential electrical heating of absorbers can mimic frontal heating by concentrated solar radiation reasonably well in testing and characterizing the performance of an OVAR. Circumferential heating, therefore, obviates the need for expensive high solar concentration simulators. Predictions suggest that the ratio of power on aperture (POA) and mass flow rate of air (MFR) is a normalizing parameter for characterizing the thermal performance of an OVAR. Increasing POA/MFR increases the maximum temperature of air, but decreases the thermal efficiency of an OVAR. Predictions of the 1-D mathematical are within 5% of ANSYS predictions and computation time is reduced from ~ 5 hours to a few seconds.

Keywords: absorbers, mixer assembly, open volumetric air receiver, return air flow chamber, solar thermal energy

Procedia PDF Downloads 176
18714 Using Passive Cooling Strategies to Reduce Thermal Cooling Load for Coastal High-Rise Buildings of Jeddah, Saudi Arabia

Authors: Ahmad Zamzam

Abstract:

With the development of the economy in recent years, Saudi Arabia has been maintaining high economic growth. Therefore, its energy consumption has increased dramatically. This economic growth reflected on the expansion of high-rise tower's construction. Jeddah coastal strip (cornice) has many high-rise buildings planned to start next few years. These projects required a massive amount of electricity that was not planned to be supplied by the old infrastructure. This research studies the effect of the building envelope on its thermal performance. It follows a parametric simulation methodology using Ecotect software to analyze the effect of the building envelope design on its cooling energy load for an office high-rise building in Jeddah, Saudi Arabia, which includes building geometrical form, massing treatments, orientation and glazing type effect. The research describes an integrated passive design approach to reduce the cooling requirement for high-rise building through an improved building envelope design. The research used Ecotect to make four simulation studies; the first simulation compares the thermal performance of five high-rise buildings, presenting the basic shape of the plan. All the buildings have the same plan area and same floor height. The goal of this simulation is to find out the best shape for the thermal performance. The second simulation studies the effect of orientation on the thermal performance by rotating the same building model to find out the best and the worst angle for the building thermal performance. The third simulation studies the effect of the massing treatment on the total cooling load. It compared five models with different massing treatment, but with the same total built up area. The last simulation studied the effect of the glazing type by comparing the total cooling load of the same building using five different glass type and also studies the feasibility of using these glass types by studying the glass cost effect. The results indicate that using the circle shape as building plan could reduce the thermal cooling load by 40%. Also, using shading devices could reduce the cooling loads by 5%. The study states that using any of the massing grooving, recess or any treatment that could increase the outer exposed surface is not preferred and will decrease the building thermal performance. Also, the result shows that the best direction for glazing and openings from thermal performance viewpoint in Jeddah is the North direction while the worst direction is the East one. The best direction angle for openings - regarding the thermal performance in Jeddah- is 15 deg West and the worst is 250 deg West (110 deg East). Regarding the glass type effect, comparing to the double glass with air fill type as a reference case, the double glass with Air-Low-E will save 14% from the required amount of the thermal cooling load annually. Argon fill and triple glass will save 16% and 17% from the total thermal cooling load respectively, but for the glass cost purpose, using the Argon fill and triple glass is not feasible.

Keywords: passive cooling, reduce thermal load, Jeddah, building shape, energy

Procedia PDF Downloads 110
18713 Numerical Study for Spatial Optimization of DVG for Fin and Tube Heat Exchangers

Authors: Amit Arora, P. M. V. Subbarao, R. S. Agarwal

Abstract:

This study attempts to find promising locations of upwash delta winglets for an inline finned tube heat exchanger. Later, location of winglets that delivers highest improvement in thermal performance is identified. Numerical results clearly showed that optimally located upwash delta winglets not only improved the thermal performance of fin area in tube wake and tubes, but also improved overall thermal performance of heat exchanger.

Keywords: apparent friction factor, delta winglet, fin and tube heat exchanger, longitudinal vortices

Procedia PDF Downloads 289
18712 Patterns of Change in Perception of Imagined and Physically Induced Pain over the Course of Repeated Thermal Stimulations

Authors: Boroka Gács, Tibor Szolcsányi, Árpad Csathó

Abstract:

Background: Individuals frequently show habituation to repeated noxious heat. However, given the defensive function of human pain processing, it is reasonable to assume that individuals imagine that they would become increasingly sensitive to repeated thermal pain stimuli. To the best of the authors' knowledge, no previous studies have, however, been addressed to this assumption. Therefore, in the current study, we investigated how healthy human individuals imagine the intensity of repeated thermal pain stimulations, and compared this with the intensity ratings given after physically induced thermal pain trials. Methods: Healthy participants (N = 20) gave pain intensity ratings in two conditions: imagined and real thermal pain. In the real pain condition thermal pain stimuli of two intensities (minimal and moderate pain) were delivered in four consecutive trials. The duration of the peak temperature was 20s, and stimulation was always delivered to the same location. In each trial, participants rated the pain intensity twice, 5s and 15s after the onset of the peak temperature. In the imagined pain condition, participants were subjected to a reference pain stimulus and then asked to imagine and rate the same sequence of stimulations as in the induced pain condition. Results: Ratings of imagined pain and physically induced pain followed opposite courses over repeated stimulation: Ratings of imagined pain indicated sensitization whereas ratings for physically induced pain indicated habituation. The findings were similar for minimal and moderate pain intensities. Conclusions: The findings suggest that, rather than habituating to pain, healthy individuals imagine that they would become increasingly sensitive to repeated thermal pain stimuli.

Keywords: habituation, imagined pain, pain perception, thermal stimulation

Procedia PDF Downloads 219
18711 Thermal Properties of Polyhedral Oligomeric Silsesquioxanes/Polyimide Nanocomposite

Authors: Seyfullah Madakbas, Hatice Birtane, Memet Vezir Kahraman

Abstract:

In this study, we aimed to synthesize and characterize polyhedral oligomeric silsesquioxanes containing polyimide nanocomposite. Polyimide nanocomposites widely have been used in membranes in fuel cell, solar cell, gas filtration, sensors, aerospace components, printed circuit boards. Firstly, polyamic acid was synthesized and characterized by Fourier Transform Infrared. Then, polyhedral oligomeric silsesquioxanes containing polyimide nanocomposite was prepared with thermal imidization method. The obtained polyimide nanocomposite was characterized by Fourier Transform Infrared, Scanning Electron Microscope, Thermal Gravimetric Analysis and Differential Scanning Calorimetry. Thermal stability of polyimide nanocomposite was evaluated by thermal gravimetric analysis and differential scanning calorimetry. Surface morphology of composite samples was investigated by scanning electron microscope. The obtained results prove that successfully prepared polyhedral oligomeric silsesquioxanes are containing polyimide nanocomposite. The obtained nanocomposite can be used in many industries such as electronics, automotive, aerospace, etc.

Keywords: polyimide, nanocomposite, polyhedral oligomeric silsesquioxanes

Procedia PDF Downloads 154
18710 Different Methods of Fe3O4 Nano Particles Synthesis

Authors: Arezoo Hakimi, Afshin Farahbakhsh

Abstract:

Herein, we comparison synthesized Fe3O4 using, hydrothermal method, Mechanochemical processes and solvent thermal method. The Hydrothermal Technique has been the most popular one, gathering interest from scientists and technologists of different disciplines, particularly in the last fifteen years. In the hydrothermal method Fe3O4 microspheres, in which many nearly monodisperse spherical particles with diameters of about 400nm, in the mechanochemical method regular morphology indicates that the particles are well crystallized and in the solvent thermal method Fe3O4 nanoparticles have good properties of uniform size and good dispersion.

Keywords: Fe3O4 nanoparticles, hydrothermal method, mechanochemical processes, solvent thermal method

Procedia PDF Downloads 337
18709 Predictability of Thermal Response in Housing: A Case Study in Australia, Adelaide

Authors: Mina Rouhollahi, J. Boland

Abstract:

Changes in cities’ heat balance due to rapid urbanization and the urban heat island (UHI) have increased energy demands for space cooling and have resulted in uncomfortable living conditions for urban residents. Climate resilience and comfortable living spaces can be addressed through well-designed urban development. The sustainable housing can be more effective in controlling high levels of urban heat. In Australia, to mitigate the effects of UHIs and summer heat waves, one solution to sustainable housing has been the trend to compact housing design and the construction of energy efficient dwellings. This paper analyses whether current housing configurations and orientations are effective in avoiding increased demands for air conditioning and having an energy efficient residential neighborhood. A significant amount of energy is consumed to ensure thermal comfort in houses. This paper reports on the modelling of heat transfer within the homes using the measurements of radiation, convection and conduction between exterior/interior wall surfaces and outdoor/indoor environment respectively. The simulation was tested on selected 7.5-star energy efficient houses constructed of typical material elements and insulation in Adelaide, Australia. The chosen design dwellings were analyzed in extremely hot weather through one year. The data were obtained via a thermal circuit to accurately model the fundamental heat transfer mechanisms on both boundaries of the house and through the multi-layered wall configurations. The formulation of the Lumped capacitance model was considered in discrete time steps by adopting a non-linear model method. The simulation results focused on the effects of orientation of the solar radiation on the dynamic thermal characteristics of the houses orientations. A high star rating did not necessarily coincide with a decrease in peak demands for cooling. A more effective approach to avoid increasing the demands for air conditioning and energy may be to integrate solar–climatic data to evaluate the performance of energy efficient houses.

Keywords: energy-efficient residential building, heat transfer, neighborhood orientation, solar–climatic data

Procedia PDF Downloads 119
18708 Effect of Built in Polarization on Thermal Properties of InGaN/GaN Heterostructures

Authors: Bijay Kumar Sahoo

Abstract:

An important feature of InₓGa₁-ₓN/GaN heterostructures is strong built-in polarization (BIP) electric field at the hetero-interface due to spontaneous (sp) and piezoelectric (pz) polarizations. The intensity of this electric field reaches several MV/cm. This field has profound impact on optical, electrical and thermal properties. In this work, the effect of BIP field on thermal conductivity of InₓGa₁-ₓN/GaN heterostructure has been investigated theoretically. The interaction between the elastic strain and built in electric field induces additional electric polarization. This additional polarization contributes to the elastic constant of InₓGa₁-ₓN alloy. This in turn modifies material parameters of InₓGa₁-ₓN. The BIP mechanism enhances elastic constant, phonon velocity and Debye temperature and their bowing constants in InₓGa₁-ₓN alloy. These enhanced thermal parameters increase phonon mean free path which boost thermal conduction process. The thermal conductivity (k) of InxGa1-xN alloy has been estimated for x=0, 0.1, 0.3 and 0.9. Computation finds that irrespective of In content, the room temperature k of InₓGa₁-ₓN/GaN heterostructure is enhanced by BIP mechanism. Our analysis shows that at a certain temperature both k with and without BIP show crossover. Below this temperature k with BIP field is lower than k without BIP; however, above this temperature k with BIP field is significantly contributed by BIP mechanism leading to k with BIP field become higher than k without BIP field. The crossover temperature is primary pyroelectric transition temperature. The pyroelectric transition temperature of InₓGa₁-ₓN alloy has been predicted for different x. This signature of pyroelectric nature suggests that thermal conductivity can reveal pyroelectricity in InₓGa₁-ₓN alloy. The composition dependent room temperature k for x=0.1 and 0.3 are in line with prior experimental studies. The result can be used to minimize the self-heating effect in InₓGa₁-ₓN/GaN heterostructures.

Keywords: built-in polarization, phonon relaxation time, thermal properties of InₓGa₁-ₓN /GaN heterostructure, self-heating

Procedia PDF Downloads 386
18707 Determination of Brominated Flame Retardants In Recycled Plastic Toys Using Thermal Desorption GC/MS

Authors: Athena Nguyen, Rojin Belganeh

Abstract:

In recycling plastics industries, waste plastics are converted into monomers and other useful molecules by chemical reactions. Thermal energy generated by incineration is recovered when waste plastics melt. During the process, Flame retardants containing products get in, and brominated flame retardants (BFRs) are often used to reduce the flammability of products. Some of the originally formulated brominated flame retardants additives are restricted by the RoHS Directive, such as PBDE and PBB. The determination of BFRs other than those restricted by the RoHS directive is required. Frontier Lab developed a pyrolyzer based on the vertical micro-furnace design. The multi-mode pyrolyzer with different modes of operations, including evolve gas analysis (EGA), flash pyrolysis, thermal desorption, heart cutting, allows users to choose among the techniques for their analysis purposes. The method requires very little sample preparation. The first step is to perform an EGA using temperature programs. This technique provides information about the thermal temperature behaviors of the sample. The EGA thermogram is then used to determine the next steps in the analysis process. In this presentation, with an Optimal thermal temperature zone identified based on EGA thermogram, thermal desorption GC/MS is a chosen technique for the determination of brominated flame retardants in recycled plastic toys. Five types of general-purpose brominated flame retardants other than those restricted by the RoHS Directive are determined by the standard addition method.

Keywords: gas chromatography/mass spectrometry, pyrolysis, pyrolyzer, thermal desorption-GC/MS

Procedia PDF Downloads 168
18706 Computation of Thermal Stress Intensity Factor for Bonded Composite Repairs in Aircraft Structures

Authors: Fayçal Benyahia, Abdelmohsen Albedah, Bel Abbes Bachir Bouiadjra

Abstract:

In this study the Finite element method is used to analyse the effect of the thermal residual stresses resulting from adhesive curing on the performances of the bonded composite repair in aircraft structures. The stress intensity factor at the crack tip is chosen as fracture criterion in order to estimate the repair performances. The obtained results show that the presence of the thermal residual stresses reduces considerably the repair performances and consequently decreases the fatigue life of cracked structures. The effects of the curing temperature, the adhesive properties and the adhesive thickness on the Stress Intensity Factor (SIF) variation with thermal stresses are also analysed.

Keywords: bonded composite repair, residual stress, adhesion, stress transfer, finite element analysis

Procedia PDF Downloads 399
18705 Computational Fluid Dynamics Simulations of Thermal and Flow Fields inside a Desktop Personal Computer Cabin

Authors: Mohammad Salehi, Mohammad Erfan Doraki

Abstract:

In this paper, airflow analysis inside a desktop computer case is performed by simulating computational fluid dynamics. The purpose is to investigate the cooling process of the central processing unit (CPU) with thermal capacities of 80 and 130 watts. The airflow inside the computer enclosure, selected from the microATX model, consists of the main components of heat production such as CPU, hard disk drive, CD drive, floppy drive, memory card and power supply unit; According to the amount of thermal power produced by the CPU with 80 and 130 watts of power, two different geometries have been used for a direct and radial heat sink. First, the independence of the computational mesh and the validation of the solution were performed, and after ensuring the correctness of the numerical solution, the results of the solution were analyzed. The simulation results showed that changes in CPU temperature and other components linearly increased with increasing CPU heat output. Also, the ambient air temperature has a significant effect on the maximum processor temperature.

Keywords: computational fluid dynamics, CPU cooling, computer case simulation, heat sink

Procedia PDF Downloads 104
18704 Determination of the Thermophysical Characteristics of the Composite Material Clay Cement Paper

Authors: A. Ouargui, N. Belouaggadia, M. Ezzine

Abstract:

In Morocco, the building sector is largely responsible for the evolution of energy consumption. The control of energy in this sector remains a major issue despite the rise of renewable energies. The design of an environmentally friendly building requires mastery and knowledge of energy and bioclimatic aspects. This implies taking into consideration of all the elements making up the building and the way in which energy exchanges take place between these elements. In this context, thermal insulation seems to be an ideal starting point for reducing energy consumption and greenhouse gas emissions. In this context, thermal insulation seems to be an ideal starting point for reducing energy consumption and greenhouse gas emissions. The aim of this work is to provide some solutions to reduce energy consumption while maintaining thermal comfort in the building. The objective of our work is to present an experimental study on the characterization of local materials used in the thermal insulation of buildings. These are paper recycling stabilized with cement and clay. The thermal conductivity of these materials, which were constituted based on sand, clay, cement; water, as well as treated paper, was determined by the guarded-hot-plate method. It involves the design of two materials that will subsequently be subjected to thermal and mechanical tests to determine their thermophysical properties. The results show that the thermal conductivity decreases as well in the case of the paper-cement mixture as that of the paper-clay and seems to stabilize around 40%. Measurements of mechanical properties such as flexural strength have shown that the enrichment of the studied material with paper makes it possible to reduce the flexural strength by 20% while optimizing the conductivity.

Keywords: building, composite material, insulation, thermal conductivity, paper residue

Procedia PDF Downloads 112