Search results for: exploratory data analysis
42289 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 8142288 Nexus Between Agricultural Insurance Scheme and Performance of Agribusiness in Nigeria
Authors: Festus Epetimehin
Abstract:
Agriculture remains the dominant sector in the rural areas where over 70% of Nigerian reside and it’s still the backbone of our economy. The observed poor performance of farmers in agricultural productivity is due to the nature of risks and uncertainties in agriculture.Agricultural insurance is one of the mechanisms by which farmers can stabilize farm income and investment. The study examined the relationship between agricultural insurance scheme (AIS) and performance of agribusiness in Nigeria. The study adopted exploratory research design which is an ex-ante research approach. One hundred copies of structured questionnaire were administered for the purpose of the study. Correlation analysis and regression analysis were employed for the study. The correlation analysis of the finding revealed that the independent variable; agricultural insurance scheme (AIS) is positively and significantly correlated with the set of dependent variables; where turnover (ABT)=0.582**, profitability (ABP)=0.321**, solvency (ABS)=0.418**and cost of production (ABC)=0.23** respectively. The regression analysis result also revealed the degree of relationship between the independent variable (AIS) and set of dependent variables where one(1%) percent increase in independent variable will lead to 33.9% (ABT), 9.7% (ABP), 17.5%(ABS) and 1.5%(ABC).The study recommended that the Federal Government in collaboration with the participating Agricultural insurers embark on awareness campaign through to the length and breadth of Nigeria on government support and insurance scheme for farmers. Government should also ensure that the loan and insurance scheme should extend beyond the mechanized farmers and include the intensive subsistence farmers in view of the fact that they are the dominants in most of the farm produce markets.Keywords: agribusiness, agricultural insurance, performance, turnover, solvency, agricultural risks
Procedia PDF Downloads 10042287 Dataset Quality Index:Development of Composite Indicator Based on Standard Data Quality Indicators
Authors: Sakda Loetpiparwanich, Preecha Vichitthamaros
Abstract:
Nowadays, poor data quality is considered one of the majority costs for a data project. The data project with data quality awareness almost as much time to data quality processes while data project without data quality awareness negatively impacts financial resources, efficiency, productivity, and credibility. One of the processes that take a long time is defining the expectations and measurements of data quality because the expectation is different up to the purpose of each data project. Especially, big data project that maybe involves with many datasets and stakeholders, that take a long time to discuss and define quality expectations and measurements. Therefore, this study aimed at developing meaningful indicators to describe overall data quality for each dataset to quick comparison and priority. The objectives of this study were to: (1) Develop a practical data quality indicators and measurements, (2) Develop data quality dimensions based on statistical characteristics and (3) Develop Composite Indicator that can describe overall data quality for each dataset. The sample consisted of more than 500 datasets from public sources obtained by random sampling. After datasets were collected, there are five steps to develop the Dataset Quality Index (SDQI). First, we define standard data quality expectations. Second, we find any indicators that can measure directly to data within datasets. Thirdly, each indicator aggregates to dimension using factor analysis. Next, the indicators and dimensions were weighted by an effort for data preparing process and usability. Finally, the dimensions aggregate to Composite Indicator. The results of these analyses showed that: (1) The developed useful indicators and measurements contained ten indicators. (2) the developed data quality dimension based on statistical characteristics, we found that ten indicators can be reduced to 4 dimensions. (3) The developed Composite Indicator, we found that the SDQI can describe overall datasets quality of each dataset and can separate into 3 Level as Good Quality, Acceptable Quality, and Poor Quality. The conclusion, the SDQI provide an overall description of data quality within datasets and meaningful composition. We can use SQDI to assess for all data in the data project, effort estimation, and priority. The SDQI also work well with Agile Method by using SDQI to assessment in the first sprint. After passing the initial evaluation, we can add more specific data quality indicators into the next sprint.Keywords: data quality, dataset quality, data quality management, composite indicator, factor analysis, principal component analysis
Procedia PDF Downloads 14742286 A Study to Design a Survey to Encourage the University-Industry Relation
Authors: Lizbeth Puerta, Enselmina Marín
Abstract:
The purpose of this research is to present a survey to be applied to professors of public universities, to identify the factors that benefit or hinder the university-industry relation. Hence, this research studies some elements that integrate the variables: Knowledge management, technology management, and technology transfer; to define the existence of a relation between these variables and the industry necessities of innovation. This study is exploratory, descriptive and non-experimental. The research question is: What is the impact of the knowledge management, the technology management, and the technology transfer, made by administrative support areas of the public universities, in the industries innovation? Thus, literature review was made to identify some elements that should be considered to design a survey that allows to obtain valid information to the study variables. After this, the survey was developed, and the Content Validity Analysis was made through the Lawshe Model. The analysis indicated that the Content Validity Index (CVI) was 0.80. Hence, it was determined that this survey presents acceptable psychometric properties to be used as an evaluation tool.Keywords: innovation, knowledge management, technology management, technology transfer
Procedia PDF Downloads 41042285 Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault
Authors: Lakshmi Prayaga, Chandra Prayaga. Aaron Wade, Gopi Shankar Mallu, Harsha Satya Pola
Abstract:
Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN.Keywords: synthetic data generation, generative adversarial networks, conditional tabular GAN, Gaussian copula
Procedia PDF Downloads 8842284 Envisioning Process in Medium Enterprises: An Exploratory Study of Cambodian Living Arts
Authors: Alexandre Bédard, Caroline Coulombe, Jonathan Harvey
Abstract:
Envisioning process (EP) in medium enterprises is treated equally in very small enterprises. Building on the concept of social construction, this study aims to explore how envisioning is constructed in a medium enterprise in which stakeholders are involved and how it is influenced. We use a unique case method based on qualitative data collected through 11 interviews representing various members of the organization. Through the discussion of the findings, we were able to confirm the social construction of the EP and to identify three main stakeholders responsible for the construction of the vision, mainly political and social powers, actors of the organization, and financial providers. Moreover, EP is influenced by external factors; in this case, the history of the organization and the value and importance of the art and the culture for Cambodians.Keywords: envisioning process, social constructivism, medium enterprise, legitimacy
Procedia PDF Downloads 12642283 An Automated Approach to Consolidate Galileo System Availability
Authors: Marie Bieber, Fabrice Cosson, Olivier Schmitt
Abstract:
Europe's Global Navigation Satellite System, Galileo, provides worldwide positioning and navigation services. The satellites in space are only one part of the Galileo system. An extensive ground infrastructure is essential to oversee the satellites and ensure accurate navigation signals. High reliability and availability of the entire Galileo system are crucial to continuously provide positioning information of high quality to users. Outages are tracked, and operational availability is regularly assessed. A highly flexible and adaptive tool has been developed to automate the Galileo system availability analysis. Not only does it enable a quick availability consolidation, but it also provides first steps towards improving the data quality of maintenance tickets used for the analysis. This includes data import and data preparation, with a focus on processing strings used for classification and identifying faulty data. Furthermore, the tool allows to handle a low amount of data, which is a major constraint when the aim is to provide accurate statistics.Keywords: availability, data quality, system performance, Galileo, aerospace
Procedia PDF Downloads 17142282 Processing Big Data: An Approach Using Feature Selection
Authors: Nikat Parveen, M. Ananthi
Abstract:
Big data is one of the emerging technology, which collects the data from various sensors and those data will be used in many fields. Data retrieval is one of the major issue where there is a need to extract the exact data as per the need. In this paper, large amount of data set is processed by using the feature selection. Feature selection helps to choose the data which are actually needed to process and execute the task. The key value is the one which helps to point out exact data available in the storage space. Here the available data is streamed and R-Center is proposed to achieve this task.Keywords: big data, key value, feature selection, retrieval, performance
Procedia PDF Downloads 34342281 Improved K-Means Clustering Algorithm Using RHadoop with Combiner
Authors: Ji Eun Shin, Dong Hoon Lim
Abstract:
Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases.Keywords: big data, combiner, K-means clustering, RHadoop
Procedia PDF Downloads 44642280 Factors That Affect the Effectiveness of Enterprise Architecture Implementation Methodology
Authors: Babak Darvish Rouhani, Mohd Nazri Mahrin, Fatemeh Nikpay, Pourya Nikfard, Maryam Khanian Najafabadi
Abstract:
Enterprise Architecture (EA) is a strategy that is employed by enterprises in order to align their business and Information Technology (IT). EA is managed, developed, and maintained through Enterprise Architecture Implementation Methodology (EAIM). The effectiveness of EA implementation is the degree in which EA helps to achieve the collective goals of the organization. This paper analyzes the results of a survey that aims to explore the factors that affect the effectiveness of EAIM and specifically the relationship between factors and effectiveness of the output and functionality of EA project. The exploratory factor analysis highlights a specific set of five factors: alignment, adaptiveness, support, binding, and innovation. The regression analysis shows that there is a statistically significant and positive relationship between each of the five factors and the effectiveness of EAIM. Consistent with theory and practice, the most prominent factor for developing an effective EAIM is innovation. The findings contribute to the measuring the effectiveness of EA implementation project by providing an indication of the measurement implementation approaches which is used by the Enterprise Architects, and developing an effective EAIM.Keywords: enterprise architecture, enterprise architecture implementation methodology, implementation methodology, factors, EA, effectiveness
Procedia PDF Downloads 43842279 Between Subscribers of Two Telecommunication Providers in Indonesia: Factors Involved in Customer Retention
Authors: Frista Dearetha Marasabessy, Usep Suhud, Mohammad Rizan
Abstract:
The study objective was to compare influencing factors on customer retention of two brands – SimPATI and IM3 – of telecommunication services owned by Telkomsel and Indosat, two giant mobile telecommunication providers in Indonesia. The authors applied predictor variables including perceived tariff, perceived quality, switching barriers, and customer satisfaction. These variables were used after reviewing literature in quantitative studies on consumer behaviour relating to telecommunication services. This study used indicators adopted and adapted from literature. The quantitative data were gathered in Jakarta, involving 205 subscribers of SimPATI and 202 subscribers of IM3. The authors selected respondents purposively. Data were analysed using both exploratory and confirmatory factor analyses. Two fitted models were developed confirming factors that were involved in customer retention as stated on the proposed model: perceived tariff, perceived quality, switching barriers, and customer satisfaction. However, parts of the hypotheses were rejected.Keywords: customer retention, switching barriers, telecommunication providers, structural equation model, SimPATI, IM3, Indonesia
Procedia PDF Downloads 35342278 Joint Probability Distribution of Extreme Water Level with Rainfall and Temperature: Trend Analysis of Potential Impacts of Climate Change
Authors: Ali Razmi, Saeed Golian
Abstract:
Climate change is known to have the potential to impact adversely hydrologic patterns for variables such as rainfall, maximum and minimum temperature and sea level rise. Long-term average of these climate variables could possibly change over time due to climate change impacts. In this study, trend analysis was performed on rainfall, maximum and minimum temperature and water level data of a coastal area in Manhattan, New York City, Central Park and Battery Park stations to investigate if there is a significant change in the data mean. Partial Man-Kendall test was used for trend analysis. Frequency analysis was then performed on data using common probability distribution functions such as Generalized Extreme Value (GEV), normal, log-normal and log-Pearson. Goodness of fit tests such as Kolmogorov-Smirnov are used to determine the most appropriate distributions. In flood frequency analysis, rainfall and water level data are often separately investigated. However, in determining flood zones, simultaneous consideration of rainfall and water level in frequency analysis could have considerable effect on floodplain delineation (flood extent and depth). The present study aims to perform flood frequency analysis considering joint probability distribution for rainfall and storm surge. First, correlation between the considered variables was investigated. Joint probability distribution of extreme water level and temperature was also investigated to examine how global warming could affect sea level flooding impacts. Copula functions were fitted to data and joint probability of water level with rainfall and temperature for different recurrence intervals of 2, 5, 25, 50, 100, 200, 500, 600 and 1000 was determined and compared with the severity of individual events. Results for trend analysis showed increase in long-term average of data that could be attributed to climate change impacts. GEV distribution was found as the most appropriate function to be fitted to the extreme climate variables. The results for joint probability distribution analysis confirmed the necessity for incorporation of both rainfall and water level data in flood frequency analysis.Keywords: climate change, climate variables, copula, joint probability
Procedia PDF Downloads 36742277 Model of Optimal Centroids Approach for Multivariate Data Classification
Authors: Pham Van Nha, Le Cam Binh
Abstract:
Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization
Procedia PDF Downloads 21342276 Nurse-Reported Perceptions of Medication Safety in Private Hospitals in Gauteng Province.
Authors: Madre Paarlber, Alwiena Blignaut
Abstract:
Background: Medication administration errors remains a global patient safety problem targeted by the WHO (World Health Organization), yet research on this matter is sparce within the South African context. Objective: The aim was to explore and describe nurses’ (medication administrators) perceptions regarding medication administration safety-related culture, incidence, causes, and reporting in the Gauteng Province of South Africa, and to determine any relationships between perceived variables concerned with medication safety (safety culture, incidences, causes, reporting of incidences, and reasons for non-reporting). Method: A quantitative research design was used through which self-administered online surveys were sent to 768 nurses (medication administrators) (n=217). The response rate was 28.26%. The survey instrument was synthesised from the Agency of Healthcare Research and Quality (AHRQ) Hospital Survey on Patient Safety Culture, the Registered Nurse Forecasting (RN4CAST) survey, a survey list prepared from a systematic review aimed at generating a comprehensive list of medication administration error causes and the Medication Administration Error Reporting Survey from Wakefield. Exploratory and confirmatory factor analyses were used to determine the validity and reliability of the survey. Descriptive and inferential statistical data analysis were used to analyse quantitative data. Relationships and correlations were identified between items, subscales and biographic data by using Spearmans’ Rank correlations, T-Tests and ANOVAs (Analysis of Variance). Nurses reported on their perceptions of medication administration safety-related culture, incidence, causes, and reporting in the Gauteng Province. Results: Units’ teamwork deemed satisfactory, punitive responses to errors accentuated. “Crisis mode” working, concerns regarding mistake recording and long working hours disclosed as impacting patient safety. Overall medication safety graded mostly positively. Work overload, high patient-nurse ratios, and inadequate staffing implicated as error-inducing. Medication administration errors were reported regularly. Fear and administrative response to errors effected non-report. Non-report of errors’ reasons was affected by non-punitive safety culture. Conclusions: Medication administration safety improvement is contingent on fostering a non-punitive safety culture within units. Anonymous medication error reporting systems and auditing nurses’ workload are recommended in the quest of improved medication safety within Gauteng Province private hospitals.Keywords: incidence, medication administration errors, medication safety, reporting, safety culture
Procedia PDF Downloads 6042275 Towards Sustainable Construction: An Exploratory Study of the Factors Affecting the Investment on Construction and Demolition Waste in Saudi Arabia (KSA)
Authors: Mohammed Alnuwairan, Mahmoud Abdelrahman
Abstract:
Based on the sustainability concept, this paper explores the current situation of construction and demolition waste (C&D) in the Kingdom of Saudi Arabia (KSA) from the source of production to final destinations. The issues that hindered the investment of recycling C&D in the context will be studied in order to identify the challenges and opportunities to improve this sector and put forward a strategic framework to reduce, reuse, recycle and minimize the disposal of this type of waste. The research, which is exploratory in nature, identified four types of organizations that were appropriate case studies. These organizations were drawn from the municipalities, city council, recyclers and manufacturers. Secondary data collection, direct observation, and elite interviewing methods were used in the case studies to facilitate comparisons with existing literature to explore opportunities to improve sustainability practices in the buildings sector. Implementation of C&D waste management and recycling in KSA is in the early stages. Resistance of virgin building material manufacturers, free usage of landfill, culture, surpluses of natural raw material, availability of land and the cost of recycling this material compared with virgin material hinders the adoption of recycled buildings martial. Although the metal material is collected and recycled but it has the lowest percentage of C&D waste in Saudi. The findings indicate that government and industry need to collaborate more closely in order to successfully implement best practices. Economic and environmental benefits can be achieved, particularly through improvements to infrastructure and legislation. Feasible solution framework and recommendations for managing C&D waste under current situation are provided. The findings can be used to extend this framework and to enable it to be applicable in other context with emerging economies similar to that found in KSA. No study of this type has been previously carried out in KSA. The findings should prove useful in creating a future research agenda for C&D waste in KSA and, possibly, other emerging countries within a similar context.Keywords: construction and demolition waste, recycling, reuse, sustainability
Procedia PDF Downloads 35242274 Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Model
Authors: Alam Ali, Ashok Kumar Pathak
Abstract:
Path analysis is a statistical technique used to evaluate the strength of the direct and indirect effects of variables. One or more structural regression equations are used to estimate a series of parameters in order to find the better fit of data. Sometimes, exogenous variables do not show a significant strength of their direct and indirect effect when the assumption of classical regression (ordinary least squares (OLS)) are violated by the nature of the data. The main motive of this article is to investigate the efficacy of the copula-based regression approach over the classical regression approach and calculate the direct and indirect effects of variables when data violates the OLS assumption and variables are linked through an elliptical copula. We perform this study using a well-organized numerical scheme. Finally, a real data application is also presented to demonstrate the performance of the superiority of the copula approach.Keywords: path analysis, copula-based regression models, direct and indirect effects, k-fold cross validation technique
Procedia PDF Downloads 7642273 Investigation of the Effect of Lecturers' Attributes on Students' Interest in Learning Statistic Ghanaian Tertiary Institutions
Authors: Samuel Asiedu-Addo, Jonathan Annan, Yarhands Dissou Arthur
Abstract:
The study aims to explore the relational effect of lecturers’ personal attribute on student’s interest in statistics. In this study personal attributes of lecturers’ such as lecturer’s dynamism, communication strategies and rapport in the classroom as well as applied knowledge during lecture were examined. Here, exploratory research design was used to establish the effect of lecturer’s personal attributes on student’s interest. Data were analyzed by means of confirmatory factor analysis and structural equation modeling (SEM) using the SmartPLS 3 program. The study recruited 376 students from the faculty of technical and vocational education of the University of Education Winneba Kumasi campus, and Ghana Technology University College as well as Kwame Nkrumah University of science and Technology. The results revealed that personal attributes of an effective lecturer were lecturer’s dynamism, rapport, communication and applied knowledge contribute (52.9%) in explaining students interest in statistics. Our regression analysis and structural equation modeling confirm that lecturers personal attribute contribute effectively by predicting student’s interest of 52.9% and 53.7% respectively. The paper concludes that the total effect of a lecturer’s attribute on student’s interest is moderate and significant. While a lecturer’s communication and dynamism were found to contribute positively to students’ interest, they were insignificant in predicting students’ interest. We further showed that a lecturer’s personal attributes such as applied knowledge and rapport have positive and significant effect on tertiary student’s interest in statistic, whilst lecturers’ communication and dynamism do not significantly affect student interest in statistics; though positively related.Keywords: student interest, effective teacher, personal attributes, regression and SEM
Procedia PDF Downloads 36142272 Sentiment Analysis: An Enhancement of Ontological-Based Features Extraction Techniques and Word Equations
Authors: Mohd Ridzwan Yaakub, Muhammad Iqbal Abu Latiffi
Abstract:
Online business has become popular recently due to the massive amount of information and medium available on the Internet. This has resulted in the huge number of reviews where the consumers share their opinion, criticisms, and satisfaction on the products they have purchased on the websites or the social media such as Facebook and Twitter. However, to analyze customer’s behavior has become very important for organizations to find new market trends and insights. The reviews from the websites or the social media are in structured and unstructured data that need a sentiment analysis approach in analyzing customer’s review. In this article, techniques used in will be defined. Definition of the ontology and description of its possible usage in sentiment analysis will be defined. It will lead to empirical research that related to mobile phones used in research and the ontology used in the experiment. The researcher also will explore the role of preprocessing data and feature selection methodology. As the result, ontology-based approach in sentiment analysis can help in achieving high accuracy for the classification task.Keywords: feature selection, ontology, opinion, preprocessing data, sentiment analysis
Procedia PDF Downloads 20142271 Dissimilarity Measure for General Histogram Data and Its Application to Hierarchical Clustering
Authors: K. Umbleja, M. Ichino
Abstract:
Symbolic data mining has been developed to analyze data in very large datasets. It is also useful in cases when entry specific details should remain hidden. Symbolic data mining is quickly gaining popularity as datasets in need of analyzing are becoming ever larger. One type of such symbolic data is a histogram, which enables to save huge amounts of information into a single variable with high-level of granularity. Other types of symbolic data can also be described in histograms, therefore making histogram a very important and general symbolic data type - a method developed for histograms - can also be applied to other types of symbolic data. Due to its complex structure, analyzing histograms is complicated. This paper proposes a method, which allows to compare two histogram-valued variables and therefore find a dissimilarity between two histograms. Proposed method uses the Ichino-Yaguchi dissimilarity measure for mixed feature-type data analysis as a base and develops a dissimilarity measure specifically for histogram data, which allows to compare histograms with different number of bins and bin widths (so called general histogram). Proposed dissimilarity measure is then used as a measure for clustering. Furthermore, linkage method based on weighted averages is proposed with the concept of cluster compactness to measure the quality of clustering. The method is then validated with application on real datasets. As a result, the proposed dissimilarity measure is found producing adequate and comparable results with general histograms without the loss of detail or need to transform the data.Keywords: dissimilarity measure, hierarchical clustering, histograms, symbolic data analysis
Procedia PDF Downloads 16942270 Cryptographic Protocol for Secure Cloud Storage
Authors: Luvisa Kusuma, Panji Yudha Prakasa
Abstract:
Cloud storage, as a subservice of infrastructure as a service (IaaS) in Cloud Computing, is the model of nerworked storage where data can be stored in server. In this paper, we propose a secure cloud storage system consisting of two main components; client as a user who uses the cloud storage service and server who provides the cloud storage service. In this system, we propose the protocol schemes to guarantee against security attacks in the data transmission. The protocols are login protocol, upload data protocol, download protocol, and push data protocol, which implement hybrid cryptographic mechanism based on data encryption before it is sent to the cloud, so cloud storage provider does not know the user's data and cannot analysis user’s data, because there is no correspondence between data and user.Keywords: cloud storage, security, cryptographic protocol, artificial intelligence
Procedia PDF Downloads 36142269 Moving Oman’s Economy to Knowledge-Based Economy: A Study on the Role of SMEs from the Perspective of Experts
Authors: Hanin Suleiman Alqam
Abstract:
The knowledge-based economy, as its name implies relies on knowledge, information and high levels of skills made available for all economic agents. Delving a bit more deeply, the concept of a knowledge-based economy is showcasing four main pillars, which are: Education and Training, Information and Communication Technology, Economic incentives and Institutional regimes, and Research and Development (R&D) and Innovation system. A good number of researches are showing its positive contribution to economic diversification underpinning sustainable development and growth. The present paper aimed at assessing the role of SMEs in moving Oman’s economy from a traditional economy to a knowledge-based economy. To lay down a groundwork that should lead to future studies, the methodology selected is based on exploratory research. Hence, the interview was conducted as a data collection tool. Based on a purposive sampling technique, seven handpicked experts have partaken in the study as they are working in different key organizations considered to be directly or indirectly the backbone of the Omani national economy. A thematic approach is employed for the purpose of data analysis. Results of the study showed that SMEs are not really contributing in the knowledge-based economy due to a lack of awareness about its importance to the country and to the enterprise within SMEs in Oman. However, it was shown that SMEs owners are interested in innovation and are trying to support innovative individuals by attracting them to their enterprises. On the other hand, the results revealed that SMEs' performance in e-solution is still not up to the level as 32% of SMEs only are using e-solutions in their internal processes and procedures like accounting systems. It is recommended to SMEs owners to use new and modern technologies in marketing and customer relation, encourage creativity, research and development, and allow the youth to have opportunities and facilitate the procedure in terms of innovation so that their role in contributing to the knowledge-based economy could be improved.Keywords: knowledge-based economy, SMEs, ICT pillars, research and innovation
Procedia PDF Downloads 16042268 Augmented Reality as Enhancer of the Lean Philosophy: An Exploratory Study
Authors: P. Gil, F. Charrua-Santos, A. A. Baptista, S. Azevedo, A. Espirito-Santo, J. Páscoa
Abstract:
Lean manufacturing is a philosophy of industrial management that aims to identify and eliminate any waste that exists in the companies. The augmented reality is a new technology that stills being developed in terms of software and hardware. This technology consists of an image capture device, a device for data processing and an image visualization equipment to visualize collected and processed images. It is characterized by being a technology that merges the reality with the virtual environment, so there is an instantaneous interaction between the two environments. The present work intends to demonstrate that the use of the augmented reality will contribute to improve some tools and methods used in Lean manufacturing philosophy. Through several examples of application in industry it will be demonstrated that the technological impact of the augmented reality on the Lean Manufacturing philosophy contribute to added value improvements.Keywords: lean manufacturing, augmented reality, case studies, value
Procedia PDF Downloads 62942267 Sales Patterns Clustering Analysis on Seasonal Product Sales Data
Authors: Soojin Kim, Jiwon Yang, Sungzoon Cho
Abstract:
As a seasonal product is only in demand for a short time, inventory management is critical to profits. Both markdowns and stockouts decrease the return on perishable products; therefore, researchers have been interested in the distribution of seasonal products with the aim of maximizing profits. In this study, we propose a data-driven seasonal product sales pattern analysis method for individual retail outlets based on observed sales data clustering; the proposed method helps in determining distribution strategies.Keywords: clustering, distribution, sales pattern, seasonal product
Procedia PDF Downloads 60642266 Helping the Development of Public Policies with Knowledge of Criminal Data
Authors: Diego De Castro Rodrigues, Marcelo B. Nery, Sergio Adorno
Abstract:
The project aims to develop a framework for social data analysis, particularly by mobilizing criminal records and applying descriptive computational techniques, such as associative algorithms and extraction of tree decision rules, among others. The methods and instruments discussed in this work will enable the discovery of patterns, providing a guided means to identify similarities between recurring situations in the social sphere using descriptive techniques and data visualization. The study area has been defined as the city of São Paulo, with the structuring of social data as the central idea, with a particular focus on the quality of the information. Given this, a set of tools will be validated, including the use of a database and tools for visualizing the results. Among the main deliverables related to products and the development of articles are the discoveries made during the research phase. The effectiveness and utility of the results will depend on studies involving real data, validated both by domain experts and by identifying and comparing the patterns found in this study with other phenomena described in the literature. The intention is to contribute to evidence-based understanding and decision-making in the social field.Keywords: social data analysis, criminal records, computational techniques, data mining, big data
Procedia PDF Downloads 9142265 Building Social Capital for Social Inclusion: The Use of Social Networks in Government
Authors: Suha Alawadhi, Malak Alrasheed
Abstract:
In the recent past, public participation in governments has been declined to a great extent, as citizens have been isolated from community life and their ability to articulate demands for good government has been noticeably decreased. However, the Internet has introduced new forms of interaction that could enhance different types of relationships, including government-public relationship. In fact, technology-enabled government has become a catalyst for enabling social inclusion. This exploratory study seeks to investigate public perceptions in Kuwait regarding the use of social media networks in government where social capital is built to achieve social inclusion. Social capital has been defined as social networks and connections amongst individuals, that are based on shared trust, ideas and norms, enable participants of a network to act effectively to pursue a shared objective. The quantitative method was used to generate empirical evidence. A questionnaire was designed to address the research objective and reflect the identified constructs: social capital dimensions (bridging, bonding and maintaining social capital), social inclusion, and social equality. In this pilot study, data was collected from a random sample of 61 subjects. The results indicate that all participants have a positive attitude towards the dimensions of social capital (bridging, bonding and maintaining), social inclusion and social equality constructs. Tests of identified constructs against demographic characteristics indicate that there are significant differences between male and female as they perceived bonding and maintaining social capital, social inclusion and social equality whereas no difference was identified in their perceptions of bridging social capital. Also, those who are aged 26-30 perceived bonding and maintaining social capital, social inclusion and social equality negatively compared to those aged 20-25, 31-35, and 40-above whose perceptions were positive. With regard to education, the results also show that those holding high school, university degree and diploma perceived maintaining social capital positively higher than with those who hold graduate degrees. Moreover, a regression model is proposed to study the effect of bridging, bonding, and maintaining social capital on social inclusion via social equality as a mediator. This exploratory study is necessary for testing the validity and reliability of the questionnaire which will be used in the main study that aims to investigate the perceptions of individuals towards building social capital to achieve social inclusion.Keywords: government, social capital, social inclusion, social networks
Procedia PDF Downloads 33142264 Cognitive Approach at the Epicenter of Creative Accounting in Cameroonian Companies: The Relevance of the Psycho-Sociological Approach and the Theory of Cognitive Dissonance
Authors: Romuald Temomo Wamba, Robert Wanda
Abstract:
The issue of creative accounting in the psychological and sociological framework has been a mixed subject for over 60 years. The objective of this article is to ensure the existence of creative accounting in Cameroonian entities on the one hand and to understand the strategies used by audit agents to detect errors, omissions, irregularities, or inadequacies in the financial state; optimization techniques used by account preparers to strategically bypass texts on the other hand. To achieve this, we conducted an exploratory study using a cognitive approach, and the data analysis was performed by the software 'decision explorer'. The results obtained challenge the authors' cognition (manifest latent and deceptive behavior). The tax inspectors stress that the entities in Cameroon do not derogate from the rules of piloting in the financial statements. Likewise, they claim a change in current income and net income through depreciation, provisions, inventories, and the spreading of charges over long periods. This suggests the suspicion or intention of manipulating the financial statements. As for the techniques, the account preparers manage the accruals at the end of the year as the basis of the practice of creative accounting. Likewise, management accounts are more favorable to results management.Keywords: creative accounting, sociocognitive approach, psychological and sociological approach, cognitive dissonance theory, cognitive mapping
Procedia PDF Downloads 19542263 Reliability Prediction of Tires Using Linear Mixed-Effects Model
Authors: Myung Hwan Na, Ho- Chun Song, EunHee Hong
Abstract:
We widely use normal linear mixed-effects model to analysis data in repeated measurement. In case of detecting heteroscedasticity and the non-normality of the population distribution at the same time, normal linear mixed-effects model can give improper result of analysis. To achieve more robust estimation, we use heavy tailed linear mixed-effects model which gives more exact and reliable analysis conclusion than standard normal linear mixed-effects model.Keywords: reliability, tires, field data, linear mixed-effects model
Procedia PDF Downloads 56542262 Exploratory Research on Outsourcing Practices and Benefits on Telecommunication Industry in Oman
Authors: Alyamama Alsaidi
Abstract:
This research has been conducted in order to analyse the impact of outsourcing on telecommunication industry in Oman. The research is conducted by collecting qualitative and quantitative data in order to widen the area of comprehension. The data has been collected from genuine sources which showcased that results were reliable and possess validity. The outsourcing is very important because it helps the organisation in saving the cost and efforts of the workers. In Oman, the telecommunication industry largely uses the outsourcing service which is provided by the third party. The third party is responsible for providing outsourcing to the telecommunication companies. This research gives an overall view of the outsourcing in the telecommunication companies of Oman. The IT companies of Oman give their work to the outsourcing services as this will help in reducing the cost the project. Rather employing the experts to do the projects, the organization can easily give their products to the outsourcing services in which they complete the work for a cheaper rate for the telecommunication company of Oman. It will help in reducing the work load on the staffs and management of the telecommunication companies in Oman. The IT outsourcing in Oman is very common because some of the staff are not well experienced to do the IT work. The outsourcing has positive as well as negative impact on the telecommunication industry in Oman. The research has been done while considering ethical aspect in an effective and efficient manner. Furthermore, the literature is adequately reviewed so that views of various specialists can be considered for future guidance.Keywords: IT outsourcing, client company, services company, telecommunication
Procedia PDF Downloads 19142261 Wedding Organizer Strategy in the Era Covid-19 Pandemic In Surabaya, Indonesia
Authors: Rifky Cahya Putra
Abstract:
At this time of corona makes some countries affected difficult. As a result, many traders or companies are difficult to work in this pandemic era. So human activities in some fields must implement a new lifestyle or known as new normal. The transition from the one activity to another certainly requires high adaptation. So that almost in all sectors experience the impact of this phase, on of which is the wedding organizer. This research aims to find out what strategies are used so that the company can run in this pandemic. Techniques in data collection in the form interview to the owner of the wedding organizer and his team. Data analysis qualitative descriptive use interactive model analysis consisting of three main things, namely data reduction, data presentaion, and conclusion. For the result of the interview, the conclusion is that there are three strategies consisting of social media, sponsorship, and promotion.Keywords: strategy, wedding organizer, pandemic, indonesia
Procedia PDF Downloads 13942260 Intrusion Detection System Using Linear Discriminant Analysis
Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou
Abstract:
Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99
Procedia PDF Downloads 233