Search results for: energy access
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11327

Search results for: energy access

7337 Energy Saving in Handling the Air-Conditioning Latent-Load Using a Liquid Desiccant Air Conditioner: Parametric Experimental Analysis

Authors: Mustafa Jaradat

Abstract:

Reasonable energy saving for dehumidification is feasible with the use of desiccants. Desiccants are able to lower the humidity content in the air irrespective of the dew point temperature. In this paper, a tube bundle liquid desiccant air conditioner was experimentally designed and evaluated using lithium chloride as a desiccant. Several experiments were conducted to evaluate the influence of the inlet parameters on the dehumidifier performance. The results show a reduction in the relative humidity in the range of 17 to 46%, and the change in the humidity ratio was between 1.5 to 4.7 g/kg, depending on the inlet conditions. A water removal rate in the range between 0.54 and 1.67 kg/h was observed. The effects of air relative humidity and the desiccant flow rate on the dehumidifier’s performance were investigated. It was found that the moisture removal rate remarkably increased with increasing desiccant flow rate and air inlet humidity ratio. The dehumidifier effectiveness increased sharply with increasing desiccant flow rate. Also, it was found that the dehumidifier effectiveness slightly decreased with air humidity ratio.

Keywords: air conditioning, dehumidification, desiccant, lithium chloride, tube bundle

Procedia PDF Downloads 142
7336 Analysis of Bio-Oil Produced by Pyrolysis of Coconut Shell

Authors: D. S. Fardhyanti, A. Damayanti

Abstract:

The utilization of biomass as a source of new and renewable energy is being carried out. One of the technologies to convert biomass as an energy source is pyrolysis which is converting biomass into more valuable products, such as bio-oil. Bio-oil is a liquid which is produced by steam condensation process from the pyrolysis of coconut shells. The composition of a coconut shell e.g. hemicellulose, cellulose and lignin will be oxidized to phenolic compounds as the main component of the bio-oil. The phenolic compounds in bio-oil are corrosive; they cause various difficulties in the combustion system because of a high viscosity, low calorific value, corrosiveness, and instability. Phenolic compounds are very valuable components which phenol has used as the main component for the manufacture of antiseptic, disinfectant (known as Lysol) and deodorizer. The experiments typically occurred at the atmospheric pressure in a pyrolysis reactor at temperatures ranging from 300 oC to 350 oC with a heating rate of 10 oC/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the bio-oil components. The obtained bio-oil has the viscosity of 1.46 cP, the density of 1.50 g/cm3, the calorific value of 16.9 MJ/kg, and the molecular weight of 1996.64. By GC-MS, the analysis of bio-oil showed that it contained phenol (40.01%), ethyl ester (37.60%), 2-methoxy-phenol (7.02%), furfural (5.45%), formic acid (4.02%), 1-hydroxy-2-butanone (3.89%), and 3-methyl-1,2-cyclopentanedione (2.01%).

Keywords: bio-oil, pyrolysis, coconut shell, phenol, gas chromatography-mass spectroscopy

Procedia PDF Downloads 241
7335 Assessment of Hydrogen Demand for Different Technological Pathways to Decarbonise the Aviation Sector in Germany

Authors: Manish Khanra, Shashank Prabhu

Abstract:

The decarbonization of hard-to-abate sectors is currently high on the agenda in the EU and its member states, as these sectors have substantial shares in overall GHG emissions while it is facing serious challenges to decarbonize. In particular, the aviation sector accounts for 2.8% of global anthropogenic CO₂ emissions. These emissions are anticipated to grow dramatically unless immediate mitigating efforts are implemented. Hydrogen and its derivatives based on renewable electricity can have a key role in the transition towards CO₂-neutral flights. The substantial shares of energy carriers in the form of drop-in fuel, direct combustion and Hydrogen-to-Electric are promising in most scenarios towards 2050. For creating appropriate policies to ramp up the production and utilisation of hydrogen commodities in the German aviation sector, a detailed analysis of the spatial distribution of supply-demand sites is essential. The objective of this research work is to assess the demand for hydrogen-based alternative fuels in the German aviation sector to achieve the perceived goal of the ‘Net Zero’ scenario by 2050. Here, the analysis of the technological pathways for the production and utilisation of these fuels in various aircraft options is conducted for reaching mitigation targets. Our method is based on data-driven bottom-up assessment, considering production and demand sites and their spatial distribution. The resulting energy demand and its spatial distribution with consideration of technology diffusion lead to a possible transition pathway of the aviation sector to meet short-term and long-term mitigation targets. Additionally, to achieve mitigation targets in this sector, costs and policy aspects are discussed, which would support decision-makers from airline industries, policymakers and the producers of energy commodities.

Keywords: the aviation sector, hard-to-abate sectors, hydrogen demand, alternative fuels, technological pathways, data-driven approach

Procedia PDF Downloads 125
7334 Influence of Particulate Fractions on Air Quality for Four Major Congested Cities of India over a Period of Four Years from 2006-2009

Authors: I. Mukherjee, J. Ghose, T. Chakraborty, S. Chaudhury, R. Majumder

Abstract:

India is the second most populated nation in the world. With the Indian population hitting the 1.26 billion mark in the year 2014, there has been an unprecedented rise in power and energy requirements throughout the nation. This mammoth demand for energy, both at the industrial as well as at the domestic household level, as well as the increase in the usage of automobiles has led to a corresponding increase in the total tonnage of fuels being burnt every year. This, in turn, has led to an increase in the concentration of atmospheric pollutants over the years with enhanced particulate concentrations being reported for different parts of the country. Considering the adverseness of the particulates, the paper analyses the role of the particulates on the air quality of four major congested cities of the country namely, Kolkata (22034’ N, 88024’ E), Delhi (28038’N , 77012’ E), Bangalore (12058’ N , 77038’E) and Mumbai (18.9750° N, 72.8258° E) over a period of four years from 2006-2009. The fractional contribution of the finer fractions to the coarser one has been considered in the study in addition to the relative occurrences of the particulate fractions with respect to the other gaseous pollutants such as sulphur dioxide (SO2) and nitrogen oxides (NOX).

Keywords: air quality, particulates, yearly variation, relative occurrence, SO2, NOX

Procedia PDF Downloads 365
7333 Development of Scenarios for Sustainable Next Generation Nuclear System

Authors: Muhammad Minhaj Khan, Jaemin Lee, Suhong Lee, Jinyoung Chung, Johoo Whang

Abstract:

The Republic of Korea has been facing strong storage crisis from nuclear waste generation as At Reactor (AR) temporary storage sites are about to reach saturation. Since the country is densely populated with a rate of 491.78 persons per square kilometer, Construction of High-level waste repository will not be a feasible option. In order to tackle the storage waste generation problem which is increasing at a rate of 350 tHM/Yr. and 380 tHM/Yr. in case of 20 PWRs and 4 PHWRs respectively, the study strongly focuses on the advancement of current nuclear power plants to GEN-IV sustainable and ecological nuclear systems by burning TRUs (Pu, MAs). First, Calculations has made to estimate the generation of SNF including Pu and MA from PWR and PHWR NPPS by using the IAEA code Nuclear Fuel Cycle Simulation System (NFCSS) for the period of 2016, 2030 (including the saturation period of each site from 2024~2028), 2089 and 2109 as the number of NPPS will increase due to high import cost of non-nuclear energy sources. 2ndly, in order to produce environmentally sustainable nuclear energy systems, 4 scenarios to burnout the Plutonium and MAs are analyzed with the concentration on burning of MA only, MA and Pu together by utilizing SFR, LFR and KALIMER-600 burner reactor after recycling the spent oxide fuel from PWR through pyro processing technology developed by Korea Atomic Energy Research Institute (KAERI) which shows promising and sustainable future benefits by minimizing the HLW generation with regard to waste amount, decay heat, and activity. Finally, With the concentration on front and back end fuel cycles for open and closed fuel cycles of PWR and Pyro-SFR respectively, an overall assessment has been made which evaluates the quantitative as well as economical combativeness of SFR metallic fuel against PWR once through nuclear fuel cycle.

Keywords: GEN IV nuclear fuel cycle, nuclear waste, waste sustainability, transmutation

Procedia PDF Downloads 347
7332 Hydrodynamic Characteristics of Single and Twin Offshore Rubble Mound Breakwaters under Regular and Random Waves

Authors: M. Alkhalidi, S. Neelamani, Z. Al-Zaqah

Abstract:

This paper investigates the interaction of single and twin offshore rubble mound breakwaters with regular and random water waves through physical modeling to assess their reflection, transmission and energy dissipation characteristics. Various combinations of wave heights and wave periods were utilized in a series of experiments, along with three different water depths. The single and twin permeable breakwater models were both constructed with one layer of rubbles. Both models had the same total volume; however, the single breakwater was of trapezoidal type while the twin breakwaters were of triangular type. Physical modeling experiments were carried out in the wave flume of the coastal engineering laboratory of Kuwait Institute for Scientific Research (KISR). Measurements of the six wave probes which were fixed in the two-dimensional wave flume were collected and used to determine the generated incident wave heights, as well as the reflected and transmitted wave heights resulting from the wave-breakwater interaction. The possible factors affecting the wave attenuation efficiency of the breakwater models are the relative water depth (d/L), wave steepness (H/L), relative wave height ((h-d)/Hi), relative height of the breakwater (h/d), and relative clear spacing between the twin breakwaters (S/h). The results indicated that the single and double breakwaters show different responds to the change in their relative height as well as the relative wave height which demonstrates that the effect of the relative water depth on wave reflection, transmission, and energy dissipation is highly influenced by the change in the relative breakwater height, the relative wave height and the relative breakwater spacing. In general, within the range of the relative water depth tested in this study, and under both regular and random waves, it is found that the single breakwater allows for lower wave transmission and shows higher energy dissipation effect than both of the tested twin breakwaters, and hence has the best overall performance.

Keywords: random waves, regular waves, relative water depth, relative wave height, single breakwater, twin breakwater, wave steepness

Procedia PDF Downloads 319
7331 Mechanical Performance of Sandwich Square Honeycomb Structure from Sugar Palm Fibre

Authors: Z. Ansari, M. R. M. Rejab, D. Bachtiar, J. P. Siregar

Abstract:

This study focus on the compression and tensile properties of new and recycle square honeycombs structure from sugar palm fibre (SPF) and polylactic acid (PLA) composite. The end data will determine the failure strength and energy absorption for both new and recycle composite. The control SPF specimens were fabricated from short fibre co-mingled with PLA by using a bra-blender set at 180°C and 50 rpm consecutively. The mixture of 30% fibre and 70% PLA were later on the hot press at 180°C into sheets with thickness 3mm consecutively before being assembled into a sandwich honeycomb structure. An INSTRON tensile machine and Abaqus 6.13 software were used for mechanical test and finite element simulation. The percentage of error from the simulation and experiment data was 9.20% and 9.17% for both new and recycled product. The small error of percentages was acceptable due to the nature of the simulation model to be assumed as a perfect model with no imperfect geometries. The energy absorption value from new to recycled product decrease from 312.86kJ to 282.10kJ. With this small decrements, it is still possible to implement a recycle SPF/PLA composite into everyday usages such as a car's interior or a small size furniture.

Keywords: failure modes, numerical modelling, polylactic acid, sugar palm fibres

Procedia PDF Downloads 290
7330 Solar-Powered Adsorption Cooling System: A Case Study on the Climatic Conditions of Al Minya

Authors: El-Sadek H. Nour El-deen, K. Harby

Abstract:

Energy saving and environment friendly applications are turning out to be one of the most important topics nowadays. In this work, a simulation analysis using TRNSYS software has been carried out to study the benefit of employing a solar adsorption cooling system under the climatic conditions of Al-Minya city, Egypt. A theoretical model was carried out on a two bed adsorption cooling system employing granular activated carbon-HFC-404A as working pair. Temporal and averaged history of solar collector, adsorbent beds, evaporator and condenser has been shown. System performance in terms of daily average cooling capacity and average coefficient of performance around the year has been investigated. The results showed that maximum yearly average coefficient of performance (COP) and cooling capacity are about 0.26 and 8 kW respectively. The maximum value of the both average cooling capacity and COP cyclic is directly proportional to the maximum solar radiation. The system performance was found to be increased with the average ambient temperature. Finally, the proposed solar powered adsorption cooling systems can be used effectively under Al-Minya climatic conditions.

Keywords: adsorption, cooling, Egypt, environment, solar energy

Procedia PDF Downloads 155
7329 Model the Off-Shore Ocean-Sea Waves to Generate Electric Power by Design of a Converting Device

Authors: Muthana A. M. Jameel Al-Jaboori

Abstract:

In this paper, we will present a mathematical model to design a system able to generate electricity from ocean-sea waves. We will use the basic principles of the transfer of the energy potential of waves in a chamber to force the air inside a vertical or inclined cylindrical column, which is topped by a wind turbine to rotate the electric generator. The present mathematical model included a high number of variables such as the wave, height, width, length, velocity, and frequency, as well as others for the energy cylindrical column, like varying diameters and heights, and the wave chamber shape diameter and height. While for the wells wind turbine the variables included the number of blades, length, width, and clearance, as well as the rotor and tip radius. Additionally, the turbine rotor and blades must be made from the light and strong material for a smooth blade surface. The variables were too vast and high in number. Then the program was run successfully within the MATLAB and presented very good modeling results.

Keywords: water wave, models, Wells turbine, MATLAB program

Procedia PDF Downloads 356
7328 Manganese Imidazole Complexes: Electrocatalytic Hydrogen Production

Authors: Vishakha Kaim, Mookan Natarajan, Sandeep Kaur-Ghumaan

Abstract:

Hydrogen is one of the most abundant elements present on earth’s crust and considered to be the simplest element in existence. It is not found naturally as a gas on earth and thus has to be manufactured. Hydrogen can be produced from a variety of sources, i.e., water, fossil fuels, or biomass and it is a byproduct of many chemical processes. It is also considered as a secondary source of energy commonly referred to as an energy carrier. Though hydrogen is not widely used as a fuel, it still has the potential for greater use in the future as a clean and renewable source of energy. Electrocatalysis is one of the important source for the production of hydrogen which could contribute to this prominent challenge. Metals such as platinum and palladium are considered efficient for hydrogen production but with limited applications. As a result, a wide variety of metal complexes with earth abundant elements and varied ligand environments have been explored for the electrochemical production of hydrogen. In nature, [FeFe] hydrogenase enzyme present in DesulfoVibrio desulfuricans and Clostridium pasteurianum catalyses the reversible interconversion of protons and electrons into dihydrogen. Since the first structure for the enzyme was reported in 1990s, a range of iron complexes has been synthesized as structural and functional mimics of the enzyme active site. Mn is one of the most desirable element for sustainable catalytic transformations, immediately behind Fe and Ti. Only limited number manganese complexes have been reported in the last two decades as catalysts for proton reduction. Furthermore, redox reactions could be carried out in a facile manner, due to the capability of manganese complexes to be stable at different oxidation states. Herein are reported, four µ2-thiolate bridged manganese complexes [Mn₂(CO)₆(μ-S₂N₄C₁₄H₁₀)] 1, [Mn₂(CO)7(μ- S₂N₄C₁₄H₁₀)] 2, Mn₂(CO)₆(μ-S₄N₂C₁₄H₁₀)] 3 and [Mn₂(CO)(μ- S₄N₂C₁₄H₁₀)] 4 have been synthesized and characterized. The cyclic voltammograms of the complexes displayed irreversible reduction peaks in the range - 0.9 to -1.3 V (vs. Fc⁺/Fc in acetonitrile at 0.1 Vs⁻¹). The complexes were catalytically active towards proton reduction in the presence of trifluoroacetic acid as seen from electrochemical investigations.

Keywords: earth abundant, electrocatalytic, hydrogen, manganese

Procedia PDF Downloads 169
7327 Simplified Measurement of Occupational Energy Expenditure

Authors: J. Wicks

Abstract:

Aim: To develop a simple methodology to allow collected heart rate (HR) data from inexpensive wearable devices to be expressed in a suitable format (METs) to quantitate occupational (and recreational) activity. Introduction: Assessment of occupational activity is commonly done by utilizing questionnaires in combination with prescribed MET levels of a vast range of previously measured activities. However for any individual the intensity of performing a specific activity can vary significantly. Ideally objective measurement of individual activity is preferred. Though there are a wide range of HR recording devices there is a distinct lack methodology to allow processing of collected data to quantitate energy expenditure (EE). The HR index equation expresses METs in relation to relative HR i.e. the ratio of activity HR to resting HR. The use of this equation provides a simple utility for objective measurement of EE. Methods: During a typical occupational work period of approximately 8 hours HR data was recorded using a Polar RS 400 wrist monitor. Recorded data was downloaded to a Windows PC and non HR data was stripped from the ASCII file using ‘Notepad’. The HR data was exported to a spread sheet program and sorted by HR range into a histogram format. Three HRs were determined, namely a resting HR (the HR delimiting the lowest 30 minutes of recorded data), a mean HR and a peak HR (the HR delimiting the highest 30 minutes of recorded data). HR indices were calculated (mean index equals mean HR/rest HR and peak index equals peak HR/rest HR) with mean and peak indices being converted to METs using the HR index equation. Conclusion: Inexpensive HR recording devices can be utilized to make reasonable estimates of occupational (or recreational) EE suitable for large scale demographic screening by utilizing the HR index equation. The intrinsic value of the HR index equation is that it is independent of factors that influence absolute HR, namely fitness, smoking and beta-blockade.

Keywords: energy expenditure, heart rate histograms, heart rate index, occupational activity

Procedia PDF Downloads 293
7326 Condition Monitoring of a 3-Ø Induction Motor by Vibration Spectrum Analysis Using FFT Analyzer, a Case Study

Authors: Adinarayana S., Sudhakar I.

Abstract:

Energy conversion is one of the inevitable parts of any industries. It involves either conversion of mechanical energy in to electrical or vice versa. The later conversion of energy i.e. electrical to mechanical emphasizes the need of motor. Statistics reveals, about 8 % of industries’ annual turnover met on maintenance. Thus substantial numbers of efforts are required to minimize in incurring expenditure met towards break down maintenance. Condition monitoring is one of such techniques based on vibration widely used to recognize premature failures and paves a way to minimize cumbersome involved during breakdown of machinery. The present investigation involves a case study of squirrel cage induction motor (frequently in the electro machines) has been chosen for the conditional monitoring to predict its soundness on the basis of results of FFT analyser. Accelerometer which measures the acceleration converts in to impulses by FFT analyser generates vibration spectrum and time spectrum has been located at various positions on motor under different conditions. Results obtained from the FFT analyser are compared to that of ISO standard vibration severity charts are taken to predict the preventative condition of considered machinery. Initial inspection of motor revealed that stator faults, broken end rings in rotor, eccentricity faults and misalignment between bearings are trouble shootings areas for present investigation. From the results of the shaft frequencies, it can be perceived that there is a misalignment between the bearings at both the ends. The higher order harmonics of FTF shows the presence of cracks on the race of the bearings at both the ends which are in the incipient stage. Replacement of the bearings at both the drive end (6306) and non drive end (6206) and the alignment check between the bearings in the shaft are suggested as the constructive measures towards preventive maintenance of considered squirrel cage induction motor.

Keywords: FFT analyser, condition monitoring, vibration spectrum, time wave form

Procedia PDF Downloads 383
7325 Enhancing Security and Privacy Protocols in Telehealth: A Comprehensive Approach across IoT/Fog/Cloud Environments

Authors: Yunyong Guo, Man Wang, Bryan Guo, Nathan Guo

Abstract:

This paper introduces an advanced security and privacy model tailored for Telehealth systems, emphasizing end-to-end protection across IoT, Fog, and Cloud components. The proposed model integrates encryption, key management, intrusion detection, and privacy-preserving measures to safeguard patient data. A comprehensive simulation study evaluates the model's effectiveness in scenarios such as unauthorized access, physical breaches, and insider threats. Results indicate notable success in detecting and mitigating threats yet underscore areas for refinement. The study contributes insights into the intricate balance between security and usability in Telehealth environments, setting the stage for continued advancements.

Keywords: cloud, enhancing security, fog, IoT, telehealth

Procedia PDF Downloads 66
7324 Numerical and Experimental Analysis of Temperature Distribution and Electric Field in a Natural Rubber Glove during Microwave Heating

Authors: U. Narumitbowonkul, P. Keangin, P. Rattanadecho

Abstract:

Both numerical and experimental investigation of the temperature distribution and electric field in a natural rubber glove (NRG) during microwave heating are studied. A three-dimensional model of NRG and microwave oven are considered in this work. The influences of position, heating time and rotation angle of NRG on temperature distribution and electric field are presented in details. The coupled equations of electromagnetic wave propagation and heat transfer are solved using the finite element method (FEM). The numerical model is validated with an experimental study at a frequency of 2.45 GHz. The results show that the numerical results closely match the experimental results. Furthermore, it is found that the temperature distribution and electric field increases with increasing heating time. The hot spot zone appears in NRG at the tip of middle finger while the maximum temperature occurs in case of rotation angle of NRG = 60 degree. This investigation provides the essential aspects for a fundamental understanding of heat transport of NRG using microwave energy in industry.

Keywords: electric field, finite element method, microwave energy, natural rubber glove

Procedia PDF Downloads 259
7323 Mindset Change: Unlocking the Potential for Community-Based Rural Development in Uganda

Authors: Daisy Owomugasho Ndikuno

Abstract:

The paper explores the extent to which mindset change has been critical in the community rural development in Uganda. It is descriptive research with The Parish Development Model as a case study. The results show that rural community development is possible and its success largely depends on harnessing local resources and knowledge; leveraging education, empowerment and awareness; creating sustainable livelihoods and encouraging entrepreneurship and innovation; access to financial resources; and building collaborative networks and partnerships. In all these, the role of mindset change is critical. By instilling a positive, collaborative and innovative mindset, rural communities can overcome challenges and chat a path towards sustainable development.

Keywords: community, development, mindset, change

Procedia PDF Downloads 76
7322 Development of Water-Based Thermal Insulation Paints Using Silica Aerogel

Authors: Lu Yanru, Handojo Djati Utomo, Yin Xi Jiang, Li Xiaodong

Abstract:

Insulation plays a key role in the sustainable building due to the contribution of energy consumption reduction. Without sufficient insulation, a great amount of the energy used to heat or cool a building will be lost to the outdoors. In this study, we developed a highly efficient thermal insulation paint with the incorporation of silica aerogel. Silica aerogel, with a low thermal conductivity of 0.01 W/mK, has been successfully prepared from the solid waste from the incineration plants. It has been added into water-based paints to increase its thermal insulation properties. To investigate the thermal insulation performance of silica aerogel additive, the paint samples were mixed with silica aerogel at different sizes and with various portions. The thermal conductivity, water resistance, thermal stability and adhesion strength of the samples were tested and evaluated. The thermal diffusivity measurements proved that adding silica aerogel additive could improve the thermal insulation properties of the paint significantly. Up to 5 ˚C reductions were observed after applying paints with silica aerogel additive compare to the one without it. The results showed that the developed thermal insulation paints have great potential for an application in green and sustainable building.

Keywords: silica aerogel, thermal insulation, water-based paints, water resistant

Procedia PDF Downloads 178
7321 Experimental Determination of Shear Strength Properties of Lightweight Expanded Clay Aggregates Using Direct Shear and Triaxial Tests

Authors: Mahsa Shafaei Bajestani, Mahmoud Yazdani, Aliakbar Golshani

Abstract:

Artificial lightweight aggregates have a wide range of applications in industry and engineering. Nowadays, the usage of this material in geotechnical activities, especially as backfill in retaining walls has been growing due to the specific characteristics which make it a competent alternative to the conventional geotechnical materials. In practice, a material with lower weight but higher shear strength parameters would be ideal as backfill behind retaining walls because of the important roles that these parameters play in decreasing the overall active lateral earth pressure. In this study, two types of Light Expanded Clay Aggregates (LECA) produced in the Leca factory are investigated. LECA is made in a rotary kiln by heating natural clay at different temperatures up to 1200 °C making quasi-spherical aggregates with different sizes ranged from 0 to 25 mm. The loose bulk density of these aggregates is between 300 and 700 kN/m3. The purpose of this research is to determine the stress-strain behavior, shear strength parameters, and the energy absorption of LECA materials. Direct shear tests were conducted at five normal stresses of 25, 50, 75, 100, and 200 kPa. In addition, conventional triaxial compression tests were operated at confining pressures of 50, 100, and 200 kPa to examine stress-strain behavior. The experimental results show a high internal angle of friction and even a considerable amount of nominal cohesion despite the granular structure of LECA. These desirable properties along with the intrinsic low density of these aggregates make LECA as a very proper material in geotechnical applications. Furthermore, the results demonstrate that lightweight aggregates may have high energy absorption that is excellent alternative material in seismic isolations.

Keywords: expanded clay, direct shear test, triaxial test, shear properties, energy absorption

Procedia PDF Downloads 162
7320 National Image in the Age of Mass Self-Communication: An Analysis of Internet Users' Perception of Portugal

Authors: L. Godinho, N. Teixeira

Abstract:

Nowadays, massification of Internet access represents one of the major challenges to the traditional powers of the State, among which the power to control its external image. The virtual world has also sparked the interest of social sciences which consider it a new field of study, an immense open text where sense is expressed. In this paper, that immense text has been accessed to so as to understand the perception Internet users from all over the world have of Portugal. Ours is a quantitative and qualitative approach, as we have resorted to buzz, thematic and category analysis. The results confirm the predominance of sea stereotype in others' vision of the Portuguese people, and evidence that national image has adapted to network communication through processes of individuation and paganization.

Keywords: national image, internet, self-communication, perception

Procedia PDF Downloads 254
7319 Theoretical Analysis and Numerical Evaluation of the Flow inside the Supersonic Nozzle for Chemical Lasers

Authors: Mohammedi Ferhate, Hakim Chadli, Laggoun Chaouki

Abstract:

The main objectives of work in this area are, first, obtaining the high laser energies in short time durations needed for the feasibility studies of laser induced thermodynamically exothermic chemical reactions , second, investigating the physical principles that can be used to make laser sources capable of delivering high average powers. We note that, in order to reach both objectives, one has to convert electrical or chemical energy into laser energy, using dense gaseous media.. We present results from the early development of an F atom source appropriate for HF and DF chemical laser research. We next explain the very important difficulties encountered in working with dense gases for that purpose, and we shall describe how, especially at Evaluation of downstream-mixing scheme –levels transitions (001) → (100) and (001) → (020) gas dynamic laser The physical phenomena that control the operation of presently existing laser devices are now sufficiently well understood, so that it is possible to predict that new generations of lasers could be designed in the future. The proposed model of excitation and relaxation levels was finally proved by the computational numerical code of Matlab toolboxes of different parameters of nozzle.

Keywords: hydrogen, combust, chemical laser, halogen atom

Procedia PDF Downloads 71
7318 Atmospheric Fluid Bed Gasification of Different Biomass Fuels

Authors: Martin Lisý, Marek Baláš, Michal Špiláček, Zdeněk Skála

Abstract:

This paper shortly describes biomass types and growing amount in the Czech Republic. The considerable part of this paper deals with energy parameters of the most frequent utilizing biomass types and results of their gasification testing. There was chosen sixteen the most exploited "Czech" woody plants and grasses. There were determinated raw, element and biochemical analysis, basic calorimetric values, ash composition and ash characteristic temperatures. After that, each biofuel was tested by fluid bed gasification. The essential part of this paper yields results of chosen biomass types gasification experiments. Partly, there are described an operating conditions in detail with accentuation of individual fuels particularities partly, there is summarized gas composition and impurities content. The essential difference was determined mainly between woody plants and grasses both from point of view of the operating conditions and gas quality. The woody plants was evaluated as more suitable fuels for fluid bed gasifiers. This results will be able to significantly help with decision which energy plants are suitable for growing or with optimal biomass-treatment technology selection.

Keywords: biomass growing, biomass types, gasification, biomass fuels

Procedia PDF Downloads 569
7317 SAFECARE: Integrated Cyber-Physical Security Solution for Healthcare Critical Infrastructure

Authors: Francesco Lubrano, Fabrizio Bertone, Federico Stirano

Abstract:

Modern societies strongly depend on Critical Infrastructures (CI). Hospitals, power supplies, water supplies, telecommunications are just few examples of CIs that provide vital functions to societies. CIs like hospitals are very complex environments, characterized by a huge number of cyber and physical systems that are becoming increasingly integrated. Ensuring a high level of security within such critical infrastructure requires a deep knowledge of vulnerabilities, threats, and potential attacks that may occur, as well as defence and prevention or mitigation strategies. The possibility to remotely monitor and control almost everything is pushing the adoption of network-connected devices. This implicitly introduces new threats and potential vulnerabilities, posing a risk, especially to those devices connected to the Internet. Modern medical devices used in hospitals are not an exception and are more and more being connected to enhance their functionalities and easing the management. Moreover, hospitals are environments with high flows of people, that are difficult to monitor and can somehow easily have access to the same places used by the staff, potentially creating damages. It is therefore clear that physical and cyber threats should be considered, analysed, and treated together as cyber-physical threats. This means that an integrated approach is required. SAFECARE, an integrated cyber-physical security solution, tries to respond to the presented issues within healthcare infrastructures. The challenge is to bring together the most advanced technologies from the physical and cyber security spheres, to achieve a global optimum for systemic security and for the management of combined cyber and physical threats and incidents and their interconnections. Moreover, potential impacts and cascading effects are evaluated through impact propagation models that rely on modular ontologies and a rule-based engine. Indeed, SAFECARE architecture foresees i) a macroblock related to cyber security field, where innovative tools are deployed to monitor network traffic, systems and medical devices; ii) a physical security macroblock, where video management systems are coupled with access control management, building management systems and innovative AI algorithms to detect behavior anomalies; iii) an integration system that collects all the incoming incidents, simulating their potential cascading effects, providing alerts and updated information regarding assets availability.

Keywords: cyber security, defence strategies, impact propagation, integrated security, physical security

Procedia PDF Downloads 157
7316 Analysis of Bridge-Pile Foundation System in Multi-layered Non-Linear Soil Strata Using Energy-Based Method

Authors: Arvan Prakash Ankitha, Madasamy Arockiasamy

Abstract:

The increasing demand for adopting pile foundations in bridgeshas pointed towardsthe need to constantly improve the existing analytical techniques for better understanding of the behavior of such foundation systems. This study presents a simplistic approach using the energy-based method to assess the displacement responses of piles subjected to general loading conditions: Axial Load, Lateral Load, and a Bending Moment. The governing differential equations and the boundary conditions for a bridge pile embedded in multi-layered soil strata subjected to the general loading conditions are obtained using the Hamilton’s principle employing variational principles and minimization of energies. The soil non-linearity has been incorporated through simple constitutive relationships that account for degradation of soil moduli with increasing strain values.A simple power law based on published literature is used where the soil is assumed to be nonlinear-elastic and perfectly plastic. A Tresca yield surface is assumed to develop the soil stiffness variation with different strain levels that defines the non-linearity of the soil strata. This numerical technique has been applied to a pile foundation in a two - layered soil strata for a pier supporting the bridge and solved using the software MATLAB R2019a. The analysis yields the bridge pile displacements at any depth along the length of the pile. The results of the analysis are in good agreement with the published field data and the three-dimensional finite element analysis results performed using the software ANSYS 2019R3. The methodology can be extended to study the response of the multi-strata soil supporting group piles underneath the bridge piers.

Keywords: pile foundations, deep foundations, multilayer soil strata, energy based method

Procedia PDF Downloads 131
7315 Training 'Green Ambassadors' in the Community-Action Learning Course

Authors: Friman Hen, Banner Ifaa, Shalom-Tuchin Bosmat, Einav Yulia

Abstract:

The action learning course is an academic course which involves academic learning and social activities. The courses deal with processes and social challenges, reveal different ideologies, and develop critical thinking and pragmatic ideas. Students receive course credits and a grade for being part of such courses. Participating students enroll in courses that involve action and activities to engage in the experiential learning process, thereby creating a dialogue and cross-fertilization between being taught in the classroom and experiencing the reality in the real world. A learning experience includes meeting with social organizations, institutions, and state authorities and carrying out practical work with diverse populations. Through experience, students strengthen their academic skills, formulate ethical attitudes toward reality, develop professional and civilian perspectives, and realize how they can influence their surrounding in the present and the hereafter. Under the guidance and supervision of Dr. Hen Friman, H.I.T. has built an innovative course that combines action and activities to increase the awareness and accessibility of the community in an experiential way. The end goal is to create Green Ambassadors—children with a high level of environmental awareness. This course is divided into two parts. The first part, focused on frontal teaching, delivers knowledge from extensive environmental fields to students. These areas include introduction to ecology, the process of electricity generation, air pollution, renewable energy, water economy, waste and recycling, and energy efficiency (first stage). In addition to the professional content in the environment field, students learn the method of effective and experiential teaching to younger learners (4 to 8 years old). With the attainment of knowledge, students are divided into operating groups. The second part of the course shows how the theory becomes practical and concrete. At this stage, students are asked to introduce to the first- and second-graders of ‘Revivim’ School in Holon a lesson of 90 minutes focused on presenting the issues and their importance during the course (second stage). This course is the beginning of a paradigm shift regarding energy usage in the modern society in Israel. The objective of the course is to expand worldwide and train the first and second-graders, and even pre-schoolers, in a wide scope to increase population awareness rate, both in Israel and all over the world, for a green future.

Keywords: air pollution, green ambassador, recycling, renewable energy

Procedia PDF Downloads 238
7314 Determinants of Investment in Vaca Muerta, Argentina

Authors: Ivan Poza Martínez

Abstract:

The international energy landscape has been significantly affected by the Covid-19 pandemic and te conflict in Ukraine. The Vaca Muerta sedimentary formation in Argentina´s Neuquén province has become a crucial area for energy production, specifically in the shale gas ad shale oil sectors. The massive investment required for theexploitation of this reserve make it essential to understand te determinants of the investment in the upstream sector at both local ad international levels. The aim of this study is to identify the qualitative and quantitative determinants of investment in Vaca Muerta. The research methodolody employs both quantiative ( econometrics ) and qualitative approaches. A linear regression model is used to analyze the impact in non-conventional hydrocarbons. The study highlights that, in addition to quantitative factors, qualitative variables, particularly the design of a regulatory framework, significantly influence the level of the investment in Vaca Muerta. The analysis reveals the importance of attracting both domestic and foreign capital investment. This research contributes to understanding the factors influencing investment inthe Vaca Muerta regioncomapred to other published studies. It emphasizes to role of qualitative varibles, such as regulatory frameworks, in the development of the shale gas and oil sectors. The study uses a combination ofquantitative data , such a investment figures, and qualitative data, such a regulatory frameworks. The data is collected from various rpeorts and industry publications. The linear regression model is used to analyze the relationship between the variables and the investment in Vaca Muerta. The research addresses the question of what factors drive investment in the Vaca Muerta region, both from a quantitative and qualitative perspective. The study concludes that a combination of quantitative and qualitative factors, including the design of a regulatory framework, plays a significant role in attracting investment in Vaca Muerta. It highlights the importance of these determinants in the developmentof the local energy sector and the potential economic benefits for Argentina and the Southern Cone region.

Keywords: vaca muerta, FDI, shale gas, shale oil, YPF

Procedia PDF Downloads 49
7313 Optimization of Mechanical Cacao Shelling Parameters Using Unroasted Cocoa Beans

Authors: Jeffrey A. Lavarias, Jessie C. Elauria, Arnold R. Elepano, Engelbert K. Peralta, Delfin C. Suministrado

Abstract:

Shelling process is one of the primary processes and critical steps in the processing of chocolate or any product that is derived from cocoa beans. It affects the quality of the cocoa nibs in terms of flavor and purity. In the Philippines, small-scale food processor cannot really compete with large scale confectionery manufacturers because of lack of available postharvest facilities that are appropriate to their level of operation. The impact of this study is to provide the needed intervention that will pave the way for cacao farmers of engaging on the advantage of value-adding as way to maximize the economic potential of cacao. Thus, provision and availability of needed postharvest machines like mechanical cacao sheller will revolutionize the current state of cacao industry in the Philippines. A mechanical cacao sheller was developed, fabricated, and evaluated to establish optimum shelling conditions such as moisture content of cocoa beans, clearance where of cocoa beans passes through the breaker section and speed of the breaking mechanism on shelling recovery, shelling efficiency, shelling rate, energy utilization and large nib recovery; To establish the optimum level of shelling parameters of the mechanical sheller. These factors were statistically analyzed using design of experiment by Box and Behnken and Response Surface Methodology (RSM). By maximizing shelling recovery, shelling efficiency, shelling rate, large nib recovery and minimizing energy utilization, the optimum shelling conditions were established at moisture content, clearance and breaker speed of 6.5%, 3 millimeters and 1300 rpm, respectively. The optimum values for shelling recovery, shelling efficiency, shelling rate, large nib recovery and minimizing energy utilization were recorded at 86.51%, 99.19%, 21.85kg/hr, 89.75%, and 542.84W, respectively. Experimental values obtained using the optimum conditions were compared with predicted values using predictive models and were found in good agreement.

Keywords: cocoa beans, optimization, RSM, shelling parameters

Procedia PDF Downloads 351
7312 TeleEmergency Medicine: Transforming Acute Care through Virtual Technology

Authors: Ashley L. Freeman, Jessica D. Watkins

Abstract:

TeleEmergency Medicine (TeleEM) is an innovative approach leveraging virtual technology to deliver specialized emergency medical care across diverse healthcare settings, including internal acute care and critical access hospitals, remote patient monitoring, and nurse triage escalation, in addition to external emergency departments, skilled nursing facilities, and community health centers. TeleEM represents a significant advancement in the delivery of emergency medical care, providing healthcare professionals the capability to deliver expertise that closely mirrors in-person emergency medicine, exceeding geographical boundaries. Through qualitative research, the extension of timely, high-quality care has proven to address the critical needs of patients in remote and underserved areas. TeleEM’s service design allows for the expansion of existing services and the establishment of new ones in diverse geographic locations. This ensures that healthcare institutions can readily scale and adapt services to evolving community requirements by leveraging on-demand (non-scheduled) telemedicine visits through the deployment of multiple video solutions. In terms of financial management, TeleEM currently employs billing suppression and subscription models to enhance accessibility for a wide range of healthcare facilities. Plans are in motion to transition to a billing system routing charges through a third-party vendor, further enhancing financial management flexibility. To address state licensure concerns, a patient location verification process has been integrated through legal counsel and compliance authorities' guidance. The TeleEM workflow is designed to terminate if the patient is not physically located within licensed regions at the time of the virtual connection, alleviating legal uncertainties. A distinctive and pivotal feature of TeleEM is the introduction of the TeleEmergency Medicine Care Team Assistant (TeleCTA) role. TeleCTAs collaborate closely with TeleEM Physicians, leading to enhanced service activation, streamlined coordination, and workflow and data efficiencies. In the last year, more than 800 TeleEM sessions have been conducted, of which 680 were initiated by internal acute care and critical access hospitals, as evidenced by quantitative research. Without this service, many of these cases would have necessitated patient transfers. Barriers to success were examined through thorough medical record review and data analysis, which identified inaccuracies in documentation leading to activation delays, limitations in billing capabilities, and data distortion, as well as the intricacies of managing varying workflows and device setups. TeleEM represents a transformative advancement in emergency medical care that nurtures collaboration and innovation. Not only has advanced the delivery of emergency medicine care virtual technology through focus group participation with key stakeholders, rigorous attention to legal and financial considerations, and the implementation of robust documentation tools and the TeleCTA role, but it’s also set the stage for overcoming geographic limitations. TeleEM assumes a notable position in the field of telemedicine by enhancing patient outcomes and expanding access to emergency medical care while mitigating licensure risks and ensuring compliant billing.

Keywords: emergency medicine, TeleEM, rural healthcare, telemedicine

Procedia PDF Downloads 74
7311 Condition Monitoring of a 3-Ø Induction Motor by Vibration Spectrum Analysis Using FFT Analyzer- a Case Study

Authors: Adi Narayana S Sudhakar. I

Abstract:

Energy conversion is one of the inevitable parts of any industries. It involves either conversion of mechanical energy in to electrical or vice versa. The later conversion of energy i.e. electrical to mechanical emphasizes the need of motor .Statistics reveals, about 8 % of industries’ annual turnover met on maintenance. Thus substantial numbers of efforts are required to minimize in incurring expenditure met towards break down maintenance. Condition monitoring is one of such techniques based on vibration widely used to recognize premature failures and paves a way to minimize cumbersome involved during breakdown of machinery. The present investigation involves a case study of squirrel cage induction motor (frequently in the electro machines) has been chosen for the conditional monitoring to predict its soundness on the basis of results of FFT analyser. Accelerometer which measures the acceleration converts in to impulses by FFT analyser generates vibration spectrum and time spectrum has been located at various positions on motor under different conditions. Results obtained from the FFT analyzer are compared to that of ISO standard vibration severity charts are taken to predict the preventative condition of considered machinery. Initial inspection of motor revealed that stator faults, broken end rings in rotor, eccentricity faults and misalignment between bearings are trouble shootings areas for present investigation. From the results of the shaft frequencies, it can be perceived that there is a misalignment between the bearings at both the ends. The higher order harmonics of FTF shows the presence of cracks on the race of the bearings at both the ends which are in the incipient stage. Replacement of the bearings at both the drive end (6306) and non-drive end (6206) and the alignment check between the bearings in the shaft are suggested as the constructive measures towards preventive maintenance of considered squirrel cage induction motor.

Keywords: FFT analyser, condition monitoring, vibration spectrum, time spectrum accelerometer

Procedia PDF Downloads 447
7310 Seismic Behavior of Three-Dimensional Steel Buildings with Post-Tensioned Connections

Authors: Manuel E. Soto-López, Israel Gaxiola-Avendaño, Alfredo Reyes-Salazar, Eden Bojórquez, Sonia E. Ruiz

Abstract:

The seismic responses of steel buildings with semi-rigid post-tensioned connections (PC) are estimated and compared with those of steel buildings with typical rigid (welded) connections (RC). The comparison is made in terms of global and local response parameters. The results indicate that the seismic responses in terms of interstory shears, roof displacements, axial load and bending moments are smaller for the buildings with PC connection. The difference is larger for global than for local parameters, which in turn varies from one column location to another. The reason for this improved behavior is that the buildings with PC dissipate more hysteretic energy than those with RC. In addition, unlike the case of buildings with WC, for the PC structures the hysteretic energy is mostly dissipated at the connections, which implies that structural damage in beams and columns is not significant. According to this results, steel buildings with PC are a viable option in highseismicity areas because of their smaller response and self-centering connection capacity as well as the fact that brittle failure is avoided.

Keywords: inter-story drift, nonlinear time-history analysis, post-tensioned connections, steel buildings

Procedia PDF Downloads 495
7309 Evaluation of Thermal Comfort and Energy Consumption in Classroom

Authors: I. Kadek Candra Parmana Wiguna, Wiwik Budiawan, Heru Prastawa

Abstract:

Semarang has become not only a metropolitan city but also a centre of government that has experienced significant changes in urban land use. Temperature increases in urban areas result from the expansion of development. The average temperature in Semarang reached 27.10°C to 29.60°C in 2022. The state of thermal sensation is very dependent on the mode of operation; Industrial Engineering building is mostly equipped with an air conditioner (AC). This study aims to analyze the thermal comfort level and energy consumption of air conditioners in classroom of industrial engineering. Participants in this study amounted to 31 students with data collection for 4 weeks. Results of the physical environment are Ta in: 25.52°C, Ta out: 32.71 °C, Rh in: 61.14%, Rh out: 59.43%, and Av in: 0.037 m/s. The results of clothing insulation are 41% of the respondents belonged to the categories 0.31 - 0.5 clo (summer domming) and 0.51 - 0.70 clo (spring clothing). Regarding the predicted mean vote (PMV), the average value is 0.63, and only 14.85% result of the predicted percentage dissatisfied (PPD). The neutral temperature with measurement Griffith’s constant 0.5/°C was 27.16°C, but the statistical test results show that the comfort temperature to use TSV ≤ 0 which is 28.55°C. The highest average power (watt) measurement results during week 3, which is 1613.65 watts. It is concluded in this study that the thermal comfort conditions in the classroom are adequate and acceptable to more than 90% of respondents.

Keywords: thermal comfort, PMV/PPD, air conditioner, TSV

Procedia PDF Downloads 25
7308 A Model of the Universe without Expansion of Space

Authors: Jia-Chao Wang

Abstract:

A model of the universe without invoking space expansion is proposed to explain the observed redshift-distance relation and the cosmic microwave background radiation (CMB). The main hypothesized feature of the model is that photons traveling in space interact with the CMB photon gas. This interaction causes the photons to gradually lose energy through dissipation and, therefore, experience redshift. The interaction also causes some of the photons to be scattered off their track toward an observer and, therefore, results in beam intensity attenuation. As observed, the CMB exists everywhere in space and its photon density is relatively high (about 410 per cm³). The small average energy of the CMB photons (about 6.3×10⁻⁴ eV) can reduce the energies of traveling photons gradually and will not alter their momenta drastically as in, for example, Compton scattering, to totally blur the images of distant objects. An object moving through a thermalized photon gas, such as the CMB, experiences a drag. The cause is that the object sees a blue shifted photon gas along the direction of motion and a redshifted one in the opposite direction. An example of this effect can be the observed CMB dipole: The earth travels at about 368 km/s (600 km/s) relative to the CMB. In the all-sky map from the COBE satellite, radiation in the Earth's direction of motion appears 0.35 mK hotter than the average temperature, 2.725 K, while radiation on the opposite side of the sky is 0.35 mK colder. The pressure of a thermalized photon gas is given by Pγ = Eγ/3 = αT⁴/3, where Eγ is the energy density of the photon gas and α is the Stefan-Boltzmann constant. The observed CMB dipole, therefore, implies a pressure difference between the two sides of the earth and results in a CMB drag on the earth. By plugging in suitable estimates of quantities involved, such as the cross section of the earth and the temperatures on the two sides, this drag can be estimated to be tiny. But for a photon traveling at the speed of light, 300,000 km/s, the drag can be significant. In the present model, for the dissipation part, it is assumed that a photon traveling from a distant object toward an observer has an effective interaction cross section pushing against the pressure of the CMB photon gas. For the attenuation part, the coefficient of the typical attenuation equation is used as a parameter. The values of these two parameters are determined by fitting the 748 µ vs. z data points compiled from 643 supernova and 105 γ-ray burst observations with z values up to 8.1. The fit is as good as that obtained from the lambda cold dark matter (ΛCDM) model using online cosmological calculators and Planck 2015 results. The model can be used to interpret Hubble's constant, Olbers' paradox, the origin and blackbody nature of the CMB radiation, the broadening of supernova light curves, and the size of the observable universe.

Keywords: CMB as the lowest energy state, model of the universe, origin of CMB in a static universe, photon-CMB photon gas interaction

Procedia PDF Downloads 130