Search results for: modified simplex algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5897

Search results for: modified simplex algorithm

1967 SNR Classification Using Multiple CNNs

Authors: Thinh Ngo, Paul Rad, Brian Kelley

Abstract:

Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.

Keywords: classification, CNN, deep learning, prediction, SNR

Procedia PDF Downloads 136
1966 A Single Stage Cleft Rhinoplasty Technique for Primary Unilateral Cleft Lip and Palate 'The Gujrat Technique'

Authors: Diaa Othman, Muhammad Adil Khan, Muhammad Riaz

Abstract:

Without an early intervention to correct the unilateral complete cleft lip and palate deformity, nasal architecture can progress to an exaggerated cleft nose deformity. We present the results of a modified unilateral cleft rhinoplasty procedure ‘the Gujrat technique’ to correct this deformity. Ninety pediatric and adult patients with non-syndromic unilateral cleft lip underwent primary and secondary composite cleft rhinoplasty using the Gujrat technique as a single stage operation over a 10-year period. The technique involved an open rhinoplasty with Tennison lip repair, and employed a combination of three autologous cartilage grafts, seven cartilage-molding sutures and a prolene mesh graft for alar base support. Post-operative evaluation of nasal symmetry was undertaken using the validated computer program ‘SymNose’. Functional outcome and patient satisfaction were assessed using the NOSE scale and ROE (rhinoplasty outcome evaluation) questionnaires. The single group study design used the non-parametric matching pairs Wilcoxon Sign test (p < 0.001), and showed overall good to excellent functional and aesthetic outcomes, including nasal projection and tip definition, and higher scores of the digital SymNose grading system. Objective assessment of the Gujrat cleft rhinoplasty technique demonstrates its aesthetic appeal and functional versatility. Overall it is a simple and reproducible technique, with no significant complications.

Keywords: cleft lip and palate, congenital rhinoplasty, nasal deformity, secondary rhinoplasty

Procedia PDF Downloads 203
1965 On an Approach for Rule Generation in Association Rule Mining

Authors: B. Chandra

Abstract:

In Association Rule Mining, much attention has been paid for developing algorithms for large (frequent/closed/maximal) itemsets but very little attention has been paid to improve the performance of rule generation algorithms. Rule generation is an important part of Association Rule Mining. In this paper, a novel approach named NARG (Association Rule using Antecedent Support) has been proposed for rule generation that uses memory resident data structure named FCET (Frequent Closed Enumeration Tree) to find frequent/closed itemsets. In addition, the computational speed of NARG is enhanced by giving importance to the rules that have lower antecedent support. Comparative performance evaluation of NARG with fast association rule mining algorithm for rule generation has been done on synthetic datasets and real life datasets (taken from UCI Machine Learning Repository). Performance analysis shows that NARG is computationally faster in comparison to the existing algorithms for rule generation.

Keywords: knowledge discovery, association rule mining, antecedent support, rule generation

Procedia PDF Downloads 328
1964 Highly Efficient Iron Oxide-Sulfonated Graphene Oxide Catalyst for Esterification and Trans-Esterification Reactions

Authors: Reena D. Souza, Tripti Vats, Prem F. Siril

Abstract:

Esterification of free fatty acid (oleic acid) and transesterification of waste cooking oil (WCO) with ethanol over graphene oxide (GO), GO-Fe2O3, sulfonated GO (GO-SO3H), and Fe2O3/GO-SO3H catalysts were examined in the present study. Iron oxide supported graphene-based acid catalyst (Fe2O3/GO-SO3H) exhibited highest catalytic activity. GO was prepared by modified Hummer’s process. The GO-Fe2O3 nanocomposites were prepared by the addition of NaOH to a solution containing GO and FeCl3. Sulfonation was done using concentrated sulfuric acid. Transmissionelectron microscopy (TEM) and atomic force microscopy (AFM) imaging revealed the presence of Fe2O3 particles having size in the range of 50-200 nm. Crystal structure was analyzed by XRD and defect states of graphene were characterized using Raman spectroscopy. The effects of the reaction variables such as catalyst loading, ethanol to acid ratio, reaction time and temperature on the conversion of fatty acids were studied. The optimum conditions for the esterification process were molar ratio of alcohol to oleic acid at 12:1 with 5 wt% of Fe2O3/GO-SO3H at 1000C with a reaction time of 4h yielding 99% of ethyl oleate. This is because metal oxide supported solid acid catalysts have advantages of having both strong Brønsted as well as Lewis acid properties. The biodiesel obtained by transesterification of WCO was characterized by 1H NMR and Gas Chromatography techniques. XRD patterns of the recycled catalyst evidenced that the catalyst structure was unchanged up to the 5th cycle, which indicated the long life of the catalyst.

Keywords: Fe₂O₃/GO-SO₃H, Graphene Oxide, GO-Fe₂O₃, GO-SO₃H, WCO

Procedia PDF Downloads 279
1963 Accounting Quality and The Adoption of IFRS: Evidence from China

Authors: Khaldoon G. Albitar, Hassan Y. Kikhia, Jin P. Zhang

Abstract:

Since 2007, all companies listed on both Shanghai Stock Exchange and Shenzhen Stock Exchange are required to prepare their consolidated financial statements in accordance with International Financial Reporting Standards (IFRS). This study investigates the impact of adopting IFRS on accounting quality for a sample of listed on Chinese companies during the period 2003-2013 with sample of 10846 observations over a four-year period before and a five-year period after the adoption of IFRS. This study tests whether the level of earnings management is significantly lower after the adoption of IFRS, and reported earnings is more value relevant during the IFRS period by using the Ohlson model and Jones model, as modified by Dechow. The empirical results show that accounting quality improved with lower earnings management and higher value relevant after the adoption of IFRS in China. The current study contributes to the literature on IFRS adoption and earning quality in two ways. First, As most of the existing studies on earnings quality and IFRS have been conducted on data from the U.S and European countries, this study fills a gap in the existing literature by studying the effect of adoption of IFRS on earnings quality in an emerging market. Second, the findings of our study have important implications for policymakers, auditors, multinational firms, and users of financial reports. As the rapid growth of China's economy gains global recognition, the Chinese stock market is capturing the attention of international investor.

Keywords: international financial reporting standards (ifrs), accounting quality, earnings management, value relevance, china

Procedia PDF Downloads 338
1962 Exploring the Experiences of Transnational TESOL Professionals about Their Writing Assessment Practices: A Critical Ethnography in the Saudi EFL Context

Authors: Abdullah Alshakhi

Abstract:

This study aims to explore the assessment practices of transnational western teachers in Saudi EFL writing classrooms. The study adopts a critical ethnographic approach to understand the views and the experiences of four transnational TESOL professionals about how they navigate and negotiate their writing assessment practices in the Saudi EFL context. The qualitative data were collected through classroom observations and video recordings of the classroom teaching, which were followed by semi-structured interviews with the four TESOL teachers from Australia, England, USA, and Ireland. The data were analyzed from three perspectives of these transnational TESOL teachers in the Saudi EFL context: as a transnational teacher in monolingual context, as a transitional teacher abides by the prescribed curriculum and assessment instructions, and as a transnational teacher’s vision for monolingual students. The results of the study revealed that owing to the transnational teachers’ lack of understanding of the Saudi monolingual culture, bureaucratic structures, and top-down assessment policies in the institute where they work, their teaching and assessment of writing and other language skills are negatively affected and consequently had to be modified. Also, the Saudi learners’ lack of interest and their lower level of English proficiency pose serious challenges to those transnational teachers’ writing assessment practices. More often, the teachers find the prescribed writing curriculum and assessment tools ineffective in the Saudi EFL context. Because of these experiences, the transnational teachers in this study have exhibited their awareness of their monolingual/monoculture background, Saudi’s cultural and religious values, and institutional structures, which have helped them customize or supplement the writing assessment practices accordingly.

Keywords: critical ethnography, Saudi EFL context, TESOL professionals, transnationalism, writing assessment

Procedia PDF Downloads 115
1961 Power Management Strategy for Solar-Wind-Diesel Stand-Alone Hybrid Energy System

Authors: Md. Aminul Islam, Adel Merabet, Rachid Beguenane, Hussein Ibrahim

Abstract:

This paper presents a simulation and mathematical model of stand-alone solar-wind-diesel based hybrid energy system (HES). A power management system is designed for multiple energy resources in a stand-alone hybrid energy system. Both Solar photovoltaic and wind energy conversion system consists of maximum power point tracking (MPPT), voltage regulation, and basic power electronic interfaces. An additional diesel generator is included to support and improve the reliability of stand-alone system when renewable energy sources are not available. A power management strategy is introduced to distribute the generated power among resistive load banks. The frequency regulation is developed with conventional phase locked loop (PLL) system. The power management algorithm was applied in Matlab®/Simulink® to simulate the results.

Keywords: solar photovoltaic, wind energy, diesel engine, hybrid energy system, power management, frequency and voltage regulation

Procedia PDF Downloads 457
1960 Co-Administration Effects of Conjugated Linoleic Acid and L-Carnitine on Weight Gain and Biochemical Profile in Diet Induced Obese Rats

Authors: Maryam Nazari, Majid Karandish, Alihossein Saberi

Abstract:

Obesity as a global health challenge motivates pharmaceutical industries to produce anti-obesity drugs. However, effectiveness of these agents is remained unclear. Because of popularity of dietary supplements, the aim of this study was tp investigate the effects of Conjugated Linoleic Acid (CLA) and L-carnitine (LC) on serum glucose, triglyceride, cholesterol and weight changes in diet induced obese rats. 48 male Wistar rats were randomly divided into two groups: Normal fat diet (n=8), and High fat diet (HFD) (n=32). After eight weeks, the second group which was maintained on HFD until the end of study, was subdivided into four categories: a) 500 mg Corn Oil (as control group), b) 500 mg CLA, c) 200 mg LC, d) 500 mg CLA+ 200 mg LC.All doses are planned per kg body weights, which were administered by oral gavage for four weeks. Body weights were measured and recorded weekly by means of a digital scale. At the end of the study, blood samples were collected for biochemical markers measurement. SPSS Version 16 was used for statistical analysis. At the end of 8th week, a significant difference in weight was observed between HFD and NFD group. After 12 weeks, LC significantly reduced weight gain by 4.2%. Trend of weight gain in CLA and CLA+LC groups was insignificantly decelerated. CLA+LC reduced triglyceride level significantly, but just CLA had significant influence on total cholesterol and insignificant decreasing effect on FBS. Our results showed that an obesogenic diet in a relative short time led to obesity and dyslipidemia which can be modified by LC and CLA to some extent.

Keywords: conjugated linoleic acid, high fat diet, L-Carnitine, obesity

Procedia PDF Downloads 161
1959 Intelligent Software Architecture and Automatic Re-Architecting Based on Machine Learning

Authors: Gebremeskel Hagos Gebremedhin, Feng Chong, Heyan Huang

Abstract:

Software system is the combination of architecture and organized components to accomplish a specific function or set of functions. A good software architecture facilitates application system development, promotes achievement of functional requirements, and supports system reconfiguration. We describe three studies demonstrating the utility of our architecture in the subdomain of mobile office robots and identify software engineering principles embodied in the architecture. The main aim of this paper is to analyze prove architecture design and automatic re-architecting using machine learning. Intelligence software architecture and automatic re-architecting process is reorganizing in to more suitable one of the software organizational structure system using the user access dataset for creating relationship among the components of the system. The 3-step approach of data mining was used to analyze effective recovery, transformation and implantation with the use of clustering algorithm. Therefore, automatic re-architecting without changing the source code is possible to solve the software complexity problem and system software reuse.

Keywords: intelligence, software architecture, re-architecting, software reuse, High level design

Procedia PDF Downloads 123
1958 Using the Timepix Detector at CERN Accelerator Facilities

Authors: Andrii Natochii

Abstract:

The UA9 collaboration in the last two years has installed two different types of detectors to investigate the channeling effect in the bent silicon crystals with high-energy particles beam on the CERN accelerator facilities: Cherenkov detector CpFM and silicon pixel detector Timepix. In the current work, we describe the main performances of the Timepix detector operation at the SPS and H8 extracted beamline at CERN. We are presenting some detector calibration results and tuning. Our research topics also cover a cluster analysis algorithm for the particle hits reconstruction. We describe the optimal acquisition setup for the Timepix device and the edges of its functionality for the high energy and flux beam monitoring. The measurements of the crystal parameters are very important for the future bent crystal applications and needs a track reconstruction apparatus. Thus, it was decided to construct a short range (1.2 m long) particle telescope based on the Timepix sensors and test it at H8 SPS extraction beamline. The obtained results will be shown as well.

Keywords: beam monitoring, channeling, particle tracking, Timepix detector

Procedia PDF Downloads 182
1957 Integrated Microsystem for Multiplexed Genosensor Detection of Biowarfare Agents

Authors: Samuel B. Dulay, Sandra Julich, Herbert Tomaso, Ciara K. O'Sullivan

Abstract:

An early, rapid and definite detection for the presence of biowarfare agents, pathogens, viruses and toxins is required in different situations which include civil rescue and security units, homeland security, military operations, public transportation securities such as airports, metro and railway stations due to its harmful effect on the human population. In this work, an electrochemical genosensor array that allows simultaneous detection of different biowarfare agents within an integrated microsystem that provides an easy handling of the technology which combines a microfluidics setup with a multiplexing genosensor array has been developed and optimised for the following targets: Bacillus anthracis, Brucella abortis and melitensis, Bacteriophage lambda, Francisella tularensis, Burkholderia mallei and pseudomallei, Coxiella burnetii, Yersinia pestis, and Bacillus thuringiensis. The electrode array was modified via co-immobilisation of a 1:100 (mol/mol) mixture of a thiolated probe and an oligoethyleneglycol-terminated monopodal thiol. PCR products from these relevant biowarfare agents were detected reproducibly through a sandwich assay format with the target hybridised between a surface immobilised probe into the electrode and a horseradish peroxidase-labelled secondary reporter probe, which provided an enzyme based electrochemical signal. The potential of the designed microsystem for multiplexed genosensor detection and cross-reactivity studies over potential interfering DNA sequences has demonstrated high selectivity using the developed platform producing high-throughput.

Keywords: biowarfare agents, genosensors, multipled detection, microsystem

Procedia PDF Downloads 274
1956 Literature Review: Adversarial Machine Learning Defense in Malware Detection

Authors: Leidy M. Aldana, Jorge E. Camargo

Abstract:

Adversarial Machine Learning has gained importance in recent years as Cybersecurity has gained too, especially malware, it has affected different entities and people in recent years. This paper shows a literature review about defense methods created to prevent adversarial machine learning attacks, firstable it shows an introduction about the context and the description of some terms, in the results section some of the attacks are described, focusing on detecting adversarial examples before coming to the machine learning algorithm and showing other categories that exist in defense. A method with five steps is proposed in the method section in order to define a way to make the literature review; in addition, this paper summarizes the contributions in this research field in the last seven years to identify research directions in this area. About the findings, the category with least quantity of challenges in defense is the Detection of adversarial examples being this one a viable research route with the adaptive approach in attack and defense.

Keywords: Malware, adversarial, machine learning, defense, attack

Procedia PDF Downloads 75
1955 Synergistic Effect of Zr-Modified Cu-ZnO-Al₂O₃ and Bio-Templated HZSM-5 Catalysts in CO₂ Hydrogenation to Methanol and DME

Authors: Abrar Hussain, Kuen-Song Lin, Sayed Maeen Badshah, Jamshid Hussain

Abstract:

The conversion of CO₂ into versatile, useful compounds such as fuels and other chemicals remains a challenging frontier in research, demanding the innovation of increasingly effective catalysts. In the present work, a catalyst-incorporating zirconium (Zr) modification within CuO–ZnO–Al₂O₃ (CZA) was synthesized via a co-precipitation method to convert CO₂ into methanol. Furthermore, bio-HZSM-5 was used to promote methanol dehydration to produce dimethyl ether (DME). We prepared the porous hierarchy bio-HZSM-5 with remarkable pore connectivity by utilizing an economical loofah sponge and rice husks as biotemplates. The synthesized catalysts were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), X–ray diffraction (XRD), N₂ adsorption (BET), temperature-programmed desorption (NH₃-TPD) and thermogravimetric analysis (TGA). The Zr addition improved the performance of the CZZA catalyst as a structural promoter, leading to increased DME selectivity and total carbon conversion by enhancing active sites, surface area, and the synergistic interfaces between CuO and ZnO. The presence of silicon in the biomass, notably from the loofah sponge (0.016 wt %) and rice husks (8.3 wt %), also performed a pivotal role in the preparation of bio-HZSM-5. Furthermore, contrasted to the CZZA/com-ZSM-5 catalyst, the integration of CZZA with bio-HZSM-5-L bifunctional catalyst achieved the highest DME yield (12.1 %), DME selectivity (58.6%), CO₂ conversion (22.5%) at 280 °C and 30 bar. The payback time for 5 and 10-tons per day (5 and10-TPD) DME formation using the catalytic process of CO₂ from petrochemical refinery plant waste gas emissions was 2.98 and 2.44 years, respectively.

Keywords: Cost assessment, Dimethyl ether, low-cost bio-HZSM-5, CZZA catalyst, CO₂ hydrogenation

Procedia PDF Downloads 15
1954 Personalized Email Marketing Strategy: A Reinforcement Learning Approach

Authors: Lei Zhang, Tingting Xu, Jun He, Zhenyu Yan

Abstract:

Email marketing is one of the most important segments of online marketing. It has been proved to be the most effective way to acquire and retain customers. The email content is vital to customers. Different customers may have different familiarity with a product, so a successful marketing strategy must personalize email content based on individual customers’ product affinity. In this study, we build our personalized email marketing strategy with three types of emails: nurture, promotion, and conversion. Each type of email has a different influence on customers. We investigate this difference by analyzing customers’ open rates, click rates and opt-out rates. Feature importance from response models is also analyzed. The goal of the marketing strategy is to improve the click rate on conversion-type emails. To build the personalized strategy, we formulate the problem as a reinforcement learning problem and adopt a Q-learning algorithm with variations. The simulation results show that our model-based strategy outperforms the current marketer’s strategy.

Keywords: email marketing, email content, reinforcement learning, machine learning, Q-learning

Procedia PDF Downloads 197
1953 Harmonic Data Preparation for Clustering and Classification

Authors: Ali Asheibi

Abstract:

The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.

Keywords: data mining, harmonic data, clustering, classification

Procedia PDF Downloads 251
1952 A 3D Bioprinting System for Engineering Cell-Embedded Hydrogels by Digital Light Processing

Authors: Jimmy Jiun-Ming Su, Yuan-Min Lin

Abstract:

Bioprinting has been applied to produce 3D cellular constructs for tissue engineering. Microextrusion printing is the most common used method. However, printing low viscosity bioink is a challenge for this method. Herein, we developed a new 3D printing system to fabricate cell-laden hydrogels via a DLP-based projector. The bioprinter is assembled from affordable equipment including a stepper motor, screw, LED-based DLP projector, open source computer hardware and software. The system can use low viscosity and photo-polymerized bioink to fabricate 3D tissue mimics in a layer-by-layer manner. In this study, we used gelatin methylacrylate (GelMA) as bioink for stem cell encapsulation. In order to reinforce the printed construct, surface modified hydroxyapatite has been added in the bioink. We demonstrated the silanization of hydroxyapatite could improve the crosslinking between the interface of hydroxyapatite and GelMA. The results showed that the incorporation of silanized hydroxyapatite into the bioink had an enhancing effect on the mechanical properties of printed hydrogel, in addition, the hydrogel had low cytotoxicity and promoted the differentiation of embedded human bone marrow stem cells (hBMSCs) and retinal pigment epithelium (RPE) cells. Moreover, this bioprinting system has the ability to generate microchannels inside the engineered tissues to facilitate diffusion of nutrients. We believe this 3D bioprinting system has potential to fabricate various tissues for clinical applications and regenerative medicine in the future.

Keywords: bioprinting, cell encapsulation, digital light processing, GelMA hydrogel

Procedia PDF Downloads 184
1951 Implementation of Elliptic Curve Cryptography Encryption Engine on a FPGA

Authors: Mohamad Khairi Ishak

Abstract:

Conventional public key crypto systems such as RSA (Ron Rivest, Adi Shamir and Leonard Adleman), DSA (Digital Signature Algorithm), and Elgamal are no longer efficient to be implemented in the small, memory constrained devices. Elliptic Curve Cryptography (ECC), which allows smaller key length as compared to conventional public key crypto systems, has thus become a very attractive choice for many applications. This paper describes implementation of an elliptic curve cryptography (ECC) encryption engine on a FPGA. The system has been implemented in 2 different key sizes, which are 131 bits and 163 bits. Area and timing analysis are provided for both key sizes for comparison. The crypto system, which has been implemented on Altera’s EPF10K200SBC600-1, has a hardware size of 5945/9984 and 6913/9984 of logic cells for 131 bits implementation and 163 bits implementation respectively. The crypto system operates up to 43 MHz, and performs point multiplication operation in 11.3 ms for 131 bits implementation and 14.9 ms for 163 bits implementation. In terms of speed, our crypto system is about 8 times faster than the software implementation of the same system.

Keywords: elliptic curve cryptography, FPGA, key sizes, memory

Procedia PDF Downloads 326
1950 Parameters Optimization of the Laminated Composite Plate for Sound Transmission Problem

Authors: Yu T. Tsai, Jin H. Huang

Abstract:

In this paper, the specific sound transmission loss (TL) of the laminated composite plate (LCP) with different material properties in each layer is investigated. The numerical method to obtain the TL of the LCP is proposed by using elastic plate theory. The transfer matrix approach is novelty presented for computational efficiency in solving the numerous layers of dynamic stiffness matrix (D-matrix) of the LCP. Besides the numerical simulations for calculating the TL of the LCP, the material properties inverse method is presented for the design of a laminated composite plate analogous to a metallic plate with a specified TL. As a result, it demonstrates that the proposed computational algorithm exhibits high efficiency with a small number of iterations for achieving the goal. This method can be effectively employed to design and develop tailor-made materials for various applications.

Keywords: sound transmission loss, laminated composite plate, transfer matrix approach, inverse problem, elastic plate theory, material properties

Procedia PDF Downloads 390
1949 Modified Side Plate Design to Suppress Lateral Torsional Buckling of H-Beam for Seismic Application

Authors: Erwin, Cheng-Cheng Chen, Charles J. Salim

Abstract:

One of the method to solve the lateral torsional buckling (LTB) problem is by using side plates to increased the buckling resistance of the beam. Some modifications in designing the side plates are made in this study to simplify the construction in the field and reduce the cost. At certain region, side plates are not added: (1) At the beam end to preserve some spaces for bolt installation, but the beam is strengthened by adding cover plate at both flanges and (2) at the middle span of the beam where the moment is smaller. Three small scale full span beam specimens are tested under cyclic loading to investigate the LTB resistant and the ductility of the proposed design method. Test results show that the LTB deformation can be effectively suppressed and very high ductility level can be achieved. Following the test, a finite element analysis (FEA) model is established and is verified using the test results. An intensive parametric study is conducted using the established FEA model. The analysis reveals that the length of side plates is the most important parameter determining the performance of the beam and the required side plates length is determined by some parameters which are (1) beam depth to flange width ratio, (2) beam slenderness ratio (3) strength and thickness of the side plates, (4) compactness of beam web and flange, and (5) beam yield strength. At the end of the paper, a design formula to calculate the required side plate length is suggested.

Keywords: cover plate, earthquake resistant design, lateral torsional buckling, side plate, steel structure

Procedia PDF Downloads 177
1948 Application of Artificial Neural Network for Prediction of High Tensile Steel Strands in Post-Tensioned Slabs

Authors: Gaurav Sancheti

Abstract:

This study presents an impacting approach of Artificial Neural Networks (ANNs) in determining the quantity of High Tensile Steel (HTS) strands required in post-tensioned (PT) slabs. Various PT slab configurations were generated by varying the span and depth of the slab. For each of these slab configurations, quantity of required HTS strands were recorded. ANNs with backpropagation algorithm and varying architectures were developed and their performance was evaluated in terms of Mean Square Error (MSE). The recorded data for the quantity of HTS strands was used as a feeder database for training the developed ANNs. The networks were validated using various validation techniques. The results show that the proposed ANNs have a great potential with good prediction and generalization capability.

Keywords: artificial neural networks, back propagation, conceptual design, high tensile steel strands, post tensioned slabs, validation techniques

Procedia PDF Downloads 225
1947 Framework for Socio-Technical Issues in Requirements Engineering for Developing Resilient Machine Vision Systems Using Levels of Automation through the Lifecycle

Authors: Ryan Messina, Mehedi Hasan

Abstract:

This research is to examine the impacts of using data to generate performance requirements for automation in visual inspections using machine vision. These situations are intended for design and how projects can smooth the transfer of tacit knowledge to using an algorithm. We have proposed a framework when specifying machine vision systems. This framework utilizes varying levels of automation as contingency planning to reduce data processing complexity. Using data assists in extracting tacit knowledge from those who can perform the manual tasks to assist design the system; this means that real data from the system is always referenced and minimizes errors between participating parties. We propose using three indicators to know if the project has a high risk of failing to meet requirements related to accuracy and reliability. All systems tested achieved a better integration into operations after applying the framework.

Keywords: automation, contingency planning, continuous engineering, control theory, machine vision, system requirements, system thinking

Procedia PDF Downloads 211
1946 Alternator Fault Detection Using Wigner-Ville Distribution

Authors: Amin Ranjbar, Amir Arsalan Jalili Zolfaghari, Amir Abolfazl Suratgar, Mehrdad Khajavi

Abstract:

This paper describes two stages of learning-based fault detection procedure in alternators. The procedure consists of three states of machine condition namely shortened brush, high impedance relay and maintaining a healthy condition in the alternator. The fault detection algorithm uses Wigner-Ville distribution as a feature extractor and also appropriate feature classifier. In this work, ANN (Artificial Neural Network) and also SVM (support vector machine) were compared to determine more suitable performance evaluated by the mean squared of errors criteria. Modules work together to detect possible faulty conditions of machines working. To test the method performance, a signal database is prepared by making different conditions on a laboratory setup. Therefore, it seems by implementing this method, satisfactory results are achieved.

Keywords: alternator, artificial neural network, support vector machine, time-frequency analysis, Wigner-Ville distribution

Procedia PDF Downloads 376
1945 An Overview of Paclitaxel as an Anti-Cancer Agent in Avoiding Malignant Metastatic Cancer Therapy

Authors: Nasrin Hosseinzad, Ramin Ghasemi Shayan

Abstract:

Chemotherapy is the most common procedure in the treatment of advanced cancers but is justsoberlyoperativeand toxic. Nevertheless, the efficiency of chemotherapy is restrictedowing to multiple drug resistance(MDR). Lately, plentiful preclinical experiments have revealedthatPaclitaxel-Curcumin could be an ultimateapproach to converse MDR and synergistically increase their efficiency. The connotationsamongst B-cell-lymphoma2(BCL-2) and multi-drug-resistance-associated-P-glycoprotein(MDR1) consequence of patients forecast the efficiency of paclitaxel-built chemoradiotherapy. There are evidences of the efficacy of paclitaxel in the treatment of surface-transmission of bladder-cell-carcinoma by manipulating bio-adhesive microspheres accomplishedthroughout measured release of drug at urine epithelium. In Genetically-Modified method, muco-adhesive oily constructionoftricaprylin, Tween 80, and paclitaxel group showed slighter toxicity than control in therapeutic dose. Postoperative chemotherapy-Paclitaxel might be more advantageous for survival than adjuvant chemo-radio-therapy, and coulddiminish postoperative complications in cervical cancer patients underwent a radical hysterectomy.HA-Se-PTX(Hyaluronic acid, Selenium, Paclitaxel) nanoparticles could observablyconstrain the proliferation, transmission, and invasion of metastatic cells and apoptosis. Furthermore, they exhibitedvast in vivo anti-tumor effect. Additionally, HA-Se-PTX displayedminor toxicity on mice-chef-organs. Briefly, HA-Se-PTX mightprogress into a respectednano-scale agentinrespiratory cancers. To sum up, Paclitaxel is considered a profitable anti-cancer drug in the treatment and anti-progress symptoms in malignant cancers.

Keywords: cancer, paclitaxel, chemotherapy, tumor

Procedia PDF Downloads 135
1944 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance

Authors: Ammar Alali, Mahmoud Abughaban

Abstract:

Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.

Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe

Procedia PDF Downloads 236
1943 Design and Motion Control of a Two-Wheel Inverted Pendulum Robot

Authors: Shiuh-Jer Huang, Su-Shean Chen, Sheam-Chyun Lin

Abstract:

Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.

Keywords: balance control, speed control, intelligent controller, two wheel inverted pendulum

Procedia PDF Downloads 226
1942 Evaluating the Effects of Rainfall and Agricultural Practices on Soil Erosion (Palapye Case Study)

Authors: Mpaphi Major

Abstract:

Soil erosion is becoming an important aspect of land degradation. Therefore it is of great consideration to note any factor that may escalate the rate of soil erosion in our arable land. There exist 3 main driving forces in soil erosion which are rainfall, wind and land use of which in this project only rainfall and land use will be looked at. With the increase in world population at an alarming rate, the demand for food production is expected to increase which will in turn lead to more land being converted from forests to agricultural use of which very few of it are now fertile. In our country Botswana, the rate of crop production is decreasing due to the wearing away of the fertile top soil and poor arable land management. As a result, some studies on the rate of soil loss and farm management practices should be conducted so that best soil and water conservation practices should be employed and hence reduce the risk of soil loss and increase the rate of crop production and yield. The Soil loss estimation model for Southern Africa (SLEMSA) will be used to estimate the rate of soil loss in some selected arable farms within the Palapye watershed and some field observations will be made to determine the management practices used and their impact on the arable land. Upon observations it have been found that many arable fields have been exposed to soil erosion, of which the affected parts are no longer suitable for any crop production unless the land areas are modified. Improper land practices such as ploughing along the slope and land cultivation practices were observed. As a result farmers need to be educated on best conservation practices that can be used to manage their arable land hence reduced risk of soil erosion and improved crop production.

Keywords: soil and water conservation, soil erosion, SLEMSA, land degradation

Procedia PDF Downloads 408
1941 Research on Development and Accuracy Improvement of an Explosion Proof Combustible Gas Leak Detector Using an IR Sensor

Authors: Gyoutae Park, Seungho Han, Byungduk Kim, Youngdo Jo, Yongsop Shim, Yeonjae Lee, Sangguk Ahn, Hiesik Kim, Jungil Park

Abstract:

In this paper, we presented not only development technology of an explosion proof type and portable combustible gas leak detector but also algorithm to improve accuracy for measuring gas concentrations. The presented techniques are to apply the flame-proof enclosure and intrinsic safe explosion proof to an infrared gas leak detector at first in Korea and to improve accuracy using linearization recursion equation and Lagrange interpolation polynomial. Together, we tested sensor characteristics and calibrated suitable input gases and output voltages. Then, we advanced the performances of combustible gaseous detectors through reflecting demands of gas safety management fields. To check performances of two company's detectors, we achieved the measurement tests with eight standard gases made by Korea Gas Safety Corporation. We demonstrated our instruments better in detecting accuracy other than detectors through experimental results.

Keywords: accuracy improvement, IR gas sensor, gas leak, detector

Procedia PDF Downloads 393
1940 A Review on Water Models of Surface Water Environment

Authors: Shahbaz G. Hassan

Abstract:

Water quality models are very important to predict the changes in surface water quality for environmental management. The aim of this paper is to give an overview of the water qualities, and to provide directions for selecting models in specific situation. Water quality models include one kind of model based on a mechanistic approach, while other models simulate water quality without considering a mechanism. Mechanistic models can be widely applied and have capabilities for long-time simulation, with highly complexity. Therefore, more spaces are provided to explain the principle and application experience of mechanistic models. Mechanism models have certain assumptions on rivers, lakes and estuaries, which limits the application range of the model, this paper introduces the principles and applications of water quality model based on the above three scenarios. On the other hand, mechanistic models are more easily to compute, and with no limit to the geographical conditions, but they cannot be used with confidence to simulate long term changes. This paper divides the empirical models into two broad categories according to the difference of mathematical algorithm, models based on artificial intelligence and models based on statistical methods.

Keywords: empirical models, mathematical, statistical, water quality

Procedia PDF Downloads 267
1939 An Information-Based Approach for Preference Method in Multi-Attribute Decision Making

Authors: Serhat Tuzun, Tufan Demirel

Abstract:

Multi-Criteria Decision Making (MCDM) is the modelling of real-life to solve problems we encounter. It is a discipline that aids decision makers who are faced with conflicting alternatives to make an optimal decision. MCDM problems can be classified into two main categories: Multi-Attribute Decision Making (MADM) and Multi-Objective Decision Making (MODM), based on the different purposes and different data types. Although various MADM techniques were developed for the problems encountered, their methodology is limited in modelling real-life. Moreover, objective results are hard to obtain, and the findings are generally derived from subjective data. Although, new and modified techniques are developed by presenting new approaches such as fuzzy logic; comprehensive techniques, even though they are better in modelling real-life, could not find a place in real world applications for being hard to apply due to its complex structure. These constraints restrict the development of MADM. This study aims to conduct a comprehensive analysis of preference methods in MADM and propose an approach based on information. For this purpose, a detailed literature review has been conducted, current approaches with their advantages and disadvantages have been analyzed. Then, the approach has been introduced. In this approach, performance values of the criteria are calculated in two steps: first by determining the distribution of each attribute and standardizing them, then calculating the information of each attribute as informational energy.

Keywords: literature review, multi-attribute decision making, operations research, preference method, informational energy

Procedia PDF Downloads 226
1938 Identifying Risk Factors for Readmission Using Decision Tree Analysis

Authors: Sıdıka Kaya, Gülay Sain Güven, Seda Karsavuran, Onur Toka

Abstract:

This study is part of an ongoing research project supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project Number 114K404, and participation to this conference was supported by Hacettepe University Scientific Research Coordination Unit under Project Number 10243. Evaluation of hospital readmissions is gaining importance in terms of quality and cost, and is becoming the target of national policies. In Turkey, the topic of hospital readmission is relatively new on agenda and very few studies have been conducted on this topic. The aim of this study was to determine 30-day readmission rates and risk factors for readmission. Whether readmission was planned, related to the prior admission and avoidable or not was also assessed. The study was designed as a ‘prospective cohort study.’ 472 patients hospitalized in internal medicine departments of a university hospital in Turkey between February 1, 2015 and April 30, 2015 were followed up. Analyses were conducted using IBM SPSS Statistics version 22.0 and SPSS Modeler 16.0. Average age of the patients was 56 and 56% of the patients were female. Among these patients 95 were readmitted. Overall readmission rate was calculated as 20% (95/472). However, only 31 readmissions were unplanned. Unplanned readmission rate was 6.5% (31/472). Out of 31 unplanned readmission, 24 was related to the prior admission. Only 6 related readmission was avoidable. To determine risk factors for readmission we constructed Chi-square automatic interaction detector (CHAID) decision tree algorithm. CHAID decision trees are nonparametric procedures that make no assumptions of the underlying data. This algorithm determines how independent variables best combine to predict a binary outcome based on ‘if-then’ logic by portioning each independent variable into mutually exclusive subsets based on homogeneity of the data. Independent variables we included in the analysis were: clinic of the department, occupied beds/total number of beds in the clinic at the time of discharge, age, gender, marital status, educational level, distance to residence (km), number of people living with the patient, any person to help his/her care at home after discharge (yes/no), regular source (physician) of care (yes/no), day of discharge, length of stay, ICU utilization (yes/no), total comorbidity score, means for each 3 dimensions of Readiness for Hospital Discharge Scale (patient’s personal status, patient’s knowledge, and patient’s coping ability) and number of daycare admissions within 30 days of discharge. In the analysis, we included all 95 readmitted patients (46.12%), but only 111 (53.88%) non-readmitted patients, although we had 377 non-readmitted patients, to balance data. The risk factors for readmission were found as total comorbidity score, gender, patient’s coping ability, and patient’s knowledge. The strongest identifying factor for readmission was comorbidity score. If patients’ comorbidity score was higher than 1, the risk for readmission increased. The results of this study needs to be validated by other data–sets with more patients. However, we believe that this study will guide further studies of readmission and CHAID is a useful tool for identifying risk factors for readmission.

Keywords: decision tree, hospital, internal medicine, readmission

Procedia PDF Downloads 258