Search results for: multi features
7282 Modeling Factors Affecting Fertility Transition in Africa: Case of Kenya
Authors: Dennis Okora Amima Ondieki
Abstract:
Fertility transition has been identified to be affected by numerous factors. This research aimed to investigate the most real factors affecting fertility transition in Kenya. These factors were firstly extracted from the literature convened into demographic features, social, and economic features, social-cultural features, reproductive features and modernization features. All these factors had 23 factors identified for this study. The data for this study was from the Kenya Demographic and Health Surveys (KDHS) conducted in 1999-2003 and 2003-2008/9. The data was continuous, and it involved the mean birth order for the ten periods. Principal component analysis (PCA) was utilized using 23 factors. Principal component analysis conveyed religion, region, education and marital status as the real factors. PC scores were calculated for every point. The identified principal components were utilized as forecasters in the multiple regression model, with the fertility level as the response variable. The four components were found to be affecting fertility transition differently. It was found that fertility is affected positively by factors of region and marital and negatively by factors of religion and education. These four factors can be considered in the planning policy in Kenya and Africa at large.Keywords: fertility transition, principal component analysis, Kenya demographic health survey, birth order
Procedia PDF Downloads 997281 Indoor Localization by Pattern Matching Method Based on Extended Database
Authors: Gyumin Hwang, Jihong Lee
Abstract:
This paper studied the CSS-based indoor localization system which is easy to implement, inexpensive to compose the systems, additionally CSS-based indoor localization system covers larger area than other system. However, this system has problem which is affected by reflected distance data. This problem in localization is caused by the multi-path effect. Error caused by multi-path is difficult to be corrected because the indoor environment cannot be described. In this paper, in order to solve the problem by multi-path, we have supplemented the localization system by using pattern matching method based on extended database. Thereby, this method improves precision of estimated. Also this method is verified by experiments in gymnasium. Database was constructed by 1 m intervals, and 16 sample data were collected from random position inside the region of DB points. As a result, this paper shows higher accuracy than existing method through graph and table.Keywords: chirp spread spectrum, indoor localization, pattern-matching, time of arrival, multi-path, mahalanobis distance, reception rate, simultaneous localization and mapping, laser range finder
Procedia PDF Downloads 2447280 Tensor Deep Stacking Neural Networks and Bilinear Mapping Based Speech Emotion Classification Using Facial Electromyography
Authors: P. S. Jagadeesh Kumar, Yang Yung, Wenli Hu
Abstract:
Speech emotion classification is a dominant research field in finding a sturdy and profligate classifier appropriate for different real-life applications. This effort accentuates on classifying different emotions from speech signal quarried from the features related to pitch, formants, energy contours, jitter, shimmer, spectral, perceptual and temporal features. Tensor deep stacking neural networks were supported to examine the factors that influence the classification success rate. Facial electromyography signals were composed of several forms of focuses in a controlled atmosphere by means of audio-visual stimuli. Proficient facial electromyography signals were pre-processed using moving average filter, and a set of arithmetical features were excavated. Extracted features were mapped into consistent emotions using bilinear mapping. With facial electromyography signals, a database comprising diverse emotions will be exposed with a suitable fine-tuning of features and training data. A success rate of 92% can be attained deprived of increasing the system connivance and the computation time for sorting diverse emotional states.Keywords: speech emotion classification, tensor deep stacking neural networks, facial electromyography, bilinear mapping, audio-visual stimuli
Procedia PDF Downloads 2547279 Features of Soil Formation in the North of Western Siberia in Cryogenic Conditions
Authors: Tatiana V. Raudina, Sergey P. Kulizhskiy
Abstract:
A large part of Russia is located in permafrost areas. These areas are widely used because there are concentrated valuable natural resources. Therefore to explore of cryosols it is important due to the significant increase of anthropogenic stress as well as the problem of global climate change. In the north of Western Siberia permafrost phenomena is widespread. Permafrost as a factor of soil formation and cryogenesis as a process have a great impact on the soil formation of these areas. Based on the research results of permafrost-affected soils tundra landscapes formed in the central part of the Tazovskiy Peninsula in cryogenic conditions, data were obtained which characterize the morphological features of soils. The specificity of soil cover distribution and manifestation of soil-forming processes within the study area are noted. Permafrost features such as frost cracking, cryoturbation, thixotropy, movement of humus are formed. The formation of these features is increased with the development of the territory. As a consequence, there is a change in the components of the environment and the destruction of the soil cover.Keywords: gleyed and nongleyed soils, permafrost, soil cryogenesis (pedocryogenesis), soil-forming macroprocesses
Procedia PDF Downloads 3507278 Forecasting Materials Demand from Multi-Source Ordering
Authors: Hui Hsin Huang
Abstract:
The downstream manufactures will order their materials from different upstream suppliers to maintain a certain level of the demand. This paper proposes a bivariate model to portray this phenomenon of material demand. We use empirical data to estimate the parameters of model and evaluate the RMSD of model calibration. The results show that the model has better fitness.Keywords: recency, ordering time, materials demand quantity, multi-source ordering
Procedia PDF Downloads 5347277 Study on Multi-Point Stretch Forming Process for Double Curved Surface
Authors: Jiwoo Park, Junseok Yoon, Jeong Kim, Beomsoo Kang
Abstract:
Multi-Point Stretch Forming (MPSF) process is suitable for flexible manufacturing, and it has several advantages including that it could be applied to various forming such as sheet metal forming, single curved surface forming and double curved one. In this study, a systematic numerical simulation was carried out for atypical double curved surface forming using the multiple die stretch forming process. In this simulation, urethane pads were defined based on hyper-elastic material model as a cushion for the smooth forming surface. The deformation behaviour on elastic recovery was also investigated to consider the exact result after the last forming process, and then the experiment was also carried out to confirm the formability of this forming process. By comparing the simulation and experiment results, the suitability of the multiple die stretch forming process for the atypical double curved surface was verified. Consequently, it is confirmed that the multi-point stretch forming process has the capability and feasibility of being used to manufacture the double curved surfaces of sheet metal.Keywords: multi-point stretch forming, double curved surface, numerical simulation, manufacturing
Procedia PDF Downloads 4807276 Conduction Model Compatible for Multi-Physical Domain Dynamic Investigations: Bond Graph Approach
Abstract:
In the current paper, a domain independent conduction model compatible for multi-physical system dynamic investigations is suggested. By means of a port-based approach, a classical nonlinear conduction model containing physical states is first represented. A compatible discrete configuration of the thermal domain in line with the elastic domain is then generated through the enhancement of the configuration of the conventional thermal element. The presented simulation results of a sample structure indicate that the suggested conductive model can cover a wide range of dynamic behavior of the thermal domain.Keywords: multi-physical domain, conduction model, port based modeling, dynamic interaction, physical modeling
Procedia PDF Downloads 2737275 Characteristics of Different Solar PV Modules under Partial Shading
Authors: Hla Hla Khaing, Yit Jian Liang, Nant Nyein Moe Htay, Jiang Fan
Abstract:
Partial shadowing is one of the problems that are always faced in terrestrial applications of solar photovoltaic (PV). The effects of partial shadow on the energy yield of conventional mono-crystalline and multi-crystalline PV modules have been researched for a long time. With deployment of new thin-film solar PV modules in the market, it is important to understand the performance of new PV modules operating under the partial shadow in the tropical zone. This paper addresses the impacts of different partial shadowing on the operating characteristics of four different types of solar PV modules that include multi-crystalline, amorphous thin-film, CdTe thin-film and CIGS thin-film PV modules.Keywords: partial shade, CdTe, CIGS, multi-crystalline (mc-Si), amorphous silicon (a-Si), bypass diode
Procedia PDF Downloads 4507274 Multi-Criteria Decision-Making in Ranking Drinking Water Supply Options (Case Study: Tehran City)
Authors: Mohsen Akhlaghi, Tahereh Ebrahimi
Abstract:
Considering the increasing demand for water and limited resources, there is a possibility of a water crisis in the not-so-distant future. Therefore, to prevent this crisis, other options for drinking water supply should be examined. In this regard, the application of multi-criteria decision-making methods in various aspects of water resource management and planning has always been of great interest to researchers. In this report, six options for supplying drinking water to Tehran City were considered. Then, experts' opinions were collected through matrices and questionnaires, and using the TOPSIS method, which is one of the types of multi-criteria decision-making methods, they were calculated and analyzed. In the TOPSIS method, the options were ranked by calculating their proximity to the ideal (Ci). The closer the numerical value of Ci is to one, the more desirable the option is. Based on this, the option with the optimization pattern of water consumption, with Ci = 0.9787, is the best option among the proposed options for supplying drinking water to Tehran City. The other options, in order of priority, are rainwater harvesting, wastewater reuse, increasing current water supply sources, desalination and its transfer, and transferring water from freshwater sources between basins. In conclusion, the findings of this study highlight the importance of exploring alternative drinking water supply options and utilizing multi-criteria decision-making approaches to address the potential water crisis.Keywords: multi-criteria decision, sustainable development, topsis, water supply
Procedia PDF Downloads 687273 Social Change and Cultural Sustainability in the Wake of Digital Media Revolution in South Asia
Authors: Binod C. Agrawal
Abstract:
In modern history, industrial and media merchandising in South Asia from East Asia, Europe, United States and other countries of the West is over 200 years old. Hence, continued external technology and media exposure is not a new experience in multi-lingual and multi religious South Asia which evolved cultural means to withstand structural change. In the post-World War II phase, media exposure especially of telecommunication, film, Internet, radio, print media and television have increased manifold. South Asia did not lose any time in acquiring and adopting digital media accelerated by chip revolution, computer and satellite communication. The penetration of digital media and utilization are exceptionally high though the spread has an unequal intensity, use and effects. The author argues that industrial and media products are “cultural products” apart from being “technological products”; hence their influences are most felt in the cultural domain which may lead to blunting of unique cultural specifics in the multi-cultural, multi-lingual and multi religious South Asia. Social scientists, political leaders and parents have voiced concern of “Cultural domination”, “Digital media colonization” and “Westernization”. Increased digital media access has also opened up doors of pornography and other harmful information that have sparked fresh debates and discussions about serious negative, harmful, and undesirable social effects especially among youth. Within ‘techno-social’ perspective, based on recent research studies, the paper aims to describe and analyse possible socio-economic change due to digital media penetration. Further, analysis supports the view that the ancient multi-lingual and multi-religious cultures of South Asia due to inner cultural strength may sustain without setting in a process of irreversible structural changes in South Asia.Keywords: cultural sustainability, digital media effects, digital media impact in South Asia, social change in South Asia
Procedia PDF Downloads 3557272 Urban Rail Transit CBTC Computer Interlocking Subsystem Relying on Multi-Template Pen Point Tracking Algorithm
Authors: Xinli Chen, Xue Su
Abstract:
In the urban rail transit CBTC system, interlocking is considered one of the most basic sys-tems, which has the characteristics of logical complexity and high-security requirements. The development and verification of traditional interlocking subsystems are entirely manual pro-cesses and rely too much on the designer, which often hides many uncertain factors. In order to solve this problem, this article is based on the multi-template nib tracking algorithm for model construction and verification, achieving the main safety attributes and using SCADE for formal verification. Experimental results show that this method helps to improve the quality and efficiency of interlocking software.Keywords: computer interlocking subsystem, penpoint tracking, communication-based train control system, multi-template tip tracking
Procedia PDF Downloads 1607271 A New Method Separating Relevant Features from Irrelevant Ones Using Fuzzy and OWA Operator Techniques
Authors: Imed Feki, Faouzi Msahli
Abstract:
Selection of relevant parameters from a high dimensional process operation setting space is a problem frequently encountered in industrial process modelling. This paper presents a method for selecting the most relevant fabric physical parameters for each sensory quality feature. The proposed relevancy criterion has been developed using two approaches. The first utilizes a fuzzy sensitivity criterion by exploiting from experimental data the relationship between physical parameters and all the sensory quality features for each evaluator. Next an OWA aggregation procedure is applied to aggregate the ranking lists provided by different evaluators. In the second approach, another panel of experts provides their ranking lists of physical features according to their professional knowledge. Also by applying OWA and a fuzzy aggregation model, the data sensitivity-based ranking list and the knowledge-based ranking list are combined using our proposed percolation technique, to determine the final ranking list. The key issue of the proposed percolation technique is to filter automatically and objectively the relevant features by creating a gap between scores of relevant and irrelevant parameters. It permits to automatically generate threshold that can effectively reduce human subjectivity and arbitrariness when manually choosing thresholds. For a specific sensory descriptor, the threshold is defined systematically by iteratively aggregating (n times) the ranking lists generated by OWA and fuzzy models, according to a specific algorithm. Having applied the percolation technique on a real example, of a well known finished textile product especially the stonewashed denims, usually considered as the most important quality criteria in jeans’ evaluation, we separate the relevant physical features from irrelevant ones for each sensory descriptor. The originality and performance of the proposed relevant feature selection method can be shown by the variability in the number of physical features in the set of selected relevant parameters. Instead of selecting identical numbers of features with a predefined threshold, the proposed method can be adapted to the specific natures of the complex relations between sensory descriptors and physical features, in order to propose lists of relevant features of different sizes for different descriptors. In order to obtain more reliable results for selection of relevant physical features, the percolation technique has been applied for combining the fuzzy global relevancy and OWA global relevancy criteria in order to clearly distinguish scores of the relevant physical features from those of irrelevant ones.Keywords: data sensitivity, feature selection, fuzzy logic, OWA operators, percolation technique
Procedia PDF Downloads 6057270 Multi-Modal Visualization of Working Instructions for Assembly Operations
Authors: Josef Wolfartsberger, Michael Heiml, Georg Schwarz, Sabrina Egger
Abstract:
Growing individualization and higher numbers of variants in industrial assembly products raise the complexity of manufacturing processes. Technical assistance systems considering both procedural and human factors allow for an increase in product quality and a decrease in required learning times by supporting workers with precise working instructions. Due to varying needs of workers, the presentation of working instructions leads to several challenges. This paper presents an approach for a multi-modal visualization application to support assembly work of complex parts. Our approach is integrated within an interconnected assistance system network and supports the presentation of cloud-streamed textual instructions, images, videos, 3D animations and audio files along with multi-modal user interaction, customizable UI, multi-platform support (e.g. tablet-PC, TV screen, smartphone or Augmented Reality devices), automated text translation and speech synthesis. The worker benefits from more accessible and up-to-date instructions presented in an easy-to-read way.Keywords: assembly, assistive technologies, augmented reality, manufacturing, visualization
Procedia PDF Downloads 1657269 Performance Evaluation of Soft RoCE over 1 Gigabit Ethernet
Authors: Gurkirat Kaur, Manoj Kumar, Manju Bala
Abstract:
Ethernet is the most influential and widely used technology in the world. With the growing demand of low latency and high throughput technologies like InfiniBand and RoCE, unique features viz. RDMA (Remote Direct Memory Access) have evolved. RDMA is an effective technology which is used for reducing system load and improving performance. InfiniBand is a well known technology which provides high-bandwidth and low-latency and makes optimal use of in-built features like RDMA. With the rapid evolution of InfiniBand technology and Ethernet lacking the RDMA and zero copy protocol, the Ethernet community has came out with a new enhancements that bridges the gap between InfiniBand and Ethernet. By adding the RDMA and zero copy protocol to the Ethernet a new networking technology is evolved, called RDMA over Converged Ethernet (RoCE). RoCE is a standard released by the IBTA standardization body to define RDMA protocol over Ethernet. With the emergence of lossless Ethernet, RoCE uses InfiniBand’s efficient transport to provide the platform for deploying RDMA technology in mainstream data centres over 10GigE, 40GigE and beyond. RoCE provide all of the InfiniBand benefits transport benefits and well established RDMA ecosystem combined with converged Ethernet. In this paper, we evaluate the heterogeneous Linux cluster, having multi nodes with fast interconnects i.e. gigabit Ethernet and Soft RoCE. This paper presents the heterogeneous Linux cluster configuration and evaluates its performance using Intel’s MPI Benchmarks. Our result shows that Soft RoCE is performing better than Ethernet in various performance metrics like bandwidth, latency and throughput.Keywords: ethernet, InfiniBand, RoCE, RDMA, MPI, Soft RoCE
Procedia PDF Downloads 4647268 Face Recognition Using Discrete Orthogonal Hahn Moments
Authors: Fatima Akhmedova, Simon Liao
Abstract:
One of the most critical decision points in the design of a face recognition system is the choice of an appropriate face representation. Effective feature descriptors are expected to convey sufficient, invariant and non-redundant facial information. In this work, we propose a set of Hahn moments as a new approach for feature description. Hahn moments have been widely used in image analysis due to their invariance, non-redundancy and the ability to extract features either globally and locally. To assess the applicability of Hahn moments to Face Recognition we conduct two experiments on the Olivetti Research Laboratory (ORL) database and University of Notre-Dame (UND) X1 biometric collection. Fusion of the global features along with the features from local facial regions are used as an input for the conventional k-NN classifier. The method reaches an accuracy of 93% of correctly recognized subjects for the ORL database and 94% for the UND database.Keywords: face recognition, Hahn moments, recognition-by-parts, time-lapse
Procedia PDF Downloads 3757267 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals
Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor
Abstract:
This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers
Procedia PDF Downloads 757266 Probabilistic-Based Design of Bridges under Multiple Hazards: Floods and Earthquakes
Authors: Kuo-Wei Liao, Jessica Gitomarsono
Abstract:
Bridge reliability against natural hazards such as floods or earthquakes is an interdisciplinary problem that involves a wide range of knowledge. Moreover, due to the global climate change, engineers have to design a structure against the multi-hazard threats. Currently, few of the practical design guideline has included such concept. The bridge foundation in Taiwan often does not have a uniform width. However, few of the researches have focused on safety evaluation of a bridge with a complex pier. Investigation of the scouring depth under such situation is very important. Thus, this study first focuses on investigating and improving the scour prediction formula for a bridge with complicated foundation via experiments and artificial intelligence. Secondly, a probabilistic design procedure is proposed using the established prediction formula for practical engineers under the multi-hazard attacks.Keywords: bridge, reliability, multi-hazards, scour
Procedia PDF Downloads 3747265 Multiscale Connected Component Labelling and Applications to Scientific Microscopy Image Processing
Authors: Yayun Hsu, Henry Horng-Shing Lu
Abstract:
In this paper, a new method is proposed to extending the method of connected component labeling from processing binary images to multi-scale modeling of images. By using the adaptive threshold of multi-scale attributes, this approach minimizes the possibility of missing those important components with weak intensities. In addition, the computational cost of this approach remains similar to that of the typical approach of component labeling. Then, this methodology is applied to grain boundary detection and Drosophila Brain-bow neuron segmentation. These demonstrate the feasibility of the proposed approach in the analysis of challenging microscopy images for scientific discovery.Keywords: microscopic image processing, scientific data mining, multi-scale modeling, data mining
Procedia PDF Downloads 4347264 A Neural Approach for Color-Textured Images Segmentation
Authors: Khalid Salhi, El Miloud Jaara, Mohammed Talibi Alaoui
Abstract:
In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method.Keywords: segmentation, color-texture, neural networks, fractal, watershed
Procedia PDF Downloads 3467263 Performance Evaluation of a Prioritized, Limited Multi-Server Processor-Sharing System that Includes Servers with Various Capacities
Authors: Yoshiaki Shikata, Nobutane Hanayama
Abstract:
We present a prioritized, limited multi-server processor sharing (PS) system where each server has various capacities, and N (≥2) priority classes are allowed in each PS server. In each prioritized, limited server, different service ratio is assigned to each class request, and the number of requests to be processed is limited to less than a certain number. Routing strategies of such prioritized, limited multi-server PS systems that take into account the capacity of each server are also presented, and a performance evaluation procedure for these strategies is discussed. Practical performance measures of these strategies, such as loss probability, mean waiting time, and mean sojourn time, are evaluated via simulation. In the PS server, at the arrival (or departure) of a request, the extension (shortening) of the remaining sojourn time of each request receiving service can be calculated by using the number of requests of each class and the priority ratio. Utilising a simulation program which executes these events and calculations, the performance of the proposed prioritized, limited multi-server PS rule can be analyzed. From the evaluation results, most suitable routing strategy for the loss or waiting system is clarified.Keywords: processor sharing, multi-server, various capacity, N-priority classes, routing strategy, loss probability, mean sojourn time, mean waiting time, simulation
Procedia PDF Downloads 3317262 Light-Weight Network for Real-Time Pose Estimation
Authors: Jianghao Hu, Hongyu Wang
Abstract:
The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone
Procedia PDF Downloads 1547261 Random Subspace Ensemble of CMAC Classifiers
Authors: Somaiyeh Dehghan, Mohammad Reza Kheirkhahan Haghighi
Abstract:
The rapid growth of domains that have data with a large number of features, while the number of samples is limited has caused difficulty in constructing strong classifiers. To reduce the dimensionality of the feature space becomes an essential step in classification task. Random subspace method (or attribute bagging) is an ensemble classifier that consists of several classifiers that each base learner in ensemble has subset of features. In the present paper, we introduce Random Subspace Ensemble of CMAC neural network (RSE-CMAC), each of which has training with subset of features. Then we use this model for classification task. For evaluation performance of our model, we compare it with bagging algorithm on 36 UCI datasets. The results reveal that the new model has better performance.Keywords: classification, random subspace, ensemble, CMAC neural network
Procedia PDF Downloads 3297260 Multi-Objective Optimization of an Aerodynamic Feeding System Using Genetic Algorithm
Authors: Jan Busch, Peter Nyhuis
Abstract:
Considering the challenges of short product life cycles and growing variant diversity, cost minimization and manufacturing flexibility increasingly gain importance to maintain a competitive edge in today’s global and dynamic markets. In this context, an aerodynamic part feeding system for high-speed industrial assembly applications has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. The aerodynamic part feeding system outperforms conventional systems with respect to its process safety, reliability, and operating speed. In this paper, a multi-objective optimisation of the aerodynamic feeding system regarding the orientation rate, the feeding velocity and the required nozzle pressure is presented.Keywords: aerodynamic feeding system, genetic algorithm, multi-objective optimization, workpiece orientation
Procedia PDF Downloads 5777259 Influential Factors on Woodcarvings in Traditional Malay Houses of Negeri Sembilan, Malaysia
Authors: Nurdiyana Zainal Abidin, Raja Nafida Raja Shahminan, Fawazul Khair Ibrahim
Abstract:
Timber vernacular houses in Malaysia are unique heritage buildings which can be identified through their designs, structure, architectural elements and ornamentations. Woodcarvings are common forms of ornamentations and decorations in Traditional Malay Houses and they can be found throughout Malaysia including in Negeri Sembilan. As a multi-cultural, multi-racial, and multi-religion state which uniquely practices the matrilineal social system, Negeri Sembilan has a strong connection to its’ history and heritage and in particular the distinctive vernacular architecture. The purpose of this paper is to underline the factors that influence the woodcarvings in Traditional Malay Houses in Negeri Sembilan, Malaysia. The houses studied were from the archives of measured drawings in Center of Built Environment in the Malay World (KALAM), Universiti Teknologi Malaysia (UTM). The findings indicated several factors influencing the woodcarver’s works and also the applications of the woodcarvings such as religious factors, cultural factors and political factors. These factors among several other shows that woodcarvings were predetermined before being carved and that they were not just merely placed without reason but are functioning pieces of aesthetic ornamentation.Keywords: influences, traditional Malay houses, woodcarvings, multi-cultural
Procedia PDF Downloads 5097258 Improved Performance in Content-Based Image Retrieval Using Machine Learning Approach
Authors: B. Ramesh Naik, T. Venugopal
Abstract:
This paper presents a novel approach which improves the high-level semantics of images based on machine learning approach. The contemporary approaches for image retrieval and object recognition includes Fourier transforms, Wavelets, SIFT and HoG. Though these descriptors helpful in a wide range of applications, they exploit zero order statistics, and this lacks high descriptiveness of image features. These descriptors usually take benefit of primitive visual features such as shape, color, texture and spatial locations to describe images. These features do not adequate to describe high-level semantics of the images. This leads to a gap in semantic content caused to unacceptable performance in image retrieval system. A novel method has been proposed referred as discriminative learning which is derived from machine learning approach that efficiently discriminates image features. The analysis and results of proposed approach were validated thoroughly on WANG and Caltech-101 Databases. The results proved that this approach is very competitive in content-based image retrieval.Keywords: CBIR, discriminative learning, region weight learning, scale invariant feature transforms
Procedia PDF Downloads 1817257 Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation
Authors: Lae-Jeong Park
Abstract:
The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds.Keywords: pedestrian detection, color segmentation, false positive, feature extraction
Procedia PDF Downloads 2817256 A Multi-Attribute Utility Model for Performance Evaluation of Sustainable Banking
Authors: Sonia Rebai, Mohamed Naceur Azaiez, Dhafer Saidane
Abstract:
In this study, we develop a performance evaluation model based on a multi-attribute utility approach aiming at reaching the sustainable banking (SB) status. This model is built accounting for various banks’ stakeholders in a win-win paradigm. In addition, it offers the opportunity for adopting a global measure of performance as an indication of a bank’s sustainability degree. This measure is referred to as banking sustainability performance index (BSPI). This index may constitute a basis for ranking banks. Moreover, it may constitute a bridge between the assessment types of financial and extra-financial rating agencies. A real application is performed on three French banks.Keywords: multi-attribute utility theory, performance, sustainable banking, financial rating
Procedia PDF Downloads 4677255 Multi-Perspective Learning in a Real Production Plant Using Experiential Learning in Heterogeneous Groups to Develop System Competencies for Production System Improvements
Authors: Marlies Achenbach
Abstract:
System competencies play a key role to ensure an effective and efficient improvement of production systems. Thus, there can be observed an increasing demand for developing system competencies in industry as well as in engineering education. System competencies consist of the following two main abilities: Evaluating the current state of a production system and developing a target state. The innovative course ‘multi-perspective learning in a real production plant (multi real)’ is developed to create a learning setting that supports the development of these system competencies. Therefore, the setting combines two innovative aspects: First, the Learning takes place in heterogeneous groups formed by students as well as professionals and managers from industry. Second, the learning takes place in a real production plant. This paper presents the innovative didactic concept of ‘multi real’ in detail, which will initially be implemented in October/November 2016 in the industrial engineering, logistics and mechanical master’s program at TU Dortmund University.Keywords: experiential learning, heterogeneous groups, improving production systems, system competencies
Procedia PDF Downloads 4267254 Multi-Omics Investigation of Ferroptosis-Related Gene Expression in Ovarian Aging and the Impact of Nutritional Intervention
Authors: Chia-Jung Li, Kuan-Hao Tsui
Abstract:
As women age, the quality of their oocytes deteriorates irreversibly, leading to reduced fertility. To better understand the role of Ferroptosis-related genes in ovarian aging, we employed a multi-omics analysis approach, including spatial transcriptomics, single-cell RNA sequencing, human ovarian pathology, and clinical biopsies. Our study identified excess lipid peroxide accumulation in aging germ cells, metal ion accumulation via oxidative reduction, and the interaction between ferroptosis and cellular energy metabolism. We used multi-histological prediction of ferroptosis key genes to evaluate 75 patients with ovarian aging insufficiency and then analyzed changes in hub genes after supplementing with DHEA, Ubiquinol CoQ10, and Cleo-20 T3 for two months. Our results demonstrated a significant increase in TFRC, GPX4, NCOA4, and SLC3A2, which were consistent with our multi-component prediction. We theorized that these supplements increase the mitochondrial tricarboxylic acid cycle (TCA) or electron transport chain (ETC), thereby increasing antioxidant enzyme GPX4 levels and reducing lipid peroxide accumulation and ferroptosis. Overall, our findings suggest that supplementation intervention significantly improves IVF outcomes in senescent cells by enhancing metal ion and energy metabolism and enhancing oocyte quality in aging women.Keywords: multi-omics, nutrients, ferroptosis, ovarian aging
Procedia PDF Downloads 1037253 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery
Authors: Forouzan Salehi Fergeni
Abstract:
Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine
Procedia PDF Downloads 50