Search results for: genetic breeding models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8453

Search results for: genetic breeding models

8093 A Comparison of Sequential Quadratic Programming, Genetic Algorithm, Simulated Annealing, Particle Swarm Optimization for the Design and Optimization of a Beam Column

Authors: Nima Khosravi

Abstract:

This paper describes an integrated optimization technique with concurrent use of sequential quadratic programming, genetic algorithm, and simulated annealing particle swarm optimization for the design and optimization of a beam column. In this research, the comparison between 4 different types of optimization methods. The comparison is done and it is found out that all the methods meet the required constraints and the lowest value of the objective function is achieved by SQP, which was also the fastest optimizer to produce the results. SQP is a gradient based optimizer hence its results are usually the same after every run. The only thing which affects the results is the initial conditions given. The initial conditions given in the various test run were very large as compared. Hence, the value converged at a different point. Rest of the methods is a heuristic method which provides different values for different runs even if every parameter is kept constant.

Keywords: beam column, genetic algorithm, particle swarm optimization, sequential quadratic programming, simulated annealing

Procedia PDF Downloads 386
8092 Genomic Surveillance of Bacillus Anthracis in South Africa Revealed a Unique Genetic Cluster of B- Clade Strains

Authors: Kgaugelo Lekota, Ayesha Hassim, Henriette Van Heerden

Abstract:

Bacillus anthracis is the causative agent of anthrax that is composed of three genetic groups, namely A, B, and C. Clade-A is distributed world-wide, while sub-clades B has been identified in Kruger National Park (KNP), South Africa. KNP is one of the endemic anthrax regions in South Africa with distinctive genetic diversity. Genomic surveillance of KNP B. anthracis strains was employed on the historical culture collection isolates (n=67) dated from the 1990’s to 2015 using a whole genome sequencing approach. Whole genome single nucleotide polymorphism (SNPs) and pan-genomics analysis were used to define the B. anthracis genetic population structure. This study showed that KNP has heterologous B. anthracis strains grouping in the A-clade with more prominent ABr.005/006 (Ancient A) SNP lineage. The 2012 and 2015 anthrax isolates are dispersed amongst minor sub-clades that prevail in non-stabilized genetic evolution strains. This was augmented with non-parsimony informative SNPs of the B. anthracis strains across minor sub-clades of the Ancient A clade. Pan-genomics of B. anthracis showed a clear distinction between A and B-clade genomes with 11 374 predicted clusters of protein coding genes. Unique accessory genes of B-clade genomes that included biosynthetic cell wall genes and multidrug resistant of Fosfomycin. South Africa consists of diverse B. anthracis strains with unique defined SNPs. The sequenced B. anthracis strains in this study will serve as a means to further trace the dissemination of B. anthracis outbreaks globally and especially in South Africa.

Keywords: bacillus anthracis, whole genome single nucleotide polymorphisms, pangenomics, kruger national park

Procedia PDF Downloads 150
8091 Effectiveness of ISSR Technique in Revealing Genetic Diversity of Phaseolus vulgaris L. Representing Various Parts of the World

Authors: Mohamed El-Shikh

Abstract:

Phaseolus vulgaris L. is the world’s second most important bean after soybeans; used for human food and animal feed. It has generally been linked to reduced risk of cardiovascular disease, diabetes mellitus, obesity, cancer and diseases of digestive tract. The effectiveness of ISSR in achievement of the genetic diversity among 60 common bean accessions; represent various germplasms around the world was investigated. In general, the studied Phaseolus vulgaris accessions were divided into 2 major groups. All of the South-American accessions were separated into the second major group. These accessions may have different genetic features that are distinct from the rest of the accessions clustered in the major group. Asia and Europe accessions (1-20) seem to be more genetically similar (99%) to each other as they clustered in the same sub-group. The American and African varieties showed similarities as well and clustered in the same sub-tree group. In contrast, Asian and American accessions No. 22 and 23 showed a high level of genetic similarities, although these were isolated from different regions. The phylogenetic tree showed that all the Asian accessions (along with Australian No. 59 and 60) were similar except Indian and Yemen accessions No. 9 and 20. Only Netherlands accession No. 3 was different from the rest of European accessions. Morocco accession No. 52 was genetically different from the rest of the African accessions. Canadian accession No. 44 seems to be different from the other North American accessions including Guatemala, Mexico and USA.

Keywords: phylogenetic tree, Phaseolus vulgaris, ISSR technique, genetics

Procedia PDF Downloads 408
8090 Association between Polygenic Risk of Alzheimer's Dementia, Brain MRI and Cognition in UK Biobank

Authors: Rachana Tank, Donald. M. Lyall, Kristin Flegal, Joey Ward, Jonathan Cavanagh

Abstract:

Alzheimer’s research UK estimates by 2050, 2 million individuals will be living with Late Onset Alzheimer’s disease (LOAD). However, individuals experience considerable cognitive deficits and brain pathology over decades before reaching clinically diagnosable LOAD and studies have utilised gene candidate studies such as genome wide association studies (GWAS) and polygenic risk (PGR) scores to identify high risk individuals and potential pathways. This investigation aims to determine whether high genetic risk of LOAD is associated with worse brain MRI and cognitive performance in healthy older adults within the UK Biobank cohort. Previous studies investigating associations of PGR for LOAD and measures of MRI or cognitive functioning have focused on specific aspects of hippocampal structure, in relatively small sample sizes and with poor ‘controlling’ for confounders such as smoking. Both the sample size of this study and the discovery GWAS sample are bigger than previous studies to our knowledge. Genetic interaction between loci showing largest effects in GWAS have not been extensively studied and it is known that APOE e4 poses the largest genetic risk of LOAD with potential gene-gene and gene-environment interactions of e4, for this reason we  also analyse genetic interactions of PGR with the APOE e4 genotype. High genetic loading based on a polygenic risk score of 21 SNPs for LOAD is associated with worse brain MRI and cognitive outcomes in healthy individuals within the UK Biobank cohort. Summary statistics from Kunkle et al., GWAS meta-analyses (case: n=30,344, control: n=52,427) will be used to create polygenic risk scores based on 21 SNPs and analyses will be carried out in N=37,000 participants in the UK Biobank. This will be the largest study to date investigating PGR of LOAD in relation to MRI. MRI outcome measures include WM tracts, structural volumes. Cognitive function measures include reaction time, pairs matching, trail making, digit symbol substitution and prospective memory. Interaction of the APOE e4 alleles and PGR will be analysed by including APOE status as an interaction term coded as either 0, 1 or 2 e4 alleles. Models will be adjusted partially for adjusted for age, BMI, sex, genotyping chip, smoking, depression and social deprivation. Preliminary results suggest PGR score for LOAD is associated with decreased hippocampal volumes including hippocampal body (standardised beta = -0.04, P = 0.022) and tail (standardised beta = -0.037, P = 0.030), but not with hippocampal head. There were also associations of genetic risk with decreased cognitive performance including fluid intelligence (standardised beta = -0.08, P<0.01) and reaction time (standardised beta = 2.04, P<0.01). No genetic interactions were found between APOE e4 dose and PGR score for MRI or cognitive measures. The generalisability of these results is limited by selection bias within the UK Biobank as participants are less likely to be obese, smoke, be socioeconomically deprived and have fewer self-reported health conditions when compared to the general population. Lack of a unified approach or standardised method for calculating genetic risk scores may also be a limitation of these analyses. Further discussion and results are pending.

Keywords: Alzheimer's dementia, cognition, polygenic risk, MRI

Procedia PDF Downloads 113
8089 Genetic Algorithm Optimization of a Small Scale Natural Gas Liquefaction Process

Authors: M. I. Abdelhamid, A. O. Ghallab, R. S. Ettouney, M. A. El-Rifai

Abstract:

An optimization scheme based on COM server is suggested for communication between Genetic Algorithm (GA) toolbox of MATLAB and Aspen HYSYS. The structure and details of the proposed framework are discussed. The power of the developed scheme is illustrated by its application to the optimization of a recently developed natural gas liquefaction process in which Aspen HYSYS was used for minimization of the power consumption by optimizing the values of five operating variables. In this work, optimization by coupling between the GA in MATLAB and Aspen HYSYS model of the same process using the same five decision variables enabled improvements in power consumption by 3.3%, when 77% of the natural gas feed is liquefied. Also on inclusion of the flow rates of both nitrogen and carbon dioxide refrigerants as two additional decision variables, the power consumption decreased by 6.5% for a 78% liquefaction of the natural gas feed.

Keywords: stranded gas liquefaction, genetic algorithm, COM server, single nitrogen expansion, carbon dioxide pre-cooling

Procedia PDF Downloads 448
8088 Understanding Different Facets of Chromosome Abnormalities: A 17-year Cytogenetic Study and Indian Perspectives

Authors: Lakshmi Rao Kandukuri, Mamata Deenadayal, Suma Prasad, Bipin Sethi, Srinadh Buragadda, Lalji Singh

Abstract:

Worldwide; at least 7.6 million children are born annually with severe genetic or congenital malformations and among them 90% of these are born in mid and low-income countries. Precise prevalence data are difficult to collect, especially in developing countries, owing to the great diversity of conditions and also because many cases remain undiagnosed. The genetic and congenital disorder is the second most common cause of infant and childhood mortality and occurs with a prevalence of 25-60 per 1000 births. The higher prevalence of genetic diseases in a particular community may, however, be due to some social or cultural factors. Such factors include the tradition of consanguineous marriage, which results in a higher rate of autosomal recessive conditions including congenital malformations, stillbirths, or mental retardation. Genetic diseases can vary in severity, from being fatal before birth to requiring continuous management; their onset covers all life stages from infancy to old age. Those presenting at birth are particularly burdensome and may cause early death or life-long chronic morbidity. Genetic testing for several genetic diseases identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. Several hundred genetic tests are currently in use and more are being developed. Chromosomal abnormalities are the major cause of human suffering, which are implicated in mental retardation, congenital malformations, dysmorphic features, primary and secondary amenorrhea, reproductive wastage, infertility neoplastic diseases. Cytogenetic evaluation of patients is helpful in the counselling and management of affected individuals and families. We present here especially chromosomal abnormalities which form a major part of genetic disease burden in India. Different programmes on chromosome research and human reproductive genetics primarily relate to infertility since this is a major public health problem in our country, affecting 10-15 percent of couples. Prenatal diagnosis of chromosomal abnormalities in high-risk pregnancies helps in detecting chromosomally abnormal foetuses. Such couples are counselled regarding the continuation of pregnancy. In addition to the basic research, the team is providing chromosome diagnostic services that include conventional and advanced techniques for identifying various genetic defects. Other than routine chromosome diagnosis for infertility, also include patients with short stature, hypogonadism, undescended testis, microcephaly, delayed developmental milestones, familial, and isolated mental retardation, and cerebral palsy. Thus, chromosome diagnostics has found its applicability not only in disease prevention and management but also in guiding the clinicians in certain aspects of treatment. It would be appropriate to affirm that chromosomes are the images of life and they unequivocally mirror the states of human health. The importance of genetic counseling is increasing with the advancement in the field of genetics. The genetic counseling can help families to cope with emotional, psychological, and medical consequences of genetic diseases.

Keywords: India, chromosome abnormalities, genetic disorders, cytogenetic study

Procedia PDF Downloads 315
8087 Optimization of Dez Dam Reservoir Operation Using Genetic Algorithm

Authors: Alireza Nikbakht Shahbazi, Emadeddin Shirali

Abstract:

Since optimization issues of water resources are complicated due to the variety of decision making criteria and objective functions, it is sometimes impossible to resolve them through regular optimization methods or, it is time or money consuming. Therefore, the use of modern tools and methods is inevitable in resolving such problems. An accurate and essential utilization policy has to be determined in order to use natural resources such as water reservoirs optimally. Water reservoir programming studies aim to determine the final cultivated land area based on predefined agricultural models and water requirements. Dam utilization rule curve is also provided in such studies. The basic information applied in water reservoir programming studies generally include meteorological, hydrological, agricultural and water reservoir related data, and the geometric characteristics of the reservoir. The system of Dez dam water resources was simulated applying the basic information in order to determine the capability of its reservoir to provide the objectives of the performed plan. As a meta-exploratory method, genetic algorithm was applied in order to provide utilization rule curves (intersecting the reservoir volume). MATLAB software was used in order to resolve the foresaid model. Rule curves were firstly obtained through genetic algorithm. Then the significance of using rule curves and the decrease in decision making variables in the system was determined through system simulation and comparing the results with optimization results (Standard Operating Procedure). One of the most essential issues in optimization of a complicated water resource system is the increasing number of variables. Therefore a lot of time is required to find an optimum answer and in some cases, no desirable result is obtained. In this research, intersecting the reservoir volume has been applied as a modern model in order to reduce the number of variables. Water reservoir programming studies has been performed based on basic information, general hypotheses and standards and applying monthly simulation technique for a statistical period of 30 years. Results indicated that application of rule curve prevents the extreme shortages and decrease the monthly shortages.

Keywords: optimization, rule curve, genetic algorithm method, Dez dam reservoir

Procedia PDF Downloads 265
8086 Scheduling of Repetitive Activities for Height-Rise Buildings: Optimisation by Genetic Algorithms

Authors: Mohammed Aljoma

Abstract:

In this paper, a developed prototype for the scheduling of repetitive activities in height-rise buildings was presented. The activities that describe the behavior of the most of activities in multi-storey buildings are scheduled using the developed approach. The prototype combines three methods to attain the optimized planning. The methods include Critical Path Method (CPM), Gantt and Line of Balance (LOB). The developed prototype; POTER is used to schedule repetitive and non-repetitive activities with respect to all constraints that can be automatically generated using a generic database. The prototype uses the method of genetic algorithms for optimizing the planning process. As a result, this approach enables contracting organizations to evaluate various planning solutions that are calculated, tested and classified by POTER to attain an optimal time-cost equilibrium according to their own criteria of time or coast.

Keywords: planning scheduling, genetic algorithms, repetitive activity, construction management, planning, scheduling, risk management, project duration

Procedia PDF Downloads 308
8085 Use of Predictive Food Microbiology to Determine the Shelf-Life of Foods

Authors: Fatih Tarlak

Abstract:

Predictive microbiology can be considered as an important field in food microbiology in which it uses predictive models to describe the microbial growth in different food products. Predictive models estimate the growth of microorganisms quickly, efficiently, and in a cost-effective way as compared to traditional methods of enumeration, which are long-lasting, expensive, and time-consuming. The mathematical models used in predictive microbiology are mainly categorised as primary and secondary models. The primary models are the mathematical equations that define the growth data as a function of time under a constant environmental condition. The secondary models describe the effects of environmental factors, such as temperature, pH, and water activity (aw) on the parameters of the primary models, including the maximum specific growth rate and lag phase duration, which are the most critical growth kinetic parameters. The combination of primary and secondary models provides valuable information to set limits for the quantitative detection of the microbial spoilage and assess product shelf-life.

Keywords: shelf-life, growth model, predictive microbiology, simulation

Procedia PDF Downloads 211
8084 Phylogeography and Evolutionary History of Whiting (Merlangius merlangus) along the Turkish Coastal Waters with Comparisons to the Atlantic

Authors: Aslı Şalcıoğlu, Grigorous Krey, Raşit Bilgin

Abstract:

In this study, the effect of the Turkish Straits System (TSS), comprising a biogeographical boundary that forms the connection between the Mediterranean and the Black Sea, on the evolutionary history, phylogeography and intraspecific gene flow of the whiting (Merlangius merlangus) a demersal fish species, was investigated. For these purposes, the mitochondrial DNA (CO1, cyt-b) genes were used. In addition, genetic comparisons samples from other regions (Greece, France, Atlantic) obtained from GenBank and Barcode of Life Database were made to better understand the phylogeographic history of the species at a larger geographic scale. Within this study, high level of genetic differentiation was observed along the Turkish coastal waters based on cyt-b gene, suggesting that TSS is a barrier to dispersal. Two different sub-species were also observed based on mitochondrial DNA, one found in Turkish coastal waters and Greece (M.m euxinus) and other (M.m. merlangus) in Atlantic, France.

Keywords: genetic, phylogeography, TSS, whiting

Procedia PDF Downloads 310
8083 Epigenetic Drugs for Major Depressive Disorder: A Critical Appraisal of Available Studies

Authors: Aniket Kumar, Jacob Peedicayil

Abstract:

Major depressive disorder (MDD) is a common and important psychiatric disorder. Several clinical features of MDD suggest an epigenetic basis for its pathogenesis. Since epigenetics (heritable changes in gene expression not involving changes in DNA sequence) may underlie the pathogenesis of MDD, epigenetic drugs such as DNA methyltransferase inhibitors (DNMTi) and histone deactylase inhibitors (HDACi) may be useful for treating MDD. The available literature indexed in Pubmed on preclinical drug trials of epigenetic drugs for the treatment of MDD was investigated. The search terms we used were ‘depression’ or ‘depressive’ and ‘HDACi’ or ‘DNMTi’. Among epigenetic drugs, it was found that there were 3 preclinical trials using HDACi and 3 using DNMTi for the treatment of MDD. All the trials were conducted on rodents (mice or rats). The animal models of depression that were used were: learned helplessness-induced animal model, forced swim test, open field test, and the tail suspension test. One study used a genetic rat model of depression (the Flinders Sensitive Line). The HDACi that were tested were: sodium butyrate, compound 60 (Cpd-60), and valproic acid. The DNMTi that were tested were: 5-azacytidine and decitabine. Among the three preclinical trials using HDACi, all showed an antidepressant effect in animal models of depression. Among the 3 preclinical trials using DNMTi also, all showed an antidepressant effect in animal models of depression. Thus, epigenetic drugs, namely, HDACi and DNMTi, may prove to be useful in the treatment of MDD and merit further investigation for the treatment of this disorder.

Keywords: DNA methylation, drug discovery, epigenetics, major depressive disorder

Procedia PDF Downloads 187
8082 Genetic Analysis of Growth Traits in White Boni Sheep under the Central Highlands Region of Yemen

Authors: Abed Al-Bial, S. Alazazie, A. Shami

Abstract:

The data were collected from 1992 to 2009 of White Boni sheep maintained at the Regional Research Station in the Central Highlands of Yemen. Data were analyzed to study the growth related traits and their genetic control. The least square means for body weights were 2.26±0.67, 11.14±0.46 and 19.21±1.25 kg for birth weight (BW), weaning weight (WW), six-month weight (WM6), respectively. The pre- and post-weaning average daily weight gains (ADG1 and ADG2) were 106.04±4.98g and 46.21±8.36 g/ day. Significant differences associated with the year of lambing were observed in body weight and weight gain at different stages of growth. Males were heavier and had a higher weight gain than females at almost all stages of growth and differences tended to increase with age. Single-born lambs had a distinct advantage over those born in twin births at all stages of growth. The lambs in the dam’s second to fourth parities were generally of heavier weight and higher daily weight gain than those in other parities. The heritabilities of all body weights, weight gains at different stages of growth were moderate (0.11-0.43). The phenotypic and genetic correlation among the different body weights were positive and high. The genetic correlations of the pre- and post-weaning average daily gains with body weights were hight to moderate, except BW with ADG2.

Keywords: breed, genetics, growth traits, heritability, sheep

Procedia PDF Downloads 513
8081 Genetic Diversity of Cord Blood of the National Center of Blood Transfusion, Mexico (NCBT)

Authors: J. Manuel Bello-López, Julieta Rojo-Medina

Abstract:

Introduction: The transplant of Umbilical Cord Blood Units (UCBU) are a therapeutic possibility for patients with oncohaematological disorders, especially in children. In Mexico, 48.5% of oncological diseases in children 1-4 years old are leukemias; whereas in patients 5-14 and 15-24 years old, lymphomas and leukemias represent the second and third cause of death in these groups respectively. Therefore it is necessary to have more registries of UCBU in order to ensure genetic diversity in the country; the above because the search for appropriate a UCBU is increasingly difficult for patients of mixed ethnicity. Objective: To estimate the genetic diversity (polymorphisms) of Human Leucocyte Antigen (HLA) Class I (A, B) and Class II (DRB1) in UCBU cryopreserved for transplant at Cord Blood Bank of the NCBT. Material and Methods: HLA typing of 533 UCBU for transplant was performed from 2003-2012 at the Histocompatibility Laboratory from the Research Department (evaluated by Los Angeles Ca. Immunogenetics Center) of the NCBT. Class I HLA-A, HLA-B and Class II HLA-DRB1 typing was performed using medium resolution Sequence-Specific Primer (SSP). In cases of an ambiguity detected by SSP; Sequence-Specific Oligonucleotide (SSO) method was carried out. A strict analysis of populations genetic parameters were done in 5 representative UCBU populations. Results: 46.5% of UCBU were collected from Mexico City, State of Mexico (30.95%), Puebla (8.06%), Morelos (6.37%) and Veracruz (3.37%). The remaining UCBU (4.75%) are represented by other states. The identified genotypes correspond to Amerindian origins (HLA-A*02, 31; HLA-B*39, 15, 48), Caucasian (HLA-A*02, 68, 01, 30, 31; HLA-B*35, 15, 40, 44, 07 y HLA-DRB1*04, 08, 07, 15, 03, 14), Oriental (HLA-A*02, 30, 01, 31; HLA-B* 35, 39, 15, 40, 44, 07,48 y HLA-DRB1*04, 07,15, 03) and African (HLA-A*30 y HLA-DRB1*03). The genetic distances obtained by Cavalli-Sforza analysis of the five states showed significant genetic differences by comparing genetic frequencies. The shortest genetic distance exists between Mexico City and the state of Puebla (0.0039) and the largest between Veracruz and Morelos (0.0084). In order to identify significant differences between this states, the ANOVA test was performed. This demonstrates that UCBU is significantly different according to their origin (P <0.05). This is shown by the divergence between arms at the Dendogram of Neighbor-Joining. Conclusions: The NCBT provides UCBU in patients with oncohaematological disorders in all the country. There is a group of patients for which not compatible UCBU can be find due to the mixed ethnic origin. For example, the population of northern Mexico is mostly Caucasian. Most of the NCBT donors are of various ethnic origins, predominantly Amerindians and Caucasians; although some ethnic minorities like Oriental, African and pure Indian ethnics are not represented. The NCBT is, therefore, establishing agreements with different states of Mexico to promote the altruistic donation of Umbilical Cord Blood in order to enrich the genetic diversity in its files.

Keywords: cord blood, genetic diversity, human leucocyte antigen, transplant

Procedia PDF Downloads 382
8080 A Genetic Algorithm Based Sleep-Wake up Protocol for Area Coverage in WSNs

Authors: Seyed Mahdi Jameii, Arash Nikdel, Seyed Mohsen Jameii

Abstract:

Energy efficiency is an important issue in the field of Wireless Sensor Networks (WSNs). So, minimizing the energy consumption in this kind of networks should be an essential consideration. Sleep/wake scheduling mechanism is an efficient approach to handling this issue. In this paper, we propose a Genetic Algorithm-based Sleep-Wake up Area Coverage protocol called GA-SWAC. The proposed protocol puts the minimum of nodes in active mode and adjusts the sensing radius of each active node to decrease the energy consumption while maintaining the network’s coverage. The proposed protocol is simulated. The results demonstrate the efficiency of the proposed protocol in terms of coverage ratio, number of active nodes and energy consumption.

Keywords: wireless sensor networks, genetic algorithm, coverage, connectivity

Procedia PDF Downloads 519
8079 A Retrievable Genetic Algorithm for Efficient Solving of Sudoku Puzzles

Authors: Seyed Mehran Kazemi, Bahare Fatemi

Abstract:

Sudoku is a logic-based combinatorial puzzle game which is popular among people of different ages. Due to this popularity, computer softwares are being developed to generate and solve Sudoku puzzles with different levels of difficulty. Several methods and algorithms have been proposed and used in different softwares to efficiently solve Sudoku puzzles. Various search methods such as stochastic local search have been applied to this problem. Genetic Algorithm (GA) is one of the algorithms which have been applied to this problem in different forms and in several works in the literature. In these works, chromosomes with little or no information were considered and obtained results were not promising. In this paper, we propose a new way of applying GA to this problem which uses more-informed chromosomes than other works in the literature. We optimize the parameters of our GA using puzzles with different levels of difficulty. Then we use the optimized values of the parameters to solve various puzzles and compare our results to another GA-based method for solving Sudoku puzzles.

Keywords: genetic algorithm, optimization, solving Sudoku puzzles, stochastic local search

Procedia PDF Downloads 423
8078 Multi-Subpopulation Genetic Algorithm with Estimation of Distribution Algorithm for Textile Batch Dyeing Scheduling Problem

Authors: Nhat-To Huynh, Chen-Fu Chien

Abstract:

Textile batch dyeing scheduling problem is complicated which includes batch formation, batch assignment on machines, batch sequencing with sequence-dependent setup time. Most manufacturers schedule their orders manually that are time consuming and inefficient. More power methods are needed to improve the solution. Motivated by the real needs, this study aims to propose approaches in which genetic algorithm is developed with multi-subpopulation and hybridised with estimation of distribution algorithm to solve the constructed problem for minimising the makespan. A heuristic algorithm is designed and embedded into the proposed algorithms to improve the ability to get out of the local optima. In addition, an empirical study is conducted in a textile company in Taiwan to validate the proposed approaches. The results have showed that proposed approaches are more efficient than simulated annealing algorithm.

Keywords: estimation of distribution algorithm, genetic algorithm, multi-subpopulation, scheduling, textile dyeing

Procedia PDF Downloads 299
8077 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms

Authors: Rikson Gultom

Abstract:

Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.

Keywords: abusive language, hate speech, machine learning, optimization, social media

Procedia PDF Downloads 128
8076 Recent Trends in Supply Chain Delivery Models

Authors: Alfred L. Guiffrida

Abstract:

A review of the literature on supply chain delivery models which use delivery windows to measure delivery performance is presented. The review herein serves to meet the following objectives: (i) provide a synthesis of previously published literature on supply chain delivery performance models, (ii) provide in one paper a consolidation of research that can serve as a single source to keep researchers up to date with the research developments in supply chain delivery models, and (iii) identify gaps in the modeling of supply chain delivery performance which could stimulate new research agendas.

Keywords: delivery performance, delivery window, supply chain delivery models, supply chain performance

Procedia PDF Downloads 421
8075 Salicornia bigelovii, a Promising Halophyte for Biosaline Agriculture: Lessons Learned from a 4-Year Field Study in United Arab Emirates

Authors: Dionyssia Lyra, Shoaib Ismail

Abstract:

Salinization of natural resources constitutes a significant component of the degradation force that leads to depletion of productive lands and fresh water reserves. The global extent of salt-affected soils is approximately 7% of the earth’s land surface and is expanding. The problems of excessive salt accumulation are most widespread in coastal, arid and semi-arid regions, where agricultural production is substantially hindered. The use of crops that can withstand high saline conditions is extremely interesting in such a context. Salt-loving plants or else ‘halophytes’ thrive when grown in hostile saline conditions, where traditional crops cannot survive. Salicornia bigelovii, a halophytic crop with multiple uses (vegetable, forage, biofuel), has demonstrated remarkable adaptability to harsh climatic conditions prevailing in dry areas with great potential for its expansion. Since 2011, the International Center for Biosaline Agriculture (ICBA) with Masdar Institute (MI) and King Abdul Aziz University of Science & Technology (KAUST) to look into the potential for growing S. bigelovii under hot and dry conditions. Through the projects undertaken, 50 different S. bigelovii genotypes were assessed under high saline conditions. The overall goal was to select the best performing S. bigelovii populations in terms of seed and biomass production for future breeding. Specific objectives included: 1) evaluation of selected S. bigelovii genotypes for various agronomic and growth parameters under field conditions, 2) seed multiplication of S. bigelovii using saline groundwater and 3) acquisition of inbred lines for further breeding. Field trials were conducted for four consecutive years at ICBA headquarters. During the first year, one Salicornia population was evaluated for seed and biomass production at different salinity levels, fertilizer treatments and planting methods. All growth parameters and biomass productivity for the salicornia population showed better performance with optimal biomass production in terms of both salinity level and fertilizer application. During the second year, 46 Salicornia populations (obtained from KAUST and Masdar Institute) were evaluated for 24 growth parameters and treated with groundwater through drip irrigation. The plant material originated from wild collections. Six populations were also assessed for their growth performance under full-strength seawater. Salicornia populations were highly variable for all characteristics under study for both irrigation treatments, indicating that there is a large pool of genetic information available for breeding. Irrigation with the highest level of salinity had a negative impact on the agronomic performance. The maximum seed yield obtained was 2 t/ha at 20 dS/m (groundwater treatment) at 25 cm x 25 cm planting distance. The best performing Salicornia populations for fresh biomass and seed yield were selected for the following season. After continuous selection, the best performing salicornia will be adopted for scaling-up options. Taking into account the results of the production field trials, salicornia expansion will be targeted in coastal areas of the Arabian Peninsula. As a crop with high biofuel and forage potential, its cultivation can improve the livelihood of local farmers.

Keywords: biosaline agriculture, genotypes selection, halophytes, Salicornia bigelovii

Procedia PDF Downloads 407
8074 Benchmarking Bert-Based Low-Resource Language: Case Uzbek NLP Models

Authors: Jamshid Qodirov, Sirojiddin Komolov, Ravilov Mirahmad, Olimjon Mirzayev

Abstract:

Nowadays, natural language processing tools play a crucial role in our daily lives, including various techniques with text processing. There are very advanced models in modern languages, such as English, Russian etc. But, in some languages, such as Uzbek, the NLP models have been developed recently. Thus, there are only a few NLP models in Uzbek language. Moreover, there is no such work that could show which Uzbek NLP model behaves in different situations and when to use them. This work tries to close this gap and compares the Uzbek NLP models existing as of the time this article was written. The authors try to compare the NLP models in two different scenarios: sentiment analysis and sentence similarity, which are the implementations of the two most common problems in the industry: classification and similarity. Another outcome from this work is two datasets for classification and sentence similarity in Uzbek language that we generated ourselves and can be useful in both industry and academia as well.

Keywords: NLP, benchmak, bert, vectorization

Procedia PDF Downloads 54
8073 Evaluation of Genetic Fidelity and Phytochemical Profiling of Micropropagated Plants of Cephalantheropsis obcordata: An Endangered Medicinal Orchid

Authors: Gargi Prasad, Ashiho A. Mao, Deepu Vijayan, S. Mandal

Abstract:

The main objective of the present study was to optimize and develop an efficient protocol for in vitro propagation of a medicinally important orchid Cephalantheropsis obcordata (Lindl.) Ormerod along with genetic stability analysis of regenerated plants. This plant has been traditionally used in Chinese folk medicine and the decoction of whole plant is known to possess anticancer activity. Nodal segments used as explants were inoculated on Murashige and Skoog (MS) medium supplemented with various concentrations of isopentenyl adenine (2iP). The rooted plants were successfully acclimatized in the greenhouse with 100% survival rate. Inter-simple sequence repeats (ISSR) markers were used to assess the genetic fidelity of in vitro raised plants and the mother plant. It was revealed that monomorphic bands showing the absence of polymorphism in all in vitro raised plantlets analyzed, confirming the genetic uniformity among the regenerants. Phytochemical analysis was done to compare the antioxidant activities and HPLC fingerprinting assay of 80% aqueous ethanol extract of the leaves and stem of in vitro and in vivo grown C. obcordata. The extracts of the plants were examined for their antioxidant activities by using free radical 1, 1-diphenyl-2-picryl hydrazyl (DPPH) scavenging method, 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging ability, reducing power capacity, estimation of total phenolic content, flavonoid content and flavonol content. A simplified method for the detection of ascorbic acid, phenolic acids and flavonoids content was also developed by using reversed phase high-performance liquid chromatography (HPLC). This is the first report on the micropropagation, genetic integrity study and quantitative phytochemical analysis of in vitro regenerated plants of C. obcordata.

Keywords: Cephalantheropsis obcordata, genetic fidelity, ISSR markers, HPLC

Procedia PDF Downloads 156
8072 Loading Methodology for a Capacity Constrained Job-Shop

Authors: Viraj Tyagi, Ajai Jain, P. K. Jain, Aarushi Jain

Abstract:

This paper presents a genetic algorithm based loading methodology for a capacity constrained job-shop with the consideration of alternative process plans for each part to be produced. Performance analysis of the proposed methodology is carried out for two case studies by considering two different manufacturing scenarios. Results obtained indicate that the methodology is quite effective in improving the shop load balance, and hence, it can be included in the frameworks of manufacturing planning systems of job-shop oriented industries.

Keywords: manufacturing planning, loading, genetic algorithm, job shop

Procedia PDF Downloads 300
8071 Online Learning for Modern Business Models: Theoretical Considerations and Algorithms

Authors: Marian Sorin Ionescu, Olivia Negoita, Cosmin Dobrin

Abstract:

This scientific communication reports and discusses learning models adaptable to modern business problems and models specific to digital concepts and paradigms. In the PAC (probably approximately correct) learning model approach, in which the learning process begins by receiving a batch of learning examples, the set of learning processes is used to acquire a hypothesis, and when the learning process is fully used, this hypothesis is used in the prediction of new operational examples. For complex business models, a lot of models should be introduced and evaluated to estimate the induced results so that the totality of the results are used to develop a predictive rule, which anticipates the choice of new models. In opposition, for online learning-type processes, there is no separation between the learning (training) and predictive phase. Every time a business model is approached, a test example is considered from the beginning until the prediction of the appearance of a model considered correct from the point of view of the business decision. After choosing choice a part of the business model, the label with the logical value "true" is known. Some of the business models are used as examples of learning (training), which helps to improve the prediction mechanisms for future business models.

Keywords: machine learning, business models, convex analysis, online learning

Procedia PDF Downloads 140
8070 Unlocking the Genetic Code: Exploring the Potential of DNA Barcoding for Biodiversity Assessment

Authors: Mohammed Ahmed Ahmed Odah

Abstract:

DNA barcoding is a crucial method for assessing and monitoring species diversity amidst escalating threats to global biodiversity. The author explores DNA barcoding's potential as a robust and reliable tool for biodiversity assessment. It begins with a comprehensive review of existing literature, delving into the theoretical foundations, methodologies and applications of DNA barcoding. The suitability of various DNA regions, like the COI gene, as universal barcodes is extensively investigated. Additionally, the advantages and limitations of different DNA sequencing technologies and bioinformatics tools are evaluated within the context of DNA barcoding. To evaluate the efficacy of DNA barcoding, diverse ecosystems, including terrestrial, freshwater and marine habitats, are sampled. Extracted DNA from collected specimens undergoes amplification and sequencing of the target barcode region. Comparison of the obtained DNA sequences with reference databases allows for the identification and classification of the sampled organisms. Findings demonstrate that DNA barcoding accurately identifies species, even in cases where morphological identification proves challenging. Moreover, it sheds light on cryptic and endangered species, aiding conservation efforts. The author also investigates patterns of genetic diversity and evolutionary relationships among different taxa through the analysis of genetic data. This research contributes to the growing knowledge of DNA barcoding and its applicability for biodiversity assessment. The advantages of this approach, such as speed, accuracy and cost-effectiveness, are highlighted, along with areas for improvement. By unlocking the genetic code, DNA barcoding enhances our understanding of biodiversity, supports conservation initiatives and informs evidence-based decision-making for the sustainable management of ecosystems.

Keywords: DNA barcoding, biodiversity assessment, genetic code, species identification, taxonomic resolution, next-generation sequencing

Procedia PDF Downloads 24
8069 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction

Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga

Abstract:

Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.

Keywords: genetic algorithm, neural networks, word prediction, machine learning

Procedia PDF Downloads 194
8068 Improving the Genetic Diversity of Soybean Seeds and Tolerance to Drought Irradiated with Gamma Rays

Authors: Aminah Muchdar

Abstract:

To increase the genetic diversity of soybean in order to adapt to agroecology in Indonesia conducted ways including introduction, cross, mutation and genetic transformation. The purpose of this research is to obtain early maturity soybean mutant lines, large seed tolerant to drought with high yield potential. This study consisted of two stages: the first is sensitivity of gamma rays carried out in the Laboratory BATAN. The genetic variety used is Anjasmoro. The method seeds irradiated with gamma rays at a rate of activity with the old ci 1046.16976 irradiation 0-71 minutes. Irradiation doses of 0, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000gy. The results indicated all seeds irradiated with doses of 0 - 1000gy, just a dose of 200 and 300gy are able to show the percentage of germination, plant height, number of leaves, number of normal sprouts and green leaves of the best and can be continued for a second trial in order to assemble and to get mutants which is expected. The result of second stage of soybean M2 Population irradiated with diversity Gamma Irradiation performed that in the form of soybean planting, the seed planted is the first derivative of the M2 irradiated seeds. The result after the age of 30ADP has already showing growth and development of plants that vary when compared to its parent, both in terms of plant height, number of leaves, leaf shape and leaf forage level. In the generative phase, a plant that has been irradiated 200 and 300 gy seen some plants flower form packs, but not formed pods, there is also a form packs of flowers, but few pods produce soybean morphological characters such as plant height, number of branches, pods, days to flowering, harvesting, seed weight and seed number.

Keywords: gamma ray, genetic mutation, irradiation, soybean

Procedia PDF Downloads 400
8067 A Matheuristic Algorithm for the School Bus Routing Problem

Authors: Cagri Memis, Muzaffer Kapanoglu

Abstract:

The school bus routing problem (SBRP) is a variant of the Vehicle Routing Problem (VRP) classified as a location-allocation-routing problem. In this study, the SBRP is decomposed into two sub-problems: (1) bus route generation and (2) bus stop selection to solve large instances of the SBRP in reasonable computational times. To solve the first sub-problem, we propose a genetic algorithm to generate bus routes. Once the routes have been fixed, a sub-problem remains of allocating students to stops considering the capacity of the buses and the walkability constraints of the students. While the exact method solves small-scale problems, treating large-scale problems with the exact method becomes complex due to computational problems, a deficiency that the genetic algorithm can overcome. Results obtained from the proposed approach on 150 instances up to 250 stops show that the matheuristic algorithm provides better solutions in reasonable computational times with respect to benchmark algorithms.

Keywords: genetic algorithm, matheuristic, school bus routing problem, vehicle routing problem

Procedia PDF Downloads 71
8066 Air Quality Forecast Based on Principal Component Analysis-Genetic Algorithm and Back Propagation Model

Authors: Bin Mu, Site Li, Shijin Yuan

Abstract:

Under the circumstance of environment deterioration, people are increasingly concerned about the quality of the environment, especially air quality. As a result, it is of great value to give accurate and timely forecast of AQI (air quality index). In order to simplify influencing factors of air quality in a city, and forecast the city’s AQI tomorrow, this study used MATLAB software and adopted the method of constructing a mathematic model of PCA-GABP to provide a solution. To be specific, this study firstly made principal component analysis (PCA) of influencing factors of AQI tomorrow including aspects of weather, industry waste gas and IAQI data today. Then, we used the back propagation neural network model (BP), which is optimized by genetic algorithm (GA), to give forecast of AQI tomorrow. In order to verify validity and accuracy of PCA-GABP model’s forecast capability. The study uses two statistical indices to evaluate AQI forecast results (normalized mean square error and fractional bias). Eventually, this study reduces mean square error by optimizing individual gene structure in genetic algorithm and adjusting the parameters of back propagation model. To conclude, the performance of the model to forecast AQI is comparatively convincing and the model is expected to take positive effect in AQI forecast in the future.

Keywords: AQI forecast, principal component analysis, genetic algorithm, back propagation neural network model

Procedia PDF Downloads 226
8065 Effects of Cellular Insulin Receptor Stimulators with Alkaline Water on Performance, some Blood Parameters and Hatchability in Breeding Japanese Quail

Authors: Rabia Göçmen, Gülşah Kanbur, Sinan Sefa Parlat

Abstract:

In this study, in the breeding Japanese quails (coturnix coturnix japonica), it was aimed to study the effects of cellular insulin receptor stimulation on the performance, some blood parameters, and hatchability features. In the study, a total of 84 breeding quails were used, which are in 6 weeks age, and whose 24 are male and 60 female. In the trial, rations which contain 2900 kcal/kg metabolic energy; crude protein of 20%, and water whose pH is calibrated to 7.45 were administered as ad-libitum, to the animals, as metformin source, metformin-HCl was used and as chrome resource, Chromium Picolinate. Trial groups were formed as control group (basal ration), metformin group (basal ration, added metformin at the level of fodder of 20 mg/kg), and chromium picolinate group (basal ration, added fodder of 1500 ppb Cr. When regarded to the results of performance at the end of trial, it is seen that live weight gain, fodder consumption, egg weight, fodder evaluation coefficient, and egg production were affected at the significant level (p < 0.05). When the results are evaluated in terms of incubation features at the end of trial, it was identified that incubation yield and hatchability are not affected by the treatments but in the groups, in which metformin and chromium picolinate are added to ration, that fertility rose at the significant level compared to control group (p < 0,05). According to the results of blood parameters and hormone at the end of the trial, while the level of plasma glucose level was not affected by treatments (p > 0.05), with the addition of metformin and chromium picolinate to ration, plasma, total control, cholesterol, HDL, LDL, and triglyceride levels were significantly affected from insulin receptor stimulators added to ration (p<0,05). Hormone level of Plasma T3 and T4 were also affected at the significant level from insulin receptor stimulators added to ration (p < 0,05).

Keywords: cholesterol, chromium picolinate, hormone, metformin, performance, quail

Procedia PDF Downloads 206
8064 A Genetic Algorithm Based Permutation and Non-Permutation Scheduling Heuristics for Finite Capacity Material Requirement Planning Problem

Authors: Watchara Songserm, Teeradej Wuttipornpun

Abstract:

This paper presents a genetic algorithm based permutation and non-permutation scheduling heuristics (GAPNP) to solve a multi-stage finite capacity material requirement planning (FCMRP) problem in automotive assembly flow shop with unrelated parallel machines. In the algorithm, the sequences of orders are iteratively improved by the GA characteristics, whereas the required operations are scheduled based on the presented permutation and non-permutation heuristics. Finally, a linear programming is applied to minimize the total cost. The presented GAPNP algorithm is evaluated by using real datasets from automotive companies. The required parameters for GAPNP are intently tuned to obtain a common parameter setting for all case studies. The results show that GAPNP significantly outperforms the benchmark algorithm about 30% on average.

Keywords: capacitated MRP, genetic algorithm, linear programming, automotive industries, flow shop, application in industry

Procedia PDF Downloads 489