Search results for: demand selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5487

Search results for: demand selection

5127 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory

Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi

Abstract:

One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.

Keywords: rough set theory, attribute reduction, fuzzy logic, memetic algorithms, record to record algorithm, great deluge algorithm

Procedia PDF Downloads 454
5126 Competitiveness of a Share Autonomous Electrical Vehicle Fleet Compared to Traditional Means of Transport: A Case Study for Transportation Network Companies

Authors: Maximilian Richter

Abstract:

Implementing shared autonomous electric vehicles (SAEVs) has many advantages. The main advantages are achieved when SAEVs are offered as on-demand services by a fleet operator. However, autonomous mobility on demand (AMoD) will be distributed nationwide only if a fleet operation is economically profitable for the operator. This paper proposes a microscopic approach to modeling two implementation scenarios of an AMoD fleet. The city of Zurich is used as a case study, with the results and findings being generalizable to other similar European and North American cities. The data are based on the traffic model of the canton of Zurich (Gesamtverkehrsmodell des Kantons Zürich (GVM-ZH)). To determine financial profitability, demand is based on the simulation results and combined with analyzing the costs of a SAEV per kilometer. The results demonstrate that depending on the scenario; journeys can be offered profitably to customers for CHF 0.3 up to CHF 0.4 per kilometer. While larger fleets allowed for lower price levels and increased profits in the long term, smaller fleets exhibit elevated efficiency levels and profit opportunities per day. The paper concludes with recommendations for how fleet operators can prepare themselves to maximize profit in the autonomous future.

Keywords: autonomous vehicle, mobility on demand, traffic simulation, fleet provider

Procedia PDF Downloads 124
5125 Factors Affecting Attitude of Community Pharmacists Towards Locally Manufactured Pharmaceutical Products in Addisababa: A Cross-sectional Study

Authors: Gelila Tamyalew, Asres Abitie

Abstract:

Community Pharmacists (CPs) have a significant part in consumer choice in the rational use of LMPPs. The opinion of pharmacists regarding branded and generic medications can offer a perception of the potential obstacles that might have to be overcome to advance generic medicine utilization. Many factors affect CPs' attitudes negatively toward LMPPs. Therefore, the current study assessed factors that can affect CPs' attitudes toward LMPPs. In the regression analysis of variables, three variables were associated with CPs' attitudes toward LMPPs. These are; maximum educational status, professional status, and year of experience in community pharmacy practice. Moreover, lack of belief in LMPPs, substitution agreement with the prescriber, cost-effectiveness of LMPPs, and consumer preference/demand were the most influencing reasons for the selection of LMPPs. In conclusion, the attitude of CPs seems suboptimal that requires an intervention to optimize LMPP utilization.

Keywords: locally manufactured pharmaceutical products, attitude, community pharmacist, Ethiopia

Procedia PDF Downloads 84
5124 Switching Losses in Power Electronic Converter of Switched Reluctance Motor

Authors: Ali Asghar Memon

Abstract:

A cautious and astute selection of switching devices used in power electronic converters of a switched reluctance (SR) motor is required. It is a matter of choice of best switching devices with respect to their switching ability rather than fulfilling the number of switches. This paper highlights the computational determination of switching losses comprising of switch-on, switch-off and conduction losses respectively by using experimental data in simulation model of a SR machine. The finding of this research is helpful for proper selection of electronic switches and suitable converter topology for switched reluctance motor.

Keywords: converter, operating modes, switched reluctance motor, switching losses

Procedia PDF Downloads 507
5123 A New Paradigm to Make Cloud Computing Greener

Authors: Apurva Saxena, Sunita Gond

Abstract:

Demand of computation, data storage in large amount are rapidly increases day by day. Cloud computing technology fulfill the demand of today’s computation but this will lead to high power consumption in cloud data centers. Initiative for Green IT try to reduce power consumption and its adverse environmental impacts. Paper also focus on various green computing techniques, proposed models and efficient way to make cloud greener.

Keywords: virtualization, cloud computing, green computing, data center

Procedia PDF Downloads 554
5122 Investigating Physician-Induced Demand among Mental Patients in East Azerbaijan, Iran: A Multilevel Approach of Hierarchical Linear Modeling

Authors: Hossein Panahi, Firouz Fallahi, Sima Nasibparast

Abstract:

Background & Aim: Unnecessary growth in health expenditures of developing countries in recent decades, and also the importance of physicians’ behavior in health market, have made the theory of physician-induced demand (PID) as one of the most important issues in health economics. Therefore, the main objective of this study is to investigate the hypothesis of induced demand among mental patients who receive services from either psychologists or psychiatrists in East Azerbaijan province. Methods: Using data from questionnaires in 2020 and employing the theoretical model of Jaegher and Jegers (2000) and hierarchical linear modeling (HLM), this study examines the PID hypothesis of selected psychologists and psychiatrists. The sample size of the study, after removing the questionnaires with missing data, is 45 psychologists and 203 people of their patients, as well as 30 psychiatrists and 160 people of their patients. Results: The results show that, although psychiatrists are ‘profit-oriented physicians’, there is no evidence of inducing unnecessary demand by them (PID), and the difference between the behavior of employers and employee doctors is due to differences in practice style. However, with regard to psychologists, the results indicate that they are ‘profit-oriented’, and there is a PID effect in this sector. Conclusion: According to the results, it is suggested that in order to reduce competition and eliminate the PID effect, the admission of students in the field of psychology should be reduced, patient information on mental illness should be increased, and government monitoring and control over the national health system must be increased.

Keywords: physician-induced demand, national health system, hierarchical linear modeling methods, multilevel modela

Procedia PDF Downloads 136
5121 Assessment of Relationships between Agro-Morphological Traits and Cold Tolerance in Faba Bean (vicia faba l.) and Wild Relatives

Authors: Nisa Ertoy Inci, Cengiz Toker

Abstract:

Winter or autumn-sown faba bean (Vicia faba L.) is one the most efficient ways to overcome drought since faba bean is usually grown under rainfed where drought and high-temperature stresses are the main growth constraints. The objectives of this study were assessment of (i) relationships between cold tolerance and agro-morphological traits, and (ii) the most suitable agro-morphological trait(s) under cold conditions. Three species of the genus Vicia L. includes 109 genotypes of faba bean (Vicia faba L.), three genotypes of narbon bean (V. narbonensis L.) and two genotypes of V. montbretii Fisch. & C.A. Mey. Davis and Plitmann were sown in autumn at highland of Mediterranean region of Turkey. All relatives of faba bean were more cold-tolerant than the faba bean genotypes. Three faba bean genotypes, ACV-42, ACV-84 and ACV-88, were selected as sources of cold tolerance under field conditions. Path and correlation coefficients and factor and principal component analyses indicated that biological yield should be evaluated in selection for cold tolerance under cold conditions ahead of many agro-morphological traits. The seed weight should be considered for selection in early breeding generations because they had the highest heritability.

Keywords: cold tolerance, faba bean, narbon bean, selection

Procedia PDF Downloads 398
5120 Identification of Suitable Rainwater Harvesting Sites Using Geospatial Techniques with AHP in Chacha Watershed, Jemma Sub-Basin Upper Blue Nile, Ethiopia

Authors: Abrha Ybeyn Gebremedhn, Yitea Seneshaw Getahun, Alebachew Shumye Moges, Fikrey Tesfay

Abstract:

Rainfed agriculture in Ethiopia has failed to produce enough food, to achieve the increasing demand for food. Pinpointing the appropriate site for rainwater harvesting (RWH) have a substantial contribution to increasing the available water and enhancing agricultural productivity. The current study related to the identification of the potential RWH sites was conducted at the Chacha watershed central highlands of Ethiopia which is endowed with rugged topography. The Geographic Information System with Analytical Hierarchy Process was used to generate the different maps for identifying appropriate sites for RWH. In this study, 11 factors that determine the RWH locations including slope, soil texture, runoff depth, land cover type, annual average rainfall, drainage density, lineament intensity, hydrologic soil group, antecedent moisture content, and distance to the roads were considered. The overall analyzed result shows that 10.50%, 71.10%, 17.90%, and 0.50% of the areas were found under highly, moderately, marginally suitable, and unsuitable areas for RWH, respectively. The RWH site selection was found highly dependent on a slope, soil texture, and runoff depth; moderately dependent on drainage density, annual average rainfall, and land use land cover; but less dependent on the other factors. The highly suitable areas for rainwater harvesting expansion are lands having a flat topography with a soil textural class of high-water holding capacity that can produce high runoff depth. The application of this study could be a baseline for planners and decision-makers and support any strategy adoption for appropriate RWH site selection.

Keywords: runoff depth, antecedent moisture condition, AHP, weighted overlay, water resource

Procedia PDF Downloads 52
5119 Porul: Option Generation and Selection and Scoring Algorithms for a Tamil Flash Card Game

Authors: Anitha Narasimhan, Aarthy Anandan, Madhan Karky, C. N. Subalalitha

Abstract:

Games can be the excellent tools for teaching a language. There are few e-learning games in Indian languages like word scrabble, cross word, quiz games etc., which were developed mainly for educational purposes. This paper proposes a Tamil word game called, “Porul”, which focuses on education as well as on players’ thinking and decision-making skills. Porul is a multiple choice based quiz game, in which the players attempt to answer questions correctly from the given multiple options that are generated using a unique algorithm called the Option Selection algorithm which explores the semantics of the question in various dimensions namely, synonym, rhyme and Universal Networking Language semantic category. This kind of semantic exploration of the question not only increases the complexity of the game but also makes it more interesting. The paper also proposes a Scoring Algorithm which allots a score based on the popularity score of the question word. The proposed game has been tested using 20,000 Tamil words.

Keywords: Porul game, Tamil word game, option selection, flash card, scoring, algorithm

Procedia PDF Downloads 404
5118 A Framework for an Automated Decision Support System for Selecting Safety-Conscious Contractors

Authors: Rawan A. Abdelrazeq, Ahmed M. Khalafallah, Nabil A. Kartam

Abstract:

Selection of competent contractors for construction projects is usually accomplished through competitive bidding or negotiated contracting in which the contract bid price is the basic criterion for selection. The evaluation of contractor’s safety performance is still not a typical criterion in the selection process, despite the existence of various safety prequalification procedures. There is a critical need for practical and automated systems that enable owners and decision makers to evaluate contractor safety performance, among other important contractor selection criteria. These systems should ultimately favor safety-conscious contractors to be selected by the virtue of their past good safety records and current safety programs. This paper presents an exploratory sequential mixed-methods approach to develop a framework for an automated decision support system that evaluates contractor safety performance based on a multitude of indicators and metrics that have been identified through a comprehensive review of construction safety research, and a survey distributed to domain experts. The framework is developed in three phases: (1) determining the indicators that depict contractor current and past safety performance; (2) soliciting input from construction safety experts regarding the identified indicators, their metrics, and relative significance; and (3) designing a decision support system using relational database models to integrate the identified indicators and metrics into a system that assesses and rates the safety performance of contractors. The proposed automated system is expected to hold several advantages including: (1) reducing the likelihood of selecting contractors with poor safety records; (2) enhancing the odds of completing the project safely; and (3) encouraging contractors to exert more efforts to improve their safety performance and practices in order to increase their bid winning opportunities which can lead to significant safety improvements in the construction industry. This should prove useful to decision makers and researchers, alike, and should help improve the safety record of the construction industry.

Keywords: construction safety, contractor selection, decision support system, relational database

Procedia PDF Downloads 280
5117 Optimized Scheduling of Domestic Load Based on User Defined Constraints in a Real-Time Tariff Scenario

Authors: Madia Safdar, G. Amjad Hussain, Mashhood Ahmad

Abstract:

One of the major challenges of today’s era is peak demand which causes stress on the transmission lines and also raises the cost of energy generation and ultimately higher electricity bills to the end users, and it was used to be managed by the supply side management. However, nowadays this has been withdrawn because of existence of potential in the demand side management (DSM) having its economic and- environmental advantages. DSM in domestic load can play a vital role in reducing the peak load demand on the network provides a significant cost saving. In this paper the potential of demand response (DR) in reducing the peak load demands and electricity bills to the electric users is elaborated. For this purpose the domestic appliances are modeled in MATLAB Simulink and controlled by a module called energy management controller. The devices are categorized into controllable and uncontrollable loads and are operated according to real-time tariff pricing pattern instead of fixed time pricing or variable pricing. Energy management controller decides the switching instants of the controllable appliances based on the results from optimization algorithms. In GAMS software, the MILP (mixed integer linear programming) algorithm is used for optimization. In different cases, different constraints are used for optimization, considering the comforts, needs and priorities of the end users. Results are compared and the savings in electricity bills are discussed in this paper considering real time pricing and fixed tariff pricing, which exhibits the existence of potential to reduce electricity bills and peak loads in demand side management. It is seen that using real time pricing tariff instead of fixed tariff pricing helps to save in the electricity bills. Moreover the simulation results of the proposed energy management system show that the gained power savings lie in high range. It is anticipated that the result of this research will prove to be highly effective to the utility companies as well as in the improvement of domestic DR.

Keywords: controllable and uncontrollable domestic loads, demand response, demand side management, optimization, MILP (mixed integer linear programming)

Procedia PDF Downloads 302
5116 Transfer Function Model-Based Predictive Control for Nuclear Core Power Control in PUSPATI TRIGA Reactor

Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha

Abstract:

The 1MWth PUSPATI TRIGA Reactor (RTP) in Malaysia Nuclear Agency has been operating more than 35 years. The existing core power control is using conventional controller known as Feedback Control Algorithm (FCA). It is technically challenging to keep the core power output always stable and operating within acceptable error bands for the safety demand of the RTP. Currently, the system could be considered unsatisfactory with power tracking performance, yet there is still significant room for improvement. Hence, a new design core power control is very important to improve the current performance in tracking and regulating reactor power by controlling the movement of control rods that suit the demand of highly sensitive of nuclear reactor power control. In this paper, the proposed Model Predictive Control (MPC) law was applied to control the core power. The model for core power control was based on mathematical models of the reactor core, MPC, and control rods selection algorithm. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The proposed MPC was presented in a transfer function model of the reactor core according to perturbations theory. The transfer function model-based predictive control (TFMPC) was developed to design the core power control with predictions based on a T-filter towards the real-time implementation of MPC on hardware. This paper introduces the sensitivity functions for TFMPC feedback loop to reduce the impact on the input actuation signal and demonstrates the behaviour of TFMPC in term of disturbance and noise rejections. The comparisons of both tracking and regulating performance between the conventional controller and TFMPC were made using MATLAB and analysed. In conclusion, the proposed TFMPC has satisfactory performance in tracking and regulating core power for controlling nuclear reactor with high reliability and safety.

Keywords: core power control, model predictive control, PUSPATI TRIGA reactor, TFMPC

Procedia PDF Downloads 241
5115 Design of Target Selection for Pedestrian Autonomous Emergency Braking System

Authors: Tao Song, Hao Cheng, Guangfeng Tian, Chuang Xu

Abstract:

An autonomous emergency braking system is an advanced driving assistance system that enables vehicle collision avoidance and pedestrian collision avoidance to improve vehicle safety. At present, because the pedestrian target is small, and the mobility is large, the pedestrian AEB system is faced with more technical difficulties and higher functional requirements. In this paper, a method of pedestrian target selection based on a variable width funnel is proposed. Based on the current position and predicted position of pedestrians, the relative position of vehicle and pedestrian at the time of collision is calculated, and different braking strategies are adopted according to the hazard level of pedestrian collisions. In the CNCAP standard operating conditions, comparing the method of considering only the current position of pedestrians and the method of considering pedestrian prediction position, as well as the method based on fixed width funnel and variable width funnel, the results show that, based on variable width funnel, the choice of pedestrian target will be more accurate and the opportunity of the intervention of AEB system will be more reasonable by considering the predicted position of the pedestrian target and vehicle's lateral motion.

Keywords: automatic emergency braking system, pedestrian target selection, TTC, variable width funnel

Procedia PDF Downloads 157
5114 Instance Selection for MI-Support Vector Machines

Authors: Amy M. Kwon

Abstract:

Support vector machine (SVM) is a well-known algorithm in machine learning due to its superior performance, and it also functions well in multiple-instance (MI) problems. Our study proposes a schematic algorithm to select instances based on Hausdorff distance, which can be adapted to SVMs as input vectors under the MI setting. Based on experiments on five benchmark datasets, our strategy for adapting representation outperformed in comparison with original approach. In addition, task execution times (TETs) were reduced by more than 80% based on MissSVM. Hence, it is noteworthy to consider this representation adaptation to SVMs under MI-setting.

Keywords: support vector machine, Margin, Hausdorff distance, representation selection, multiple-instance learning, machine learning

Procedia PDF Downloads 34
5113 The Economic Value of Mastitis Resistance in Dairy Cattle in Kenya

Authors: Caleb B. Sagwa, Tobias O. Okeno, Alexander K. Kahi

Abstract:

Dairy cattle production plays an important role in the Kenyan economy. However, high incidences of mastitis is a major setback to the productivity in this industry. The current dairy cattle breeding objective in Kenya does not include mastitis resistance, mainly because the economic value of mastitis resistance has not been determined. Therefore this study aimed at estimating the economic value of mastitis resistance in dairy cattle in Kenya. Initial input parameters were obtained from literature on dairy cattle production systems in the tropics. Selection index methodology was used to derive the economic value of mastitis resistance. Somatic cell count (SCC) was used an indicator trait for mastitis resistance. The economic value was estimated relative to milk yield (MY). Economic values were assigned to SCC in a selection index such that the overall gain in the breeding goal trait was maximized. The option of estimating the economic value for SCC by equating the response in the trait of interest to its index response was considered. The economic value of mastitis resistance was US $23.64 while maximum response to selection for MY was US $66.01. The findings of this study provide vital information that is a pre-requisite for the inclusion of mastitis resistance in the current dairy cattle breeding goal in Kenya.

Keywords: somatic cell count, milk quality, payment system, breeding goal

Procedia PDF Downloads 262
5112 Changes in the Demand of Waterway Passengers During COVID-19 Pandemic: Case Study of Belém-Marajó Island, in Brazil

Authors: Maisa Sales Gama Tobias, Humberto de Paiva Junior, Luciano Silva Brito, Rui António Rodrigues Ramos

Abstract:

Waterway transport in the Amazon was the first means of access and occupation in the region. For the economic and social matter of high importance, still nowadays one of the main transport modes to several places in the region. To some places, still the only transport mode. With the advent of the pandemic, transport companies that already faced management challenges began to experience unprecedented structural changes and trends in trade and global supply chains. Thus, companies need operational reorganization to maintain the sustainability of the service under the penalty of loss of demand. Allied to this fact, it was observed that the demand presented behavior changes to adapt to this new moment. However, the lack of information about these changes makes it difficult to find solutions to maintain the quality of service. This work aimed to characterize the changes in the demand of waterway passengers through an empirical study with field research involving interviews with users and crew, on-board journeys, and visits to the waterway service company. The case study is the route Belém-Camara, on Marajó Island, in the state of Pará. This line is traditionally the only means of transport for this route, besides air transport on a much smaller scale. The collected data had a descriptive and analytical statistical treatment presented in this work. As the main result, the COVID-19 pandemic has caused significant changes, mainly in trip time and motives and, in the perception itself on service quality by part of the demand, with the increase of trip time and the feeling of insecurity. In conclusion, the service operator must review cost management and business survival strategies and tactics. The viability of the service and the social guarantee of transport proved to be threatened, putting at risk the service to the riverside populations.

Keywords: demand of waterway transport passengers, data analysis, COVID-19, amazonia

Procedia PDF Downloads 113
5111 Analysis of Particle Reinforced Metal Matrix Composite Crankshaft

Authors: R. S. Vikaash, S. Vinodh, T. S. Sai Prashanth

Abstract:

Six sigma is a defect reduction strategy enabling modern organizations to achieve business prosperity. The practitioners are in need to select best six sigma project among the available alternatives to achieve customer satisfaction. In this circumstance, this article presents a study in which six sigma project selection is formulated as Multi-Criteria Decision-Making(MCDM) problem and the best project has been found using AHP. Five main governing criteria and 14 sub criteria are being formulated. The decision maker’s inputs were gathered and computations were performed. The project with the high values from the set of projects is selected as the best project. Based on calculations, Project “P1”is found to be the best and further deployment actions have been undertaken in the organization.

Keywords: six Sigma, project selection, MCDM, analytic hierarchy process, business prosperity

Procedia PDF Downloads 342
5110 Auto-Tuning of CNC Parameters According to the Machining Mode Selection

Authors: Jenq-Shyong Chen, Ben-Fong Yu

Abstract:

CNC(computer numerical control) machining centers have been widely used for machining different metal components for various industries. For a specific CNC machine, its everyday job is assigned to cut different products with quite different attributes such as material type, workpiece weight, geometry, tooling, and cutting conditions. Theoretically, the dynamic characteristics of the CNC machine should be properly tuned match each machining job in order to get the optimal machining performance. However, most of the CNC machines are set with only a standard set of CNC parameters. In this study, we have developed an auto-tuning system which can automatically change the CNC parameters and in hence change the machine dynamic characteristics according to the selection of machining modes which are set by the mixed combination of three machine performance indexes: the HO (high surface quality) index, HP (high precision) index and HS (high speed) index. The acceleration, jerk, corner error tolerance, oscillation and dynamic bandwidth of machine’s feed axes have been changed according to the selection of the machine performance indexes. The proposed auto-tuning system of the CNC parameters has been implemented on a PC-based CNC controller and a three-axis machining center. The measured experimental result have shown the promising of our proposed auto-tuning system.

Keywords: auto-tuning, CNC parameters, machining mode, high speed, high accuracy, high surface quality

Procedia PDF Downloads 380
5109 Increasing Productivity through Lean Manufacturing Principles and Tools: A Successful Rail Welding Plant Case

Authors: T. A. Faria, C. C. Toniolo, L. F. Ribeiro

Abstract:

In order to satisfy the costumer’s needs, many sectors of industry and services has been spending major effort to make its processes more efficient. Facing a situation, when its production cannot cover the demand, the traditional way to achieve the production required involves, mostly, adding shifts, workforce, or even more machines. This paper narrates how lean manufacturing supported a dramatic increase of productivity at a rail welding plant in Brazil in order to meet the demand for the next years.

Keywords: productivity, lean manufacturing, rail welding, value stream mapping

Procedia PDF Downloads 364
5108 A Predictive Model of Supply and Demand in the State of Jalisco, Mexico

Authors: M. Gil, R. Montalvo

Abstract:

Business Intelligence (BI) has become a major source of competitive advantages for firms around the world. BI has been defined as the process of data visualization and reporting for understanding what happened and what is happening. Moreover, BI has been studied for its predictive capabilities in the context of trade and financial transactions. The current literature has identified that BI permits managers to identify market trends, understand customer relations, and predict demand for their products and services. This last capability of BI has been of special concern to academics. Specifically, due to its power to build predictive models adaptable to specific time horizons and geographical regions. However, the current literature of BI focuses on predicting specific markets and industries because the impact of such predictive models was relevant to specific industries or organizations. Currently, the existing literature has not developed a predictive model of BI that takes into consideration the whole economy of a geographical area. This paper seeks to create a predictive model of BI that would show the bigger picture of a geographical area. This paper uses a data set from the Secretary of Economic Development of the state of Jalisco, Mexico. Such data set includes data from all the commercial transactions that occurred in the state in the last years. By analyzing such data set, it will be possible to generate a BI model that predicts supply and demand from specific industries around the state of Jalisco. This research has at least three contributions. Firstly, a methodological contribution to the BI literature by generating the predictive supply and demand model. Secondly, a theoretical contribution to BI current understanding. The model presented in this paper incorporates the whole picture of the economic field instead of focusing on a specific industry. Lastly, a practical contribution might be relevant to local governments that seek to improve their economic performance by implementing BI in their policy planning.

Keywords: business intelligence, predictive model, supply and demand, Mexico

Procedia PDF Downloads 123
5107 Visualization of Quantitative Thresholds in Stocks

Authors: Siddhant Sahu, P. James Daniel Paul

Abstract:

Technical analysis comprised by various technical indicators is a holistic way of representing price movement of stocks in the market. Various forms of indicators have evolved from the primitive ones in the past decades. There have been many attempts to introduce volume as a major determinant to determine strong patterns in market forecasting. The law of demand defines the relationship between the volume and price. Most of the traders are familiar with the volume game. Including the time dimension to the law of demand provides a different visualization to the theory. While attempting the same, it was found that there are different thresholds in the market for different companies. These thresholds have a significant influence on the price. This article is an attempt in determining the thresholds for companies using the three dimensional graphs for optimizing the portfolios. It also emphasizes on the magnitude of importance of volumes as a key factor for determining of predicting strong price movements, bullish and bearish markets. It uses a comprehensive data set of major companies which form a major chunk of the Indian automotive sector and are thus used as an illustration.

Keywords: technical analysis, expert system, law of demand, stocks, portfolio analysis, Indian automotive sector

Procedia PDF Downloads 316
5106 E-Payments, COVID-19 Restrictions, and Currency in Circulation: Thailand and Turkey

Authors: Zeliha Sayar

Abstract:

Central banks all over the world appear to be focusing first and foremost on retail central bank digital currency CBDC), i.e., digital cash/money. This approach is predicated on the belief that the use of cash has decreased, owing primarily to technological advancements and pandemic restrictions, and that a suitable foundation for the transition to a cashless society has been revealed. This study aims to contribute to the debate over whether digital money/CBDC can be a substitute or supplement to physical cash by examining the potential effects on cash demand. For this reason, this paper compares two emerging countries, Turkey, and Thailand, to demystify the impact of e-payment and COVID-19 restrictions on cash demand by employing fully modified ordinary least squares (FMOLS), dynamic ordinary least squares (DOLS), and the canonical cointegrating regression (CCR). The currency in circulation in two emerging countries, Turkey and Thailand, was examined in order to estimate the elasticity of different types of retail payments. The results demonstrate that real internet and mobile, cart, contactless payment, and e-money are long-term determinants of real cash demand in these two developing countries. Furthermore, with the exception of contactless payments in Turkey, there is a positive relationship between the currency in circulation and the various types of retail payments. According to findings, COVID-19 restrictions encourage the demand for cash, resulting in cash hoarding.

Keywords: CCR, DOLS, e-money, FMOLS, real cash

Procedia PDF Downloads 105
5105 Full Analytical Procedure to Derive P-I Diagram of a Steel Beam under Blast Loading

Authors: L. Hamra, J. F. Demonceau, V. Denoël

Abstract:

The aim of this paper is to study a beam extracted from a frame and subjected to blast loading. The demand of ductility depends on six dimensionless parameters: two related to the blast loading, two referring to the bending behavior of the beam and two corresponding to the dynamic behavior of the rest of the structure. We develop a full analytical procedure that provides the ductility demand as a function of these six dimensionless parameters.

Keywords: analytical procedure, blast loading, membrane force, P-I diagram

Procedia PDF Downloads 427
5104 Supplier Selection in a Scenario Based Stochastic Model with Uncertain Defectiveness and Delivery Lateness Rates

Authors: Abeer Amayri, Akif A. Bulgak

Abstract:

Due to today’s globalization as well as outsourcing practices of the companies, the Supply Chain (SC) performances have become more dependent on the efficient movement of material among places that are geographically dispersed, where there is more chance for disruptions. One such disruption is the quality and delivery uncertainties of outsourcing. These uncertainties could lead the products to be unsafe and, as is the case in a number of recent examples, companies may have to end up in recalling their products. As a result of these problems, there is a need to develop a methodology for selecting suppliers globally in view of risks associated with low quality and late delivery. Accordingly, we developed a two-stage stochastic model that captures the risks associated with uncertainty in quality and delivery as well as a solution procedure for the model. The stochastic model developed simultaneously optimizes supplier selection and purchase quantities under price discounts over a time horizon. In particular, our target is the study of global organizations with multiple sites and multiple overseas suppliers, where the pricing is offered in suppliers’ local currencies. Our proposed methodology is applied to a case study for a US automotive company having two assembly plants and four potential global suppliers to illustrate how the proposed model works in practice.

Keywords: global supply chains, quality, stochastic programming, supplier selection

Procedia PDF Downloads 458
5103 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification

Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh

Abstract:

Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.

Keywords: cancer classification, feature selection, deep learning, genetic algorithm

Procedia PDF Downloads 111
5102 Bus Transit Demand Modeling and Fare Structure Analysis of Kabul City

Authors: Ramin Mirzada, Takuya Maruyama

Abstract:

Kabul is the heart of political, commercial, cultural, educational and social life in Afghanistan and the fifth fastest growing city in the world. Minimum income inclined most of Kabul residents to use public transport, especially buses, although there is no proper bus system, beside that there is no proper fare exist in Kabul city Due to wars. From 1992 to 2001 during civil wars, Kabul suffered damage and destruction of its transportation facilities including pavements, sidewalks, traffic circles, drainage systems, traffic signs and signals, trolleybuses and almost all of the public transport system (e.g. Millie bus). This research is mainly focused on Kabul city’s transportation system. In this research, the data used have been gathered by Japan International Cooperation Agency (JICA) in 2008 and this data will be used to find demand and fare structure, additionally a survey was done in 2016 to find satisfaction level of Kabul residents for fare structure. Aim of this research is to observe the demand for Large Buses, compare to the actual supply from the government, analyze the current fare structure and compare it with the proposed fare (distance based fare) structure which has already been analyzed. Outcome of this research shows that the demand of Kabul city residents for the public transport (Large Buses) exceeds from the current supply, so that current public transportation (Large Buses) is not sufficient to serve public transport in Kabul city, worth to be mentioned, that in order to overcome this problem, there is no need to build new roads or exclusive way for buses. This research proposes government to change the fare from fixed fare to distance based fare, invest on public transportation and increase the number of large buses so that the current demand for public transport is met.

Keywords: transportation, planning, public transport, large buses, Kabul, Afghanistan

Procedia PDF Downloads 314
5101 Improving Order Quantity Model with Emergency Safety Stock (ESS)

Authors: Yousef Abu Nahleh, Alhasan Hakami, Arun Kumar, Fugen Daver

Abstract:

This study considers the problem of calculating safety stocks in disaster situations inventory systems that face demand uncertainties. Safety stocks are essential to make the supply chain, which is controlled by forecasts of customer needs, in response to demand uncertainties and to reach predefined goal service levels. To solve the problem of uncertainties due to the disaster situations affecting the industry sector, the concept of Emergency Safety Stock (ESS) was proposed. While there exists a huge body of literature on determining safety stock levels, this literature does not address the problem arising due to the disaster and dealing with the situations. In this paper, the problem of improving the Order Quantity Model to deal with uncertainty of demand due to disasters is managed by incorporating a new idea called ESS which is based on the probability of disaster occurrence and uses probability matrix calculated from the historical data.

Keywords: Emergency Safety Stocks, safety stocks, Order Quantity Model, supply chain

Procedia PDF Downloads 348
5100 Duality of Leagility and Governance: A New Normal Demand Network Management Paradigm under Pandemic

Authors: Jacky Hau

Abstract:

The prevalence of emerging technologies disrupts various industries as well as consumer behavior. Data collection has been in the fingertip and inherited through enabled Internet-of-things (IOT) devices. Big data analytics (BDA) becomes possible and allows real-time demand network management (DNM) through leagile supply chain. To enhance further on its resilience and predictability, governance is going to be examined to promote supply chain transparency and trust in an efficient manner. Leagility combines lean thinking and agile techniques in supply chain management. It aims at reducing costs and waste, as well as maintaining responsiveness to any volatile consumer demand by means of adjusting the decoupling point where the product flow changes from push to pull. Leagility would only be successful when collaborative planning, forecasting, and replenishment (CPFR) process or alike is in place throughout the supply chain business entities. Governance and procurement of the supply chain, however, is crucial and challenging for the execution of CPFR as every entity has to walk-the-talk generously for the sake of overall benefits of supply chain performance, not to mention the complexity of exercising the polices at both of within across various supply chain business entities on account of organizational behavior and mutual trust. Empirical survey results showed that the effective timespan on demand forecasting had been drastically shortening in the magnitude of months to weeks planning horizon, thus agility shall come first and preferably following by lean approach in a timely manner.

Keywords: governance, leagility, procure-to-pay, source-to-contract

Procedia PDF Downloads 111
5099 Two-Warehouse Inventory Model for Deteriorating Items with Inventory-Level-Dependent Demand under Two Dispatching Policies

Authors: Lei Zhao, Zhe Yuan, Wenyue Kuang

Abstract:

This paper studies two-warehouse inventory models for a deteriorating item considering that the demand is influenced by inventory levels. The problem mainly focuses on the optimal order policy and the optimal order cycle with inventory-level-dependent demand in two-warehouse system for retailers. It considers the different deterioration rates and the inventory holding costs in owned warehouse (OW) and rented warehouse (RW), and the conditions of transportation cost, allowed shortage and partial backlogging. Two inventory models are formulated: last-in first-out (LIFO) model and first-in-first-out (FIFO) model based on the policy choices of LIFO and FIFO, and a comparative analysis of LIFO model and FIFO model is made. The study finds that the FIFO policy is more in line with realistic operating conditions. Especially when the inventory holding cost of OW is high, and there is no difference or big difference between deterioration rates of OW and RW, the FIFO policy has better applicability. Meanwhile, this paper considers the differences between the effects of warehouse and shelf inventory levels on demand, and then builds retailers’ inventory decision model and studies the factors of the optimal order quantity, the optimal order cycle and the average inventory cost per unit time. To minimize the average total cost, the optimal dispatching policies are provided for retailers’ decisions.

Keywords: FIFO model, inventory-level-dependent, LIFO model, two-warehouse inventory

Procedia PDF Downloads 279
5098 Factors Influencing the Logistics Services Providers' Performance: A Literature Overview

Authors: A. Aguezzoul

Abstract:

The Logistics Services Providers (LSPs) selection and performance is a strategic decision that affects the overall performance of any company as well as its supply chain. It is a complex process, which takes into account various conflicting quantitative and qualitative factors, as well as outsourced logistics activities. This article focuses on the evolution of the weights associated to these factors over the last years in order to better understand the change in the importance that logistics professionals place on them criteria when choosing their LSPs. For that, an analysis of 17 main studies published during 2014-2017 period was carried out and the results are compared to those of a previous literature review on this subject. Our analysis allowed us to deduce the following observations: 1) the LSPs selection is a multi-criteria process; 2) the empirical character of the majority of studies, conducted particularly in Asian countries; 3) the criteria importance has undergone significant changes following the emergence of information technologies that have favored the work in close collaboration and in partnership between the LSPs and their customers, even on a worldwide scale; 4) the cost criterion is relatively less important than in the past; and finally 5) with the development of sustainable supply chains, the factors associated with the logistic activities of return and waste processing (reverse logistics) are becoming increasingly important in this multi-criteria process of selection and evaluation of LSPs performance.

Keywords: logistics outsourcing, logistics providers, multi-criteria decision making, performance

Procedia PDF Downloads 154