Search results for: adaptive strategy
4381 Modeling of Age Hardening Process Using Adaptive Neuro-Fuzzy Inference System: Results from Aluminum Alloy A356/Cow Horn Particulate Composite
Authors: Chidozie C. Nwobi-Okoye, Basil Q. Ochieze, Stanley Okiy
Abstract:
This research reports on the modeling of age hardening process using adaptive neuro-fuzzy inference system (ANFIS). The age hardening output (Hardness) was predicted using ANFIS. The input parameters were ageing time, temperature and percentage composition of cow horn particles (CHp%). The results show the correlation coefficient (R) of the predicted hardness values versus the measured values was of 0.9985. Subsequently, values outside the experimental data points were predicted. When the temperature was kept constant, and other input parameters were varied, the average relative error of the predicted values was 0.0931%. When the temperature was varied, and other input parameters kept constant, the average relative error of the hardness values predictions was 80%. The results show that ANFIS with coarse experimental data points for learning is not very effective in predicting process outputs in the age hardening operation of A356 alloy/CHp particulate composite. The fine experimental data requirements by ANFIS make it more expensive in modeling and optimization of age hardening operations of A356 alloy/CHp particulate composite.Keywords: adaptive neuro-fuzzy inference system (ANFIS), age hardening, aluminum alloy, metal matrix composite
Procedia PDF Downloads 1534380 An AK-Chart for the Non-Normal Data
Authors: Chia-Hau Liu, Tai-Yue Wang
Abstract:
Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.Keywords: multivariate control chart, statistical process control, one-class classification method, non-normal data
Procedia PDF Downloads 4224379 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression
Procedia PDF Downloads 3044378 Marketing Strategy Implementation in Developing Sharia Tourism in Indonesia
Authors: Santi Mutiara Asih, Sinta Kemala Asih
Abstract:
Along with the development of tourism in Indonesia, which is increasingly a lot of domestic and foreign public interest in sharia tourism, the Indonesian government is currently developing the program. It was seen that this program would have a good impact, especially for Indonesian tourism. So it is necessary to develop appropriate marketing strategies. Then to develop tourism prospects sharia government could use such a marketing strategy, for instance, marketing mix and Segmenting, Targeting, and Positioning (STP). The marketing mix is a set of marketing tools used by a state or a company to continue achieving its marketing objectives in target market. STP is the most important initial step in identifying customer value. In such away, it is expected from the use of this strategy could make sharia tourism as a market leader in the field of tourism in Indonesia, it also could attract more tourists to visit and increase economic returns.Keywords: STP, marketing mix, market leader, sharia tourism
Procedia PDF Downloads 7694377 The Impact of Supply Chain Relationship Quality on Cooperative Strategy and Visibility
Authors: Jung-Hsuan Hsu
Abstract:
Due to intense competition within the industry, companies have increasingly recognized partnerships with other companies. In addition, with outsourcing and globalization of the supply chain, it leads to companies' increasing reliance on external resources. Consequently, supply chain network becomes complex, so that it reduces the visibility of the manufacturing process. Therefore, this study is going to focus on the impact of supply chain relationship quality (SCRQ) on cooperative strategy and visibility. Questionnaire survey is going to be conducted as research method, using the organic food industry as the research subject, and the sampling method is random sampling. Finally, the data analysis will use SPSS statistical software and AMOS software to analyze and verify the hypothesis. The expected results in this study is to evaluate the supply chain relationship quality between Taiwan's food manufacturing and their suppliers regarding whether it has a positive impact for the persistence, frequency and diversity of cooperative strategy, as well as the dimensions of supply chain relationship quality on visibility regarding whether it has a positive effect.Keywords: supply chain relationship quality (SCRQ), cooperative strategy, visibility, competition
Procedia PDF Downloads 4514376 Space Time Adaptive Algorithm in Bi-Static Passive Radar Systems for Clutter Mitigation
Authors: D. Venu, N. V. Koteswara Rao
Abstract:
Space – time adaptive processing (STAP) is an effective tool for detecting a moving target in spaceborne or airborne radar systems. Since airborne passive radar systems utilize broadcast, navigation and excellent communication signals to perform various surveillance tasks and also has attracted significant interest from the distinct past, therefore the need of the hour is to have cost effective systems as compared to conventional active radar systems. Moreover, requirements of small number of secondary samples for effective clutter suppression in bi-static passive radar offer abundant illuminator resources for passive surveillance radar systems. This paper presents a framework for incorporating knowledge sources directly in the space-time beam former of airborne adaptive radars. STAP algorithm for clutter mitigation for passive bi-static radar has better quantitation of the reduction in sample size thereby amalgamating the earlier data bank with existing radar data sets. Also, we proposed a novel method to estimate the clutter matrix and perform STAP for efficient clutter suppression based on small sample size. Furthermore, the effectiveness of the proposed algorithm is verified using MATLAB simulations in order to validate STAP algorithm for passive bi-static radar. In conclusion, this study highlights the importance for various applications which augments traditional active radars using cost-effective measures.Keywords: bistatic radar, clutter, covariance matrix passive radar, STAP
Procedia PDF Downloads 2954375 Strategic Management Methods in Non-Profit Making Organization
Authors: P. Řehoř, D. Holátová, V. Doležalová
Abstract:
Paper deals with analysis of strategic management methods in non-profit making organization in the Czech Republic. Strategic management represents an aggregate of methods and approaches that can be applied for managing organizations - in this article the organizations which associate owners and keepers of non-state forest properties. Authors use these methods of strategic management: analysis of stakeholders, SWOT analysis and questionnaire inquiries. The questionnaire was distributed electronically via e-mail. In October 2013 we obtained data from a total of 84 questionnaires. Based on the results the authors recommend the using of confrontation strategy which improves the competitiveness of non-profit making organizations.Keywords: strategic management, non-profit making organization, strategy analysis, SWOT analysis, strategy, competitiveness
Procedia PDF Downloads 4834374 Digital Content Strategy (DCS) Detailed Review of the Key Content Components
Authors: Oksana Razina, Shakeel Ahmad, Jessie Qun Ren, Olufemi Isiaq
Abstract:
The modern life of businesses is categorically reliant on their established position online, where digital (and particularly website) content plays a significant role as the first point of information. Digital content, therefore, becomes essential – from making the first impression to the building and development of client relationships. Despite a number of valuable papers suggesting a strategic approach when dealing with digital data, other sources often do not view or accept the approach to digital content as a holistic or continuous process. Associations are frequently made with merely a one-off marketing campaign or similar. The challenge is to establish an agreed definition for the notion of Digital Content Strategy, which currently does not exist, as DCS is viewed from an excessive number of different angles. A strategic approach to content, nonetheless, is required, both practically and contextually. The researchers, therefore, aimed at attempting to identify the key content components comprising a digital content strategy to ensure all the aspects were covered and strategically applied – from the company’s understanding of the content value to the ability to display flexibility of content and advances in technology. This conceptual project evaluated existing literature on the topic of Digital Content Strategy (DCS) and related aspects, using the PRISMA Systematic Review Method, Document Analysis, Inclusion and Exclusion Criteria, Scoping Review, Snow-Balling Technique and Thematic Analysis. The data was collected from academic and statistical sources, government and relevant trade publications. Based on the suggestions from academics and trading sources related to the issues discussed, the researchers revealed the key actions for content creation and attempted to define the notion of DCS. The major finding of the study presented Key Content Components of Digital Content Strategy and can be considered for implementation in a business retail setting.Keywords: digital content strategy, key content components, websites, digital marketing strategy
Procedia PDF Downloads 1454373 Comparison of Crossover Types to Obtain Optimal Queries Using Adaptive Genetic Algorithm
Authors: Wafa’ Alma'Aitah, Khaled Almakadmeh
Abstract:
this study presents an information retrieval system of using genetic algorithm to increase information retrieval efficiency. Using vector space model, information retrieval is based on the similarity measurement between query and documents. Documents with high similarity to query are judge more relevant to the query and should be retrieved first. Using genetic algorithms, each query is represented by a chromosome; these chromosomes are fed into genetic operator process: selection, crossover, and mutation until an optimized query chromosome is obtained for document retrieval. Results show that information retrieval with adaptive crossover probability and single point type crossover and roulette wheel as selection type give the highest recall. The proposed approach is verified using (242) proceedings abstracts collected from the Saudi Arabian national conference.Keywords: genetic algorithm, information retrieval, optimal queries, crossover
Procedia PDF Downloads 2924372 Exploring the Applications of Neural Networks in the Adaptive Learning Environment
Authors: Baladitya Swaika, Rahul Khatry
Abstract:
Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.Keywords: computer adaptive tests, item response theory, machine learning, neural networks
Procedia PDF Downloads 1754371 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles
Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan
Abstract:
Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks
Procedia PDF Downloads 544370 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios
Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong
Abstract:
Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.Keywords: decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle
Procedia PDF Downloads 1344369 Effect of Cognitive Rehabilitation in Pediatric Population with Acquired Brain Injury: A Pilot Study
Authors: Carolina Beltran, Carlos De Los Reyes
Abstract:
Acquired brain injury (ABI) is any physical and functional injury secondary to events that affect the brain tissue. It is one of the biggest causes of disability in the world and it has a high annual incidence in the pediatric population. There are several causes of ABI such as traumatic brain injury, central nervous system infection, stroke, hypoxia, tumors and others. The consequences can be cognitive, behavioral, emotional and functional. The cognitive rehabilitation is necessary to achieve the best outcomes for pediatric people with ABI. Cognitive orientation to daily occupational performance (CO-OP) is an individualized client-centered, performance-based, problem-solving approach that focuses on the strategy used to support the acquisition of three client-chosen goals. It has demonstrated improvements in the pediatric population with other neurological disorder but not in Spanish speakers with ABI. Aim: The main objective of this study was to determine the efficacy of cognitive orientation to daily occupational performances (CO-OP) adapted to Spanish speakers, in the level of independence and behavior in a pediatric population with ABI. Methods: Case studies with measure pre/post-treatment were used in three children with ABI, sustained at least before 6 months assessment, in school, aged 8 to 16 years, age ABI after 6 years old and above average intellectual ability. Twelve sessions of CO-OP adapted to Spanish speakers were used and videotaped. The outcomes were based on cognitive, behavior and functional independence measurements such as Child Behavior Checklist (CBCL), Behavior Rating Inventory of Executive Function (BRIEF), The Vineland Adaptive Behavior Scales (VINELAND, Social Support Scale (MOS-SSS) and others neuropsychological measures. This study was approved by the ethics committee of Universidad del Norte in Colombia. Informed parental written consent was obtained for all participants. Results: children were able to identify three goals and use the global strategy ‘goal-plan-do-check’ during each session. Verbal self-instruction was used by all children. CO-OP showed a clinically significant improvement in goals regarding with independence level and behavior according to parents and teachers. Conclusion: The results indicated that CO-OP and the use of a global strategy such as ‘goal-plan-do-check’ can be used in children with ABI in order to improve their specific goals. This is a preliminary version of a big study carrying in Colombia as part of the experimental design.Keywords: cognitive rehabilitation, acquired brain injury, pediatric population, cognitive orientation to daily occupational performance
Procedia PDF Downloads 1064368 Discrete State Prediction Algorithm Design with Self Performance Enhancement Capacity
Authors: Smail Tigani, Mohamed Ouzzif
Abstract:
This work presents a discrete quantitative state prediction algorithm with intelligent behavior making it able to self-improve some performance aspects. The specificity of this algorithm is the capacity of self-rectification of the prediction strategy before the final decision. The auto-rectification mechanism is based on two parallel mathematical models. In one hand, the algorithm predicts the next state based on event transition matrix updated after each observation. In the other hand, the algorithm extracts its residues trend with a linear regression representing historical residues data-points in order to rectify the first decision if needs. For a normal distribution, the interactivity between the two models allows the algorithm to self-optimize its performance and then make better prediction. Designed key performance indicator, computed during a Monte Carlo simulation, shows the advantages of the proposed approach compared with traditional one.Keywords: discrete state, Markov Chains, linear regression, auto-adaptive systems, decision making, Monte Carlo Simulation
Procedia PDF Downloads 4984367 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering
Authors: Hamza Nejib, Okba Taouali
Abstract:
This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.Keywords: online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS
Procedia PDF Downloads 3994366 Comparison of Spiking Neuron Models in Terms of Biological Neuron Behaviours
Authors: Fikret Yalcinkaya, Hamza Unsal
Abstract:
To understand how neurons work, it is required to combine experimental studies on neural science with numerical simulations of neuron models in a computer environment. In this regard, the simplicity and applicability of spiking neuron modeling functions have been of great interest in computational neuron science and numerical neuroscience in recent years. Spiking neuron models can be classified by exhibiting various neuronal behaviors, such as spiking and bursting. These classifications are important for researchers working on theoretical neuroscience. In this paper, three different spiking neuron models; Izhikevich, Adaptive Exponential Integrate Fire (AEIF) and Hindmarsh Rose (HR), which are based on first order differential equations, are discussed and compared. First, the physical meanings, derivatives, and differential equations of each model are provided and simulated in the Matlab environment. Then, by selecting appropriate parameters, the models were visually examined in the Matlab environment and it was aimed to demonstrate which model can simulate well-known biological neuron behaviours such as Tonic Spiking, Tonic Bursting, Mixed Mode Firing, Spike Frequency Adaptation, Resonator and Integrator. As a result, the Izhikevich model has been shown to perform Regular Spiking, Continuous Explosion, Intrinsically Bursting, Thalmo Cortical, Low-Threshold Spiking and Resonator. The Adaptive Exponential Integrate Fire model has been able to produce firing patterns such as Regular Ignition, Adaptive Ignition, Initially Explosive Ignition, Regular Explosive Ignition, Delayed Ignition, Delayed Regular Explosive Ignition, Temporary Ignition and Irregular Ignition. The Hindmarsh Rose model showed three different dynamic neuron behaviours; Spike, Burst and Chaotic. From these results, the Izhikevich cell model may be preferred due to its ability to reflect the true behavior of the nerve cell, the ability to produce different types of spikes, and the suitability for use in larger scale brain models. The most important reason for choosing the Adaptive Exponential Integrate Fire model is that it can create rich ignition patterns with fewer parameters. The chaotic behaviours of the Hindmarsh Rose neuron model, like some chaotic systems, is thought to be used in many scientific and engineering applications such as physics, secure communication and signal processing.Keywords: Izhikevich, adaptive exponential integrate fire, Hindmarsh Rose, biological neuron behaviours, spiking neuron models
Procedia PDF Downloads 1804365 A Cross-Cultural Strategy for Managing an Organisation Located in a Diverse-Populated Community
Authors: Tsuu Faith Machingura, Daniel Madzanire, Doreen Nkala
Abstract:
High employment opportunities in various towns in Zimbabwe attracted linguistically-diverse ethnic groups to settle therein. This movement, which largely was economically-induced, concocted diverse-populated communities in towns and in surrounding areas. Service provisions in such domains as education and business need to be diverse-sensitive. Prompted by the prevalence of diversity in present day business organisations, the study sought to suggest a cross-cultural strategy for managing an organisation located in a diverse-populated community. A case study research design was used. A sample of 10 participants consisting of five diverse business owners and five diverse clients was purposively drawn. Document analysis and key informant interviews were used to gather data. The study revealed that organisations that are located in diverse populated communities were shaped by the prevailing ethos. A diverse-sensitive managerial strategy was suggested as a pertinent cross-cultural managerial tool.Keywords: cross-cultural strategy, linguistic diversity, diverse-populated community, ethnic groups
Procedia PDF Downloads 694364 Adaptation Mechanism and Planning Response to Resiliency Shrinking of Small Towns Based on Complex Adaptive System by Taking Wuhan as an Example
Abstract:
The rapid urbanization process taking big cities as the main body leads to the unequal configuration of urban and rural areas in the aspects of land supply, industrial division of labor, service supply and space allocation, and induces the shrinking characterization of service energy, industrial system and population vitality in small towns. As an important spatial unit in the spectrum of urbanization that serves, connects and couples urban and rural areas, the shrinking phenomenon faced by small towns has an important influence on the healthy development of urbanization. Based on the census of small towns in Wuhan metropolitan area, we have found that the shrinking of small towns is a passive contraction of elastic tension under the squeeze in cities. Once affected by the external forces such as policy regulation, planning guidance, and population return, small towns will achieve expansion and growth. Based on the theory of complex adaptive systems, this paper comprehensively constructs the development index evaluation system of small towns from five aspects of population, economy, space, society and ecology, measures the shrinking level of small towns, further analyzes the shrinking characteristics of small towns, and identifies whether the shrinking is elastic or not. And then this paper measures the resilience ability index of small town contract from the above-mentioned five aspects. Finally, this paper proposes an adaptive mechanism of urban-rural interaction evolution under fine division of labor to response the passive shrinking in small towns of Wuhan. Based on the above, the paper creatively puts forward the planning response measures of the small towns on the aspects of spatial layout, function orientation and service support, which can provide reference for other regions.Keywords: complex adaptive systems, resiliency shrinking, adaptation mechanism, planning response
Procedia PDF Downloads 1234363 Adaptive Beamforming with Steering Error and Mutual Coupling between Antenna Sensors
Authors: Ju-Hong Lee, Ching-Wei Liao
Abstract:
Owing to close antenna spacing between antenna sensors within a compact space, a part of data in one antenna sensor would outflow to other antenna sensors when the antenna sensors in an antenna array operate simultaneously. This phenomenon is called mutual coupling effect (MCE). It has been shown that the performance of antenna array systems can be degraded when the antenna sensors are in close proximity. Especially, in a systems equipped with massive antenna sensors, the degradation of beamforming performance due to the MCE is significantly inevitable. Moreover, it has been shown that even a small angle error between the true direction angle of the desired signal and the steering angle deteriorates the effectiveness of an array beamforming system. However, the true direction vector of the desired signal may not be exactly known in some applications, e.g., the application in land mobile-cellular wireless systems. Therefore, it is worth developing robust techniques to deal with the problem due to the MCE and steering angle error for array beamforming systems. In this paper, we present an efficient technique for performing adaptive beamforming with robust capabilities against the MCE and the steering angle error. Only the data vector received by an antenna array is required by the proposed technique. By using the received array data vector, a correlation matrix is constructed to replace the original correlation matrix associated with the received array data vector. Then, the mutual coupling matrix due to the MCE on the antenna array is estimated through a recursive algorithm. An appropriate estimate of the direction angle of the desired signal can also be obtained during the recursive process. Based on the estimated mutual coupling matrix, the estimated direction angle, and the reconstructed correlation matrix, the proposed technique can effectively cure the performance degradation due to steering angle error and MCE. The novelty of the proposed technique is that the implementation procedure is very simple and the resulting adaptive beamforming performance is satisfactory. Simulation results show that the proposed technique provides much better beamforming performance without requiring complicated complexity as compared with the existing robust techniques.Keywords: adaptive beamforming, mutual coupling effect, recursive algorithm, steering angle error
Procedia PDF Downloads 3214362 Small Entrepreneurship Supporting Economic Policy in Georgia
Authors: G. Erkomaishvili
Abstract:
This paper discusses small entrepreneurship development strategy in Georgia and the tools and regulations that will encourage development of small entrepreneurship. The current situation in the small entrepreneurship sector, as well as factors affecting growth and decline in the sector and the priorities of state support, are studied and analyzed. The objective of this research is to assess the current situation of the sector to highlight opportunities and reveal the gaps. State support of small entrepreneurship should become a key priority in the country’s economic policy, as development of the sector will ensure social, economic and political stability. Based on the research, a small entrepreneurship development strategy is presented; corresponding conclusions are made and recommendations are developed.Keywords: economic policy for small entrepreneurship development, small entrepreneurship, regulations, small entrepreneurship development strategy
Procedia PDF Downloads 4774361 Approach for an Integrative Technology Assessment Method Combining Product Design and Manufacturing Process
Authors: G. Schuh, S. Woelk, D. Schraknepper, A. Such
Abstract:
The systematic evaluation of manufacturing technologies with regard to the potential for product designing constitutes a major challenge. Until now, conventional evaluation methods primarily consider the costs of manufacturing technologies. Thus, the potential of manufacturing technologies for achieving additional product design features is not completely captured. To compensate this deficit, final evaluations of new technologies are mainly intuitive in practice. Therefore, an additional evaluation dimension is needed which takes the potential of manufacturing technologies for specific realizable product designs into account. In this paper, we present the approach of an evaluation method for selecting manufacturing technologies with regard to their potential for product designing. This research is done within the Fraunhofer innovation cluster »AdaM« (Adaptive Manufacturing) which targets the development of resource efficient and adaptive manufacturing technology processes for complex turbo machinery components.Keywords: manufacturing, product design, production, technology assessment, technology management
Procedia PDF Downloads 5344360 Total Productive Maintenance (TPM) as a Strategy for Competitiveness
Authors: Ignatio Madanhire, Charles Mbohwa
Abstract:
This research examines the effect of a human resource strategy and the overall equipment effectiveness as well as assessing how the combination of the two can increase a firm’s productivity. The human resource aspect is looked at in detail to assess motivation of operators through training to reduce wastage on the manufacturing shop floor. The waste was attributed to operators, maintenance personal, idle machines, idle manpower and break downs. This work seeks to investigate the concept of Total Productive Maintenance (TPM) in addressing these short comings in the manufacturing case study. The impact of TPM to increase production while, as well as increasing employee morale and job satisfaction is assessed. This can be resource material for practitioners who seek to improve overall equipment efficiency (OEE) to achieve higher level productivity and competitiveness.Keywords: maintenance, TPM, efficiency, productivity, strategy
Procedia PDF Downloads 4204359 Competency and Strategy Formulation in Automobile Industry
Authors: Chandan Deep Singh
Abstract:
In present days, companies are facing the rapid competition in terms of customer requirements to be satisfied, new technologies to be integrated into future products, new safety regulations to be followed, new computer-based tools to be introduced into design activities that becomes more scientific. In today’s highly competitive market, survival focuses on various factors such as quality, innovation, adherence to standards, and rapid response as the basis for competitive advantage. For competitive advantage, companies have to produce various competencies: for improving the capability of suppliers and for strengthening the process of integrating technology. For more competitiveness, organizations should operate in a strategy driven way and have a strategic architecture for developing core competencies. Traditional ways to take such experience and develop competencies tend to take a lot of time and they are expensive. A new learning environment, which is built around a gaming engine, supports the development of competences in specific subject areas. Technology competencies have a significant role in firm innovation and competitiveness; they interact with the competitive environment. Technological competencies vary according to the type of competitive environment, thus enhancing firm innovativeness. Technological competency is gained through extensive experimentation and learning in its research, development and employment in manufacturing. This is a review paper based on competency and strategic success of automobile industry. The aim here is to study strategy formulation and competency tools in the industry. This work is a review of literature related to competency and strategy in automobile industry. This study involves review of 34 papers related to competency and strategy.Keywords: manufacturing competency, strategic success, competitiveness, strategy formulation
Procedia PDF Downloads 3114358 The Impact of Diversification Strategy on Leverage and Accrual-Based Earnings Management
Authors: Safa Lazzem, Faouzi Jilani
Abstract:
The aim of this research is to investigate the impact of diversification strategy on the nature of the relationship between leverage and accrual-based earnings management through panel-estimation techniques based on a sample of 162 nonfinancial French firms indexed in CAC All-Tradable during the period from 2006 to 2012. The empirical results show that leverage increases encourage managers to manipulate earnings management. Our findings prove that the diversification strategy provides the needed context for this accounting practice to be possible in highly diversified firms. In addition, the results indicate that diversification moderates the relationship between leverage and accrual-based earnings management by changing the nature and the sign of this relationship.Keywords: diversification, earnings management, leverage, panel-estimation techniques
Procedia PDF Downloads 1504357 An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System
Authors: Yu-ding Du, Qi-lian Bao, Nassim Bessaad, Lin Liu
Abstract:
The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably.Keywords: multi-sensor data fusion, train positioning, GNSS, odometer, digital track map, map matching, BP neural network, adaptive weighted fusion, Kalman filter
Procedia PDF Downloads 2524356 Diagnosis of the Lubrification System of a Gas Turbine Using the Adaptive Neuro-Fuzzy Inference System
Authors: H. Mahdjoub, B. Hamaidi, B. Zerouali, S. Rouabhia
Abstract:
The issue of fault detection and diagnosis (FDD) has gained widespread industrial interest in process condition monitoring applications. Accordingly, the use of neuro-fuzzy technic seems very promising. This paper treats a diagnosis modeling a strategic equipment of an industrial installation. We propose a diagnostic tool based on adaptive neuro-fuzzy inference system (ANFIS). The neuro-fuzzy network provides an abductive diagnosis. Moreover, it takes into account the uncertainties on the maintenance knowledge by giving a fuzzy characterization of each cause. This work was carried out with real data of a lubrication circuit from the gas turbine. The machine of interest is a gas turbine placed in a gas compressor station at South Industrial Centre (SIC Hassi Messaoud Ouargla, Algeria). We have defined the zones of good and bad functioning, and the results are presented to demonstrate the advantages of the proposed method.Keywords: fault detection and diagnosis, lubrication system, turbine, ANFIS, training, pattern recognition
Procedia PDF Downloads 4894355 Impact of Green Marketing Mix Strategy and CSR on Organizational Performance: An Empirical Study of Manufacturing Sector of Pakistan
Authors: Syeda Shawana Mahasan, Muhammad Farooq Akhtar
Abstract:
The objective of this study is to analyze the influence of the green marketing mix strategy and corporate social responsibility (CSR) on the performance of an organization, taking into account the mediating effect of corporate image. The impact of frugal innovation and corporate activism is being examined. The data was gathered from executives at various levels of management, including top, middle, and lower-level managers, from a total of 550 manufacturing enterprises of different sizes, ranging from small to medium to large. The collected replies are processed and analyzed using SMART PLS version 4.0.0.0. The application of PLS-SEM demonstrates that the green marketing mix strategy and corporate social responsibility have a significant impact on organizational performance. Therefore, it is imperative for organizations to effectively adopt environmentally sustainable and socially conscious methods within their operations. The results indicate that the corporate image has a key role in mediating the relationship between the green marketing mix strategy, corporate social responsibility, and organizational performance. This demonstrates the imperative for organizations to actively enhance their favorable reputation among stakeholders. The combination of frugal innovation and corporate activism enhances the connection between corporate image and organizational performance. The current study assists managers in recognizing the significance of these particular constructs in maintaining the long-term performance of the organization.Keywords: green marketing mix strategy, CSR, corporate image, organizational performance, frugal innovation, corporate activism
Procedia PDF Downloads 394354 Enhancing Technical Trading Strategy on the Bitcoin Market using News Headlines and Language Models
Authors: Mohammad Hosein Panahi, Naser Yazdani
Abstract:
we present a technical trading strategy that leverages the FinBERT language model and financial news analysis with a focus on news related to a subset of Nasdaq 100 stocks. Our approach surpasses the baseline Range Break-out strategy in the Bitcoin market, yielding a remarkable 24.8% increase in the win ratio for all Friday trades and an impressive 48.9% surge in short trades specifically on Fridays. Moreover, we conduct rigorous hypothesis testing to establish the statistical significance of these improvements. Our findings underscore considerable potential of our NLP-driven approach in enhancing trading strategies and achieving greater profitability within financial markets.Keywords: quantitative finance, technical analysis, bitcoin market, NLP, language models, FinBERT, technical trading
Procedia PDF Downloads 754353 An Example of University Research Driving University-Industry Collaboration
Authors: Stephen E. Cross, Donald P. McConnell
Abstract:
In the past decade, market pressures and decreasing U.S. federal budgets for science and technology have led to a fundamental change in expectations for corporate investments in innovation. The trend to significant, sustained corporate research collaboration with major academic centres has called for rethinking the balance between academic and corporate roles in these relationships. The Georgia Institute of Technology has developed a system-focused strategy for transformational research focused on grand challenges in areas of importance both to faculty and to industry collaborators. A model of an innovation ecosystem is used to guide both research and university-industry collaboration. The paper describes the strategy, the model, and the results to date including the benefits both to university research and industry collaboration. Key lessons learned are presented based on this experience.Keywords: ecosystem, industry collaboration, innovation, research strategy
Procedia PDF Downloads 4204352 Vibration Absorption Strategy for Multi-Frequency Excitation
Authors: Der Chyan Lin
Abstract:
Since the early introduction by Ormondroyd and Den Hartog, vibration absorber (VA) has become one of the most commonly used vibration mitigation strategies. The strategy is most effective for a primary plant subjected to a single frequency excitation. For continuous systems, notable advances in vibration absorption in the multi-frequency system were made. However, the efficacy of the VA strategy for systems under multi-frequency excitation is not well understood. For example, for an N degrees-of-freedom (DOF) primary-absorber system, there are N 'peak' frequencies of large amplitude vibration per every new excitation frequency. In general, the usable range for vibration absorption can be greatly reduced as a result. Frequency modulated harmonic excitation is a commonly seen multi-frequency excitation example: f(t) = cos(ϖ(t)t) where ϖ(t)=ω(1+α sin(δt)). It is known that f(t) has a series expansion given by the Bessel function of the first kind, which implies an infinity of forcing frequencies in the frequency modulated harmonic excitation. For an SDOF system of natural frequency ωₙ subjected to f(t), it can be shown that amplitude peaks emerge at ω₍ₚ,ₖ₎=(ωₙ ± 2kδ)/(α ∓ 1),k∈Z; i.e., there is an infinity of resonant frequencies ω₍ₚ,ₖ₎, k∈Z, making the use of VA strategy ineffective. In this work, we propose an absorber frequency placement strategy for SDOF vibration systems subjected to frequency-modulated excitation. An SDOF linear mass-spring system coupled to lateral absorber systems is used to demonstrate the ideas. Although the mechanical components are linear, the governing equations for the coupled system are nonlinear. We show using N identical absorbers, for N ≫ 1, that (a) there is a cluster of N+1 natural frequencies around every natural absorber frequency, and (b) the absorber frequencies can be moved away from the plant's resonance frequency (ω₀) as N increases. Moreover, we also show the bandwidth of the VA performance increases with N. The derivations of the clustering and bandwidth widening effect will be given, and the superiority of the proposed strategy will be demonstrated via numerical experiments.Keywords: Bessel function, bandwidth, frequency modulated excitation, vibration absorber
Procedia PDF Downloads 157