Search results for: institutional network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5888

Search results for: institutional network

2198 Design of Active Power Filters for Harmonics on Power System and Reducing Harmonic Currents

Authors: Düzgün Akmaz, Hüseyin Erişti

Abstract:

In the last few years, harmonics have been occurred with the increasing use of nonlinear loads, and these harmonics have been an ever increasing problem for the line systems. This situation importantly affects the quality of power and gives large losses to the network. An efficient way to solve these problems is providing harmonic compensation through parallel active power filters. Many methods can be used in the control systems of the parallel active power filters which provide the compensation. These methods efficiently affect the performance of the active power filters. For this reason, the chosen control method is significant. In this study, Fourier analysis (FA) control method and synchronous reference frame (SRF) control method are discussed. These control methods are designed for both eliminate harmonics and perform reactive power compensation in MATLAB/Simulink pack program and are tested. The results have been compared for each two methods.

Keywords: parallel active power filters, harmonic compensation, power quality, harmonics

Procedia PDF Downloads 463
2197 Modifying Byzantine Fault Detection Using Disjoint Paths

Authors: Mehmet Hakan Karaata, Ali Hamdan, Omer Yusuf Adam Mohamed

Abstract:

Consider a distributed system that delivers messages from a process to another. Such a system is often required to deliver each message to its destination regardless of whether or not the system components experience arbitrary forms of faults. In addition, each message received by the destination must be a message sent by a system process. In this paper, we first identify the necessary and sufficient conditions to detect some restricted form of Byzantine faults referred to as modifying Byzantine faults. An observable form of a Byzantine fault whose effect is limited to the modification of a message metadata or content, timing and omission faults, and message replay is referred to as a modifying Byzantine fault. We then present a distributed protocol to detect modifying Byzantine faults using optimal number of messages over node-disjoint paths.

Keywords: Byzantine faults, distributed systems, fault detection, network pro- tocols, node-disjoint paths

Procedia PDF Downloads 567
2196 The Personal Characteristics of Nurse Managers and the Personal and Professional Factors That Affect Them

Authors: Handan Alan, Ulkü Baykal

Abstract:

Personal characteristics help people understand and recognize both themselves and other people. They are also known to have direct effects on managerial behaviors. Managers’ personalities indicate how they think, perceive reality and relate to others, and affect their decision-making and problem-solving methods. This descriptive study aims to determine the personal characteristics of nurse managers and the personal and professional factors that affect them since sufficient data does not exist on personal characteristics despite the focus on the leadership and managerial characteristics in nursing. The study population consisted of nurses working in administrative positions at hospitals affiliated with the public hospitals union, research and practice hospitals affiliated with universities and private hospitals in cities in the Marmara Region. The study sample consisted of nurse managers working in the hospitals that permitted conducting the study (excluding private branch hospitals). The data were collected after obtaining the approval of the Clinical Research Ethics Committee of Çanakkale Onsekiz Mart University (Approval date: 1.7.2015, Decision No: 2015-01) and written official permissions from the administrations of the hospitals included in the study. The data analysis was carried out using means and standard deviations (SD) as descriptive statistics, one-way analysis of variance for inter-group comparisons and the independent samples t-test for paired group comparisons. A significance threshold of p < 0.05 was used to evaluate the findings. The data were collected using the Five Factor Personality Inventory. The study included 900 nurse managers, who obtained the highest mean score on the conscientiousness dimension (X=4.22 ±0.35). This dimension was followed by their mean scores on the agreeableness (X=4.06±0.40), intelligence (X=4.05±0.37), extroversion (X=3.50±0.43), and emotional instability (X=2.07±0.53) dimensions. Statistically significant differences were found between the independent variables of age, gender, marital status, education level, work institution, professional experience, institutional experience, managerial experience, administrative position, work unit and managerial education when compared using the five factor personality inventory (p < 0.05). In conclusion, the nurse managers described themselves having high conscientiousness. Statistically significant differences were found between the five factor personality inventory mean scores and their personal and professional characteristics.

Keywords: nurse manager, personality, personal characteristics, professional characteristics

Procedia PDF Downloads 263
2195 Integrated Coastal Management for the Sustainable Development of Coastal Cities: The Case of El-Mina, Tripoli, Lebanon

Authors: G. Ghamrawi, Y. Abunnasr, M. Fawaz, S. Yazigi

Abstract:

Coastal cities are constantly exposed to environmental degradation and economic regression fueled by rapid and uncontrolled urban growth as well as continuous resource depletion. This is the case of the City of Mina in Tripoli (Lebanon), where lack of awareness to preserve social, ecological, and historical assets, coupled with the increasing development pressures, are threatening the socioeconomic status of the city residents, the quality of life and accessibility to the coast. To address these challenges, a holistic coastal urban design and planning approach was developed to analyze the environmental, political, legal, and socioeconomic context of the city. This approach aims to investigate the potential of balancing urban development with the protection and enhancement of cultural, ecological, and environmental assets under an integrated coastal zone management approach (ICZM). The analysis of Mina's different sectors adopted several tools that include direct field observation, interviews with stakeholders, analysis of available data, historical maps, and previously proposed projects. The findings from the analysis were mapped and graphically represented, allowing the recognition of character zones that become the design intervention units. Consequently, the thesis proposes an urban, city-scale intervention that identifies 6 different character zones (the historical fishing port, Abdul Wahab island, the abandoned Port Said, Hammam el Makloub, the sand beach, and the new developable area) and proposes context-specific design interventions that capitalize on the main characteristics of each zone. Moreover, the intervention builds on the institutional framework of ICZM as well as other studies previously conducted for the coast and adopts nature-based solutions with hybrid systems for providing better environmental design solutions for developing the coast. This enables the realization of an all-inclusive, well-connected shoreline with easy and free access towards the sea; a developed shoreline with an active local economy, and an improved urban environment.

Keywords: blue green infrastructure, coastal cities, hybrid solutions, integrated coastal zone management, sustainable development, urban planning

Procedia PDF Downloads 164
2194 Sensitivity Analysis for 14 Bus Systems in a Distribution Network with Distribution Generators

Authors: Lakshya Bhat, Anubhav Shrivastava, Shivarudraswamy

Abstract:

There has been a formidable interest in the area of Distributed Generation in recent times. A wide number of loads are addressed by Distributed Generators and have better efficiency too. The major disadvantage in Distributed Generation is voltage control- is highlighted in this paper. The paper addresses voltage control at buses in IEEE 14 Bus system by regulating reactive power. An analysis is carried out by selecting the most optimum location in placing the Distributed Generators through load flow analysis and seeing where the voltage profile rises. Matlab programming is used for simulation of voltage profile in the respective buses after introduction of DG’s. A tolerance limit of +/-5% of the base value has to be maintained.To maintain the tolerance limit , 3 methods are used. Sensitivity analysis of 3 methods for voltage control is carried out to determine the priority among the methods.

Keywords: distributed generators, distributed system, reactive power, voltage control, sensitivity analysis

Procedia PDF Downloads 592
2193 The Urban Stray Animal Identification Management System Based on YOLOv5

Authors: Chen Xi, LIU Xuebin, Kuan Sinman, LI Haofeng, Huang Hongming, Zeng Chengyu, Lao Xuerui

Abstract:

Stray animals are on the rise in mainland China's cities. There are legal reasons for this, namely the lack of protection for domestic pets in mainland China, where only wildlife protection laws exist. At a social level, the ease with which families adopt pets and the lack of a social view of animal nature have led to the frequent abandonment and loss of stray animals. If left unmanaged, conflicts between humans and stray animals can also increase. This project provides an inexpensive and widely applicable management tool for urban management by collecting videos and pictures of stray animals captured by surveillance or transmitted by humans and using artificial intelligence technology (mainly using Yolov5 recognition technology) and recording and managing them in a database.

Keywords: urban planning, urban governance, artificial intelligence, convolutional neural network, machine vision

Procedia PDF Downloads 102
2192 Encephalon-An Implementation of a Handwritten Mathematical Expression Solver

Authors: Shreeyam, Ranjan Kumar Sah, Shivangi

Abstract:

Recognizing and solving handwritten mathematical expressions can be a challenging task, particularly when certain characters are segmented and classified. This project proposes a solution that uses Convolutional Neural Network (CNN) and image processing techniques to accurately solve various types of equations, including arithmetic, quadratic, and trigonometric equations, as well as logical operations like logical AND, OR, NOT, NAND, XOR, and NOR. The proposed solution also provides a graphical solution, allowing users to visualize equations and their solutions. In addition to equation solving, the platform, called CNNCalc, offers a comprehensive learning experience for students. It provides educational content, a quiz platform, and a coding platform for practicing programming skills in different languages like C, Python, and Java. This all-in-one solution makes the learning process engaging and enjoyable for students. The proposed methodology includes horizontal compact projection analysis and survey for segmentation and binarization, as well as connected component analysis and integrated connected component analysis for character classification. The compact projection algorithm compresses the horizontal projections to remove noise and obtain a clearer image, contributing to the accuracy of character segmentation. Experimental results demonstrate the effectiveness of the proposed solution in solving a wide range of mathematical equations. CNNCalc provides a powerful and user-friendly platform for solving equations, learning, and practicing programming skills. With its comprehensive features and accurate results, CNNCalc is poised to revolutionize the way students learn and solve mathematical equations. The platform utilizes a custom-designed Convolutional Neural Network (CNN) with image processing techniques to accurately recognize and classify symbols within handwritten equations. The compact projection algorithm effectively removes noise from horizontal projections, leading to clearer images and improved character segmentation. Experimental results demonstrate the accuracy and effectiveness of the proposed solution in solving a wide range of equations, including arithmetic, quadratic, trigonometric, and logical operations. CNNCalc features a user-friendly interface with a graphical representation of equations being solved, making it an interactive and engaging learning experience for users. The platform also includes tutorials, testing capabilities, and programming features in languages such as C, Python, and Java. Users can track their progress and work towards improving their skills. CNNCalc is poised to revolutionize the way students learn and solve mathematical equations with its comprehensive features and accurate results.

Keywords: AL, ML, hand written equation solver, maths, computer, CNNCalc, convolutional neural networks

Procedia PDF Downloads 127
2191 The Relevance of Personality Traits and Networking in New Ventures’ Success

Authors: Caterina Muzzi, Sergio Albertini, Davide Giacomini

Abstract:

The research is aimed to investigate the role of young entrepreneurs’ personality traits and their contextual background on the success of entrepreneurial initiatives. In the literature, the debate is still open about the main drivers in predicting entrepreneurial success. Classical theories are focused on looking at specific personality traits that could lead to successful start-ups initiatives, while emerging approaches are more interested in young entrepreneurs’ contextual background (such as the family of origin, the previous experience and their professional network). An online survey was submitted to the participants of an entrepreneurial training initiative organised by the Italian Young Entrepreneurs Association (Confindustria) in Brescia headquarter (AIB). At the time the authors started data collection for this research, the third edition of the initiative was just concluded and involved a total amount of 37 young future entrepreneurs. In the literature General self-efficacy (GSE) and, more specifically, entrepreneurial self-efficacy (ESE) have often been associated to positive performances, as they allow future entrepreneurs to effectively cope with entrepreneurial activities, both at an early stage and in new venture management. In a counter-intuitive manner, optimism is not always associated with entrepreneurial positive results. Too optimistic people risk taking hazardous risks and some authors suggest that moderately optimistic entrepreneurs achieve more positive results than over-optimistic ones. Indeed highly optimistic individuals often hold unrealistic expectations, discount negative information, and mentally reconstruct experiences so as to avoid contradictions The importance of context has been increasingly considered in entrepreneurship literature and its role strongly emerges starting from the earliest entrepreneurial stage and it is crucial to transform the “intention of entrepreneurship” into the actual start-up. Furthermore, coherently with the “network approach to entrepreneurship”, context embeddedness allow future entrepreneurs to leverage relationships built through previous experiences and/or thanks to the fact of belonging to families of entrepreneurs. For the purpose of this research, entrepreneurial success was measured by the fact of having or not founded a new venture after the training initiative. In this research, the authors measured GSE, ESE and optimism using already tested items that showed to be reliable also in this case. They collected 36 completed questionnaires. The t-test for independent samples run to measure significant differences in means between those that already funded the new venture and those that did not. No significant differences emerged with respect to all the tested personality traits, but a logistic regression analysis, run with contextual variables as independent ones, showed that personal and professional networking, made both before and during the master, is the most relevant variable in determining new venture success. These findings shed more light on the process of new venture foundation and could encourage national and local policy makers to invest on networking as one of the main drivers that could support the creation of new ventures.

Keywords: entrepreneurship, networking, new ventures, personality traits

Procedia PDF Downloads 149
2190 Fabrication of Titania and Thermally Reduced Graphene Oxide Composite Nanofibers by Electrospinning Process

Authors: R. F. Louh, Cathy Chou, Victor Wang, Howard Yan

Abstract:

The aim of this study is to manufacture titania and reduced graphene oxide (TiO2/rGO) composite nanofibers via electrospinning (ESP) of precursor fluid consisted of titania sol containing polyvinylpyrrolidone (PVP) and titanium isopropoxide (TTIP) and GO solution. The GO nanoparticles were derived from Hummers’ method. A metal grid ring was used to provide the bias voltage to reach higher ESP yield and nonwoven fabric with dense network of TiO2/GO composite nanofibers. The ESP product was heat treated at 500°C for 2 h in nitrogen atmosphere to acquire TiO2/rGO nanofibers by thermal reduction of GO and phase transformation into anatase TiO2. The TiO2/rGO nanofibers made from various volume fractions of GO solution by ESP were analyzed by FE-SEM, TEM, XRD, EDS, BET and FTIR. Such TiO2/rGO fibers having photocatalytic property, high specific surface area and electrical conductivity can be used for photovoltaics and chemical sensing applications.

Keywords: electrospinning process, titanium oxide, thermally reduced graphene oxide, composite nanofibers

Procedia PDF Downloads 456
2189 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 56
2188 Navigating Uncertainties in Project Control: A Predictive Tracking Framework

Authors: Byung Cheol Kim

Abstract:

This study explores a method for the signal-noise separation challenge in project control, focusing on the limitations of traditional deterministic approaches that use single-point performance metrics to predict project outcomes. We detail how traditional methods often overlook future uncertainties, resulting in tracking biases when reliance is placed solely on immediate data without adjustments for predictive accuracy. Our investigation led to the development of the Predictive Tracking Project Control (PTPC) framework, which incorporates network simulation and Bayesian control models to adapt more effectively to project dynamics. The PTPC introduces controlled disturbances to better identify and separate tracking biases from useful predictive signals. We will demonstrate the efficacy of the PTPC with examples, highlighting its potential to enhance real-time project monitoring and decision-making, marking a significant shift towards more accurate project management practices.

Keywords: predictive tracking, project control, signal-noise separation, Bayesian inference

Procedia PDF Downloads 27
2187 Poly(N-Vinylcaprolactam) Based Degradable Microgels for Controlled Drug Delivery

Authors: G. Agrawal, R. Agrawal, A. Pich

Abstract:

The pH and temperature responsive biodegradable poly(N-vinylcaprolactam) (PVCL) based microgels functionalized with itaconic acid (IA) units are prepared via precipitation polymerization for drug delivery applications. Volume phase transition temperature (VPTT) of the obtained microgels is influenced by both IA content and pH of the surrounding medium. The developed microgels can be degraded under acidic conditions due to the presence of hydrazone based crosslinking points inside the microgel network. The microgel particles are able to effectively encapsulate doxorubicin (DOX) drug and exhibit low drug leakage under physiological conditions. At low pH, rapid DOX release is observed due to the changes in electrostatic interactions along with the degradation of particles. The results of the cytotoxicity assay further display that the DOX-loaded microgel exhibit effective antitumor activity against HeLa cells demonstrating their great potential as drug delivery carriers for cancer therapy.

Keywords: degradable, drug delivery, hydrazone linkages, microgels, responsive

Procedia PDF Downloads 319
2186 Refactoring Object Oriented Software through Community Detection Using Evolutionary Computation

Authors: R. Nagarani

Abstract:

An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the extent of research on software refactoring at the package level is less. This work presents a novel approach to refactor the package structures of object oriented software using genetic algorithm based community detection. It uses software networks to represent classes and their dependencies. It uses a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. It finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures.

Keywords: community detection, complex network, genetic algorithm, package, refactoring

Procedia PDF Downloads 422
2185 Ecological Networks: From Structural Analysis to Synchronization

Authors: N. F. F. Ebecken, G. C. Pereira

Abstract:

Ecological systems are exposed and are influenced by various natural and anthropogenic disturbances. They produce various effects and states seeking response symmetry to a state of global phase coherence or stability and balance of their food webs. This research project addresses the development of a computational methodology for modeling plankton food webs. The use of algorithms to establish connections, the generation of representative fuzzy multigraphs and application of technical analysis of complex networks provide a set of tools for defining, analyzing and evaluating community structure of coastal aquatic ecosystems, beyond the estimate of possible external impacts to the networks. Thus, this study aims to develop computational systems and data models to assess how these ecological networks are structurally and functionally organized, to analyze the types and degree of compartmentalization and synchronization between oscillatory and interconnected elements network and the influence of disturbances on the overall pattern of rhythmicity of the system.

Keywords: ecological networks, plankton food webs, fuzzy multigraphs, dynamic of networks

Procedia PDF Downloads 308
2184 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni

Authors: Devineni Vijay Bhaskar, Yendluri Raja

Abstract:

We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.

Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve

Procedia PDF Downloads 127
2183 Tagging a corpus of Media Interviews with Diplomats: Challenges and Solutions

Authors: Roberta Facchinetti, Sara Corrizzato, Silvia Cavalieri

Abstract:

Increasing interconnection between data digitalization and linguistic investigation has given rise to unprecedented potentialities and challenges for corpus linguists, who need to master IT tools for data analysis and text processing, as well as to develop techniques for efficient and reliable annotation in specific mark-up languages that encode documents in a format that is both human and machine-readable. In the present paper, the challenges emerging from the compilation of a linguistic corpus will be taken into consideration, focusing on the English language in particular. To do so, the case study of the InterDiplo corpus will be illustrated. The corpus, currently under development at the University of Verona (Italy), represents a novelty in terms both of the data included and of the tag set used for its annotation. The corpus covers media interviews and debates with diplomats and international operators conversing in English with journalists who do not share the same lingua-cultural background as their interviewees. To date, this appears to be the first tagged corpus of international institutional spoken discourse and will be an important database not only for linguists interested in corpus analysis but also for experts operating in international relations. In the present paper, special attention will be dedicated to the structural mark-up, parts of speech annotation, and tagging of discursive traits, that are the innovational parts of the project being the result of a thorough study to find the best solution to suit the analytical needs of the data. Several aspects will be addressed, with special attention to the tagging of the speakers’ identity, the communicative events, and anthropophagic. Prominence will be given to the annotation of question/answer exchanges to investigate the interlocutors’ choices and how such choices impact communication. Indeed, the automated identification of questions, in relation to the expected answers, is functional to understand how interviewers elicit information as well as how interviewees provide their answers to fulfill their respective communicative aims. A detailed description of the aforementioned elements will be given using the InterDiplo-Covid19 pilot corpus. The data yielded by our preliminary analysis of the data will highlight the viable solutions found in the construction of the corpus in terms of XML conversion, metadata definition, tagging system, and discursive-pragmatic annotation to be included via Oxygen.

Keywords: spoken corpus, diplomats’ interviews, tagging system, discursive-pragmatic annotation, english linguistics

Procedia PDF Downloads 189
2182 POSS as Modifiers and Additives for Elastomer Composites

Authors: Anna Strąkowska, Marian Zaborski

Abstract:

The studies were focused on POSS application with methylvinylsilicone rubber (MVQ). The obtained results indicate that they can be successfully incorporated into silica-filled rubbers as modifying agents since they enhance cross-link density and improve most properties of the resulting network. It is also worth noting that the incorporation of POSS molecules resulted in stabilizing effect against adverse changes induced by the climatic, ozone or UV ageing of the rubbers. Furthermore, we obtained interesting results of rubbers surface modification using POSS functionalised with halogen groups (Cl, F, and Br). As the results, surface energy of the elastomeric composites and their hydrophobicity increased, barrier properties improved and thermal stability increased as well. Additionally, the studies with silicone rubber and POSS containing acidic and alkaline groups revealed composites with self-healing properties. The observed effects strictly depend on a kind and quantity of functional groups present in angles of POSS cages.

Keywords: elastomeric composites, POSS, properties modyfication, silicone rubber

Procedia PDF Downloads 357
2181 The Current Status of Middle Class Internet Use in China: An Analysis Based on the Chinese General Social Survey 2015 Data and Semi-Structured Investigation

Authors: Abigail Qian Zhou

Abstract:

In today's China, the well-educated middle class, with stable jobs and above-average income, are the driving force behind its Internet society. Through the analysis of data from the 2015 Chinese General Social Survey and 50 interviewees, this study investigates the current situation of this group’s specific internet usage. The findings of this study demonstrate that daily life among the members of this socioeconomic group is closely tied to the Internet. For Chinese middle class, the Internet is used to socialize and entertain self and others. It is also used to search for and share information as well as to build their identities. The empirical results of this study will provide a reference, supported by factual data, for enterprises seeking to target the Chinese middle class through online marketing efforts.

Keywords: middle class, Internet use, network behaviour, online marketing, China

Procedia PDF Downloads 127
2180 Development of High Temperature Eutectic Oxide Ceramic Matrix Composites

Authors: Yağmur Can Gündoğan, Kübra Gürcan Bayrak, Ece Özerdem, Buse Katipoğlu, Erhan Ayas, Rifat Yılmaz

Abstract:

Eutectic oxide based ceramic matrix composites have a unique microstructure that does not include grain boundary in the form of a continuous network. Because of this, these materials have the properties of perfect high-temperature strength, creep strength, and high oxidation strength. Mechanical properties of them are much related to occurring solidification structures during eutectic reactions. One of the most important production methods of this kind of material is the process of vacuum arc melting. Within scope of this studying, it is aimed to investigate the production of Al₂O₃-YAG-based eutectic ceramics by Arc melting and Spark Plasma Sintering methods for use in aerospace and defense industries where high-temperature environments play an important role and to examine the effects of ZrO₂ and LiF additions on microstructure development and mechanical properties.

Keywords: alumina, composites, eutectic, YAG

Procedia PDF Downloads 124
2179 A Deep Learning Based Integrated Model For Spatial Flood Prediction

Authors: Vinayaka Gude Divya Sampath

Abstract:

The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.

Keywords: deep learning, disaster management, flood prediction, urban flooding

Procedia PDF Downloads 152
2178 Design and Evaluation of a Prototype for Non-Invasive Screening of Diabetes – Skin Impedance Technique

Authors: Pavana Basavakumar, Devadas Bhat

Abstract:

Diabetes is a disease which often goes undiagnosed until its secondary effects are noticed. Early detection of the disease is necessary to avoid serious consequences which could lead to the death of the patient. Conventional invasive tests for screening of diabetes are mostly painful, time consuming and expensive. There’s also a risk of infection involved, therefore it is very essential to develop non-invasive methods to screen and estimate the level of blood glucose. Extensive research is going on with this perspective, involving various techniques that explore optical, electrical, chemical and thermal properties of the human body that directly or indirectly depend on the blood glucose concentration. Thus, non-invasive blood glucose monitoring has grown into a vast field of research. In this project, an attempt was made to device a prototype for screening of diabetes by measuring electrical impedance of the skin and building a model to predict a patient’s condition based on the measured impedance. The prototype developed, passes a negligible amount of constant current (0.5mA) across a subject’s index finger through tetra polar silver electrodes and measures output voltage across a wide range of frequencies (10 KHz – 4 MHz). The measured voltage is proportional to the impedance of the skin. The impedance was acquired in real-time for further analysis. Study was conducted on over 75 subjects with permission from the institutional ethics committee, along with impedance, subject’s blood glucose values were also noted, using conventional method. Nonlinear regression analysis was performed on the features extracted from the impedance data to obtain a model that predicts blood glucose values for a given set of features. When the predicted data was depicted on Clarke’s Error Grid, only 58% of the values predicted were clinically acceptable. Since the objective of the project was to screen diabetes and not actual estimation of blood glucose, the data was classified into three classes ‘NORMAL FASTING’,’NORMAL POSTPRANDIAL’ and ‘HIGH’ using linear Support Vector Machine (SVM). Classification accuracy obtained was 91.4%. The developed prototype was economical, fast and pain free. Thus, it can be used for mass screening of diabetes.

Keywords: Clarke’s error grid, electrical impedance of skin, linear SVM, nonlinear regression, non-invasive blood glucose monitoring, screening device for diabetes

Procedia PDF Downloads 328
2177 Identification of Hub Genes in the Development of Atherosclerosis

Authors: Jie Lin, Yiwen Pan, Li Zhang, Zhangyong Xia

Abstract:

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, immune cells, and extracellular matrix in the arterial walls. This pathological process can lead to the formation of plaques that can obstruct blood flow and trigger various cardiovascular diseases such as heart attack and stroke. The underlying molecular mechanisms still remain unclear, although many studies revealed the dysfunction of endothelial cells, recruitment and activation of monocytes and macrophages, and the production of pro-inflammatory cytokines and chemokines in atherosclerosis. This study aimed to identify hub genes involved in the progression of atherosclerosis and to analyze their biological function in silico, thereby enhancing our understanding of the disease’s molecular mechanisms. Through the analysis of microarray data, we examined the gene expression in media and neo-intima from plaques, as well as distant macroscopically intact tissue, across a cohort of 32 hypertensive patients. Initially, 112 differentially expressed genes (DEGs) were identified. Subsequent immune infiltration analysis indicated a predominant presence of 27 immune cell types in the atherosclerosis group, particularly noting an increase in monocytes and macrophages. In the Weighted gene co-expression network analysis (WGCNA), 10 modules with a minimum of 30 genes were defined as key modules, with blue, dark, Oliver green and sky-blue modules being the most significant. These modules corresponded respectively to monocyte, activated B cell, and activated CD4 T cell gene patterns, revealing a strong morphological-genetic correlation. From these three gene patterns (modules morphology), a total of 2509 key genes (Gene Significance >0.2, module membership>0.8) were extracted. Six hub genes (CD36, DPP4, HMOX1, PLA2G7, PLN2, and ACADL) were then identified by intersecting 2509 key genes, 102 DEGs with lipid-related genes from the Genecard database. The bio-functional analysis of six hub genes was estimated by a robust classifier with an area under the curve (AUC) of 0.873 in the ROC plot, indicating excellent efficacy in differentiating between the disease and control group. Moreover, PCA visualization demonstrated clear separation between the groups based on these six hub genes, suggesting their potential utility as classification features in predictive models. Protein-protein interaction (PPI) analysis highlighted DPP4 as the most interconnected gene. Within the constructed key gene-drug network, 462 drugs were predicted, with ursodeoxycholic acid (UDCA) being identified as a potential therapeutic agent for modulating DPP4 expression. In summary, our study identified critical hub genes implicated in the progression of atherosclerosis through comprehensive bioinformatic analyses. These findings not only advance our understanding of the disease but also pave the way for applying similar analytical frameworks and predictive models to other diseases, thereby broadening the potential for clinical applications and therapeutic discoveries.

Keywords: atherosclerosis, hub genes, drug prediction, bioinformatics

Procedia PDF Downloads 73
2176 Standard Languages for Creating a Database to Display Financial Statements on a Web Application

Authors: Vladimir Simovic, Matija Varga, Predrag Oreski

Abstract:

XHTML and XBRL are the standard languages for creating a database for the purpose of displaying financial statements on web applications. Today, XBRL is one of the most popular languages for business reporting. A large number of countries in the world recognize the role of XBRL language for financial reporting and the benefits that the reporting format provides in the collection, analysis, preparation, publication and the exchange of data (information) which is the positive side of this language. Here we present all advantages and opportunities that a company may have by using the XBRL format for business reporting. Also, this paper presents XBRL and other languages that are used for creating the database, such XML, XHTML, etc. The role of the AJAX complex model and technology will be explained in detail, and during the exchange of financial data between the web client and web server. Here will be mentioned basic layers of the network for data exchange via the web.

Keywords: XHTML, XBRL, XML, JavaScript, AJAX technology, data exchange

Procedia PDF Downloads 398
2175 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion

Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro

Abstract:

Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.

Keywords: basketball, deep learning, feature extraction, single-camera, tracking

Procedia PDF Downloads 142
2174 Analyze and Visualize Eye-Tracking Data

Authors: Aymen Sekhri, Emmanuel Kwabena Frimpong, Bolaji Mubarak Ayeyemi, Aleksi Hirvonen, Matias Hirvonen, Tedros Tesfay Andemichael

Abstract:

Fixation identification, which involves isolating and identifying fixations and saccades in eye-tracking protocols, is an important aspect of eye-movement data processing that can have a big impact on higher-level analyses. However, fixation identification techniques are frequently discussed informally and rarely compared in any meaningful way. With two state-of-the-art algorithms, we will implement fixation detection and analysis in this work. The velocity threshold fixation algorithm is the first algorithm, and it identifies fixation based on a threshold value. For eye movement detection, the second approach is U'n' Eye, a deep neural network algorithm. The goal of this project is to analyze and visualize eye-tracking data from an eye gaze dataset that has been provided. The data was collected in a scenario in which individuals were shown photos and asked whether or not they recognized them. The results of the two-fixation detection approach are contrasted and visualized in this paper.

Keywords: human-computer interaction, eye-tracking, CNN, fixations, saccades

Procedia PDF Downloads 140
2173 Localization Mobile Beacon Using RSSI

Authors: Sallama Resen, Celal Öztürk

Abstract:

Distance estimation between tow nodes has wide scope of surveillance and tracking applications. This paper suggests a Bluetooth Low Energy (BLE) technology as a media for transceiver and receiver signal in small indoor areas. As an example, BLE communication technologies used in child safety domains. Local network is designed to detect child position in indoor school area consisting Mobile Beacons (MB), Access Points (AP) and Smart Phones (SP) where MBs stuck in children’s shoes as wearable sensors. This paper presents a technique that can detect mobile beacons’ position and help finding children’s location within dynamic environment. By means of bluetooth beacons that are attached to child’s shoes, the distance between the MB and teachers SP is estimated with an accuracy of less than one meter. From the simulation results, it is shown that high accuracy of position coordinates are achieved for multi-mobile beacons in different environments.

Keywords: bluetooth low energy, child safety, mobile beacons, received signal strength

Procedia PDF Downloads 354
2172 Modal Analysis for Optimal Location of Doubly Fed Induction-Generator-Based Wind Farms for Reduction of Small Signal Oscillation

Authors: Meet Patel, Darshan Patel, Nilay Shah

Abstract:

Excess growth of wind-based renewable energy sources is required to identify the optimal location and damping capacity of doubly fed induction-generator-based (DFIG) wind farms while it penetrates into the transmission network. In this analysis, various ratings of DFIG wind farms are penetrated into the Single Machine Infinite Bus (SMIB ) at a different distance of the transmission line. On the basis of detailed examinations, a prime position is evaluated to maximize the stability of overall systems. A damping controller is designed at an optimum location to mitigate the small oscillations. The proposed model was validated using eigenvalue analysis, calculation of the participation factor, and time-domain simulation.

Keywords: DFIG, small signal stability, eigenvalues, time domain simulation

Procedia PDF Downloads 117
2171 Attack Redirection and Detection using Honeypots

Authors: Chowduru Ramachandra Sharma, Shatunjay Rawat

Abstract:

A false positive state is when the IDS/IPS identifies an activity as an attack, but the activity is acceptable behavior in the system. False positives in a Network Intrusion Detection System ( NIDS ) is an issue because they desensitize the administrator. It wastes computational power and valuable resources when rules are not tuned properly, which is the main issue with anomaly NIDS. Furthermore, most false positives reduction techniques are not performed during the real-time of attempted intrusions; instead, they have applied afterward on collected traffic data and generate alerts. Of course, false positives detection in ‘offline mode’ is tremendously valuable. Nevertheless, there is room for improvement here; automated techniques still need to reduce False Positives in real-time. This paper uses the Snort signature detection model to redirect the alerted attacks to Honeypots and verify attacks.

Keywords: honeypot, TPOT, snort, NIDS, honeybird, iptables, netfilter, redirection, attack detection, docker, snare, tanner

Procedia PDF Downloads 160
2170 Developing a Framework for Assessing and Fostering the Sustainability of Manufacturing Companies

Authors: Ilaria Barletta, Mahesh Mani, Björn Johansson

Abstract:

The concept of sustainability encompasses economic, environmental, social and institutional considerations. Sustainable manufacturing (SM) is, therefore, a multi-faceted concept. It broadly implies the development and implementation of technologies, projects and initiatives that are concerned with the life cycle of products and services, and are able to bring positive impacts to the environment, company stakeholders and profitability. Because of this, achieving SM-related goals requires a holistic, life-cycle-thinking approach from manufacturing companies. Further, such an approach must rely on a logic of continuous improvement and ease of implementation in order to be effective. Currently, there exists in the academic literature no comprehensively structured frameworks that support manufacturing companies in the identification of the issues and the capabilities that can either hinder or foster sustainability. This scarcity of support extends to difficulties in obtaining quantifiable measurements in order to objectively evaluate solutions and programs and identify improvement areas within SM for standards conformance. To bridge this gap, this paper proposes the concept of a framework for assessing and continuously improving the sustainability of manufacturing companies. The framework addresses strategies and projects for SM and operates in three sequential phases: analysis of the issues, design of solutions and continuous improvement. A set of interviews, observations and questionnaires are the research methods to be used for the implementation of the framework. Different decision-support methods - either already-existing or novel ones - can be 'plugged into' each of the phases. These methods can assess anything from business capabilities to process maturity. In particular, the authors are working on the development of a sustainable manufacturing maturity model (SMMM) as decision support within the phase of 'continuous improvement'. The SMMM, inspired by previous maturity models, is made up of four maturity levels stemming from 'non-existing' to 'thriving'. Aggregate findings from the use of the framework should ultimately reveal to managers and CEOs the roadmap for achieving SM goals and identify the maturity of their companies’ processes and capabilities. Two cases from two manufacturing companies in Australia are currently being employed to develop and test the framework. The use of this framework will bring two main benefits: enable visual, intuitive internal sustainability benchmarking and raise awareness of improvement areas that lead companies towards an increasingly developed SM.

Keywords: life cycle management, continuous improvement, maturity model, sustainable manufacturing

Procedia PDF Downloads 271
2169 Urban Growth Prediction Using Artificial Neural Networks in Athens, Greece

Authors: Dimitrios Triantakonstantis, Demetris Stathakis

Abstract:

Urban areas have been expanded throughout the globe. Monitoring and modeling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modeling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.

Keywords: artificial neural networks, CORINE, urban atlas, urban growth prediction

Procedia PDF Downloads 533