Search results for: axial flux induction machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4631

Search results for: axial flux induction machine

941 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach

Authors: Abe Degale D., Cheng Jian

Abstract:

When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.

Keywords: violence detection, faster RCNN, transfer learning and, surveillance video

Procedia PDF Downloads 110
940 Oxidative Damage to Lipids, Proteins, and DNA during Differentiation of Mesenchymal Stem Cells Derived from Umbilical Cord into Biologically Active Hepatocytes

Authors: Abdolamir Allameh, Shahnaz Esmaeili, Mina Allameh, Safoura Khajeniazi

Abstract:

Stem cells with therapeutic applications can be isolated from human placenta/umblical cord blood (UCB) as well as the cord tissue (UC). Stem cells in culture are vulnerable to oxidative stress, particularly when subjected to differentiation process. The aim of this study was to examine the chnages in the rate of oxidation that occurs to cellular macromolecules during hepatic differentiation of mononuclear cells (MSCs). In addition, the impact of the hepatic differentiation process of MSC on cellular and biological activity of the cells will be undertaken. For this purpose, first mononuclear cells (MNCs) were isolated from human UCB which was obtained from a healthy full-term infant. The cells were cultured at a density of 3×10⁵ cells/cm² in DMEM- low-glucose culture media supplemented with 20% FBS, 2 mM L-glutamine, 100 μg/ml streptomycin and 100 U/ml penicillin. Cell cultures were then incubated at 37°C in a humidified 5% CO₂ incubator. After removing non-adherent cells by replacing culture medium, fibroblast-like adherent cells were resuspended in 0.25% trypsin-EDTA and plated in 25 cm² flasks (1×10⁴/ml). Characterization of the MSCs was routinely done by observing their morphology and growth curve. MSCs were subjected to a 2-step hepatocyte differentiation protocol in presence of hepatocyte growth factor (HGF), dexamethazone (DEX) and oncostatin M (OSM). The hepatocyte-like cells derived from MSCs were checked every week for 3 weeks for changes in lipid peroxidation, protein carbonyl formation and DNA oxidation i.e., 8-hydroxy-2'-deoxyguanosine (8-OH-dG) assay. During the 3-week differentiation process of MSCs to hepatocyte-like cells we found that expression liver-specific markers such as albumin, was associated with increased levels of lipid peroxidation and protein carbonyl formation. Whereas, undifferentiated MSCs has relatively low levels of lipid peroxidation products. There was a significant increase ( p < 0.05) in lipid peroxidation products in hepatocytes on days 7, 14, and 21 of differentiation. Likewise, the level of protein carbonyls in the cells was elevated during the differentiation. The level of protein carbonyls measured in hepatocyte-like cells obtained 3 weeks after differentiation induction was estimated to be ~6 fold higher compared to cells recovered on day 7 of differentiation. On the contrary, there was a small but significant decrease in DNA damage marker (8-OH-dG) in hepatocytes recovered 3 weeks after differentiation onset. The level of 8-OHdG which was in consistent with formation of reactive oxygen species (ROS). In conclusion, this data suggest that despite the elevation in oxidation of lipid and protein molecules during hepatocyte development, the cells were normal in terms of DNA integrity, morphology, and biologically activity.

Keywords: adult stem cells, DNA integrity, free radicals, hepatic differentiation

Procedia PDF Downloads 150
939 Data-Driven Approach to Predict Inpatient's Estimated Discharge Date

Authors: Ayliana Dharmawan, Heng Yong Sheng, Zhang Xiaojin, Tan Thai Lian

Abstract:

To facilitate discharge planning, doctors are presently required to assign an Estimated Discharge Date (EDD) for each patient admitted to the hospital. This assignment of the EDD is largely based on the doctor’s judgment. This can be difficult for cases which are complex or relatively new to the doctor. It is hypothesized that a data-driven approach would be able to facilitate the doctors to make accurate estimations of the discharge date. Making use of routinely collected data on inpatient discharges between January 2013 and May 2016, a predictive model was developed using machine learning techniques to predict the Length of Stay (and hence the EDD) of inpatients, at the point of admission. The predictive performance of the model was compared to that of the clinicians using accuracy measures. Overall, the best performing model was found to be able to predict EDD with an accuracy improvement in Average Squared Error (ASE) by -38% as compared to the first EDD determined by the present method. It was found that important predictors of the EDD include the provisional diagnosis code, patient’s age, attending doctor at admission, medical specialty at admission, accommodation type, and the mean length of stay of the patient in the past year. The predictive model can be used as a tool to accurately predict the EDD.

Keywords: inpatient, estimated discharge date, EDD, prediction, data-driven

Procedia PDF Downloads 174
938 Control Flow around NACA 4415 Airfoil Using Slot and Injection

Authors: Imine Zakaria, Meftah Sidi Mohamed El Amine

Abstract:

One of the most vital aerodynamic organs of a flying machine is the wing, which allows it to fly in the air efficiently. The flow around the wing is very sensitive to changes in the angle of attack. Beyond a value, there is a phenomenon of the boundary layer separation on the upper surface, which causes instability and total degradation of aerodynamic performance called a stall. However, controlling flow around an airfoil has become a researcher concern in the aeronautics field. There are two techniques for controlling flow around a wing to improve its aerodynamic performance: passive and active controls. Blowing and suction are among the active techniques that control the boundary layer separation around an airfoil. Their objective is to give energy to the air particles in the boundary layer separation zones and to create vortex structures that will homogenize the velocity near the wall and allow control. Blowing and suction have long been used as flow control actuators around obstacles. In 1904 Prandtl applied a permanent blowing to a cylinder to delay the boundary layer separation. In the present study, several numerical investigations have been developed to predict a turbulent flow around an aerodynamic profile. CFD code was used for several angles of attack in order to validate the present work with that of the literature in the case of a clean profile. The variation of the lift coefficient CL with the momentum coefficient

Keywords: CFD, control flow, lift, slot

Procedia PDF Downloads 200
937 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic

Authors: Fei Gao, Rodolfo C. Raga Jr.

Abstract:

This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.

Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle

Procedia PDF Downloads 77
936 Effect of Plant Growth Regulators on in vitro Biosynthesis of Antioxidative Compounds in Callus Culture and Regenerated Plantlets Derived from Taraxacum officinale

Authors: Neha Sahu, Awantika Singh, Brijesh Kumar, K. R. Arya

Abstract:

Taraxacum officinale Weber or dandelion (Asteraceae) is an important Indian traditional herb used to treat liver detoxification, digestive problems, spleen, hepatic and kidney disorders, etc. The plant is well known to possess important phenolic and flavonoids to serve as a potential source of antioxidative and chemoprotective agents. Biosynthesis of bioactive compounds through in vitro cultures is a requisite for natural resource conservation and to provide an alternative source for pharmaceutical applications. Thus an efficient and reproducible protocol was developed for in vitro biosynthesis of bioactive antioxidative compounds from leaf derived callus and in vitro regenerated cultures of Taraxacum officinale using MS media fortified with various combinations of auxins and cytokinins. MS media containing 0.25 mg/l 2, 4-D (2, 4-Dichloro phenoxyacetic acid) with 0.05 mg/l 2-iP [N6-(2-Isopentenyl adenine)] was found as an effective combination for the establishment of callus with 92 % callus induction frequency. Moreover, 2.5 mg/l NAA (α-Naphthalene acetic acid) with 0.5 mg/l BAP (6-Benzyl aminopurine) and 1.5 mg/l NAA showed the optimal response for in vitro plant regeneration with 80 % regeneration frequency and rooting respectively. In vitro regenerated plantlets were further transferred to soil and acclimatized. Quantitative variability of accumulated bioactive compounds in cultures (in vitro callus, plantlets and acclimatized) were determined through UPLC-MS/MS (ultra-performance liquid chromatography-triple quadrupole-linear ion trap mass spectrometry) and compared with wild plants. The phytochemical determination of in vitro and wild grown samples showed the accumulation of 6 compounds. In in vitro callus cultures and regenerated plantlets, two major antioxidative compounds i.e. chlorogenic acid (14950.0 µg/g and 4086.67 µg/g) and umbelliferone (10400.00 µg/g and 2541.67 µg/g) were found respectively. Scopoletin was found to be highest in vitro regenerated plants (83.11 µg/g) as compared to wild plants (52.75 µg/g). Notably, scopoletin is not detected in callus and acclimatized plants, but quinic acid (6433.33 µg/g) and protocatechuic acid (92.33 µg/g) were accumulated at the highest level in acclimatized plants as compared to other samples. Wild grown plants contained highest content (948.33 µg/g) of flavonoid glycoside i.e. luteolin-7-O-glucoside. Our data suggests that in vitro callus and regenerated plants biosynthesized higher content of antioxidative compounds in controlled conditions when compared to wild grown plants. These standardized cultural conditions may be explored as a sustainable source of plant materials for enhanced production and adequate supply of oxidative polyphenols.

Keywords: anti-oxidative compounds, in vitro cultures, Taraxacum officinale, UPLC-MS/MS

Procedia PDF Downloads 203
935 Hyperelastic Constitutive Modelling of the Male Pelvic System to Understand the Prostate Motion, Deformation and Neoplasms Location with the Influence of MRI-TRUS Fusion Biopsy

Authors: Muhammad Qasim, Dolors Puigjaner, Josep Maria López, Joan Herrero, Carme Olivé, Gerard Fortuny

Abstract:

Computational modeling of the human pelvis using the finite element (FE) method has become extremely important to understand the mechanics of prostate motion and deformation when transrectal ultrasound (TRUS) guided biopsy is performed. The number of reliable and validated hyperelastic constitutive FE models of the male pelvis region is limited, and given models did not precisely describe the anatomical behavior of pelvis organs, mainly of the prostate and its neoplasms location. The motion and deformation of the prostate during TRUS-guided biopsy makes it difficult to know the location of potential lesions in advance. When using this procedure, practitioners can only provide roughly estimations for the lesions locations. Consequently, multiple biopsy samples are required to target one single lesion. In this study, the whole pelvis model (comprised of the rectum, bladder, pelvic muscles, prostate transitional zone (TZ), and peripheral zone (PZ)) is used for the simulation results. An isotropic hyperelastic approach (Signorini model) was used for all the soft tissues except the vesical muscles. The vesical muscles are assumed to have a linear elastic behavior due to the lack of experimental data to determine the constants involved in hyperelastic models. The tissues and organ geometry is taken from the existing literature for 3D meshes. Then the biomechanical parameters were obtained under different testing techniques described in the literature. The acquired parametric values for uniaxial stress/strain data are used in the Signorini model to see the anatomical behavior of the pelvis model. The five mesh nodes in terms of small prostate lesions are selected prior to biopsy and each lesion’s final position is targeted when TRUS probe force of 30 N is applied at the inside rectum wall. Code_Aster open-source software is used for numerical simulations. Moreover, the overall effects of pelvis organ deformation were demonstrated when TRUS–guided biopsy is induced. The deformation of the prostate and neoplasms displacement showed that the appropriate material properties to organs altered the resulting lesion's migration parametrically. As a result, the distance traveled by these lesions ranged between 3.77 and 9.42 mm. The lesion displacement and organ deformation are compared and analyzed with our previous study in which we used linear elastic properties for all pelvic organs. Furthermore, the visual comparison of axial and sagittal slices are also compared, which is taken for Magnetic Resource Imaging (MRI) and TRUS images with our preliminary study.

Keywords: code-aster, magnetic resonance imaging, neoplasms, transrectal ultrasound, TRUS-guided biopsy

Procedia PDF Downloads 87
934 Advances in Artificial intelligence Using Speech Recognition

Authors: Khaled M. Alhawiti

Abstract:

This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.

Keywords: speech recognition, acoustic phonetic, artificial intelligence, hidden markov models (HMM), statistical models of speech recognition, human machine performance

Procedia PDF Downloads 478
933 Islam and Democracy: A Paradoxical Study of Syed Maududi and Javed Ghamidi

Authors: Waseem Makai

Abstract:

The term ‘political Islam’ now seem to have gained the centre stage in every discourse pertaining to Islamic legitimacy and compatibility in modern civilisations. A never ceasing tradition of the philosophy of caliphate that has kept overriding the options of any alternate political institution in the Muslim world still permeates a huge faction of believers. Fully accustomed with the proliferation of changes and developments in individual, social and natural dispositions of the world, Islamic theologians retaliated to this flux through both conventional and modernist approaches. The so-called conventional approach was quintessential of the interpretations put forth by Syed Maududi, with new comprehensive, academic and powerful vigour, as never seen before. He generated the avant-garde scholarship which would bear testimony to his statements, made to uphold the political institution of Islam as supreme and noble. However, it was not his trait to challenge the established views but to codify them in such a bracket which a man of the 20th century would find captivating to his heart and satisfactory to his rationale. The delicate microcosms like selection of a caliph, implementation of Islamic commandments (Sharia), interest free banking sectors, imposing tax (Jazyah) on non-believers, waging the holy crusade (Jihad) for the expansion of Islamic boundaries, stoning for committing adulteration and capital punishment for apostates were all there in his scholarship which he spent whole of his life defending in the best possible manner. What and where did he went wrong with all this, was supposedly to be notified later, by his once been disciple, Javed Ahmad Ghamidi. Ghamidi is being accused of struggling between Scylla and Charybdis as he tries to remain steadfast to his basic Islamic tenets while modernising their interpretations to bring them in harmony with the Western ideals of democracy and liberty. His blatant acknowledgement of putting democracy at a high pedestal, calling the implementation of Sharia a non-mandatory task and denial to bracket people in the categories of Zimmi and Kaafir fully vindicates his stance against conventional narratives like that of Syed Maududi. Ghamidi goes to the extent of attributing current forms of radicalism and extremism, as exemplified in the operations of organisations like ISIS in Iraq and Syria and Tehreek-e-Taliban in Pakistan, to such a version of political Islam as upheld not only by Syed Maududi but by other prominent theologians like Ibn-Timyah, Syed Qutub and Dr. Israr Ahmad also. Ghamidi is wretched, in a way that his allegedly insubstantial claims gained him enough hostilities to leave his homeland when two of his close allies were brutally murdered. Syed Maududi and Javed Ghamidi, both stand poles apart in their understanding of Islam and its political domain. Who has the appropriate methodology, scholarship and execution in his mode of comprehension, is an intriguing task, worth carrying out in detail.

Keywords: caliphate, democracy, ghamidi, maududi

Procedia PDF Downloads 201
932 A Visualization Classification Method for Identifying the Decayed Citrus Fruit Infected by Fungi Based on Hyperspectral Imaging

Authors: Jiangbo Li, Wenqian Huang

Abstract:

Early detection of fungal infection in citrus fruit is one of the major problems in the postharvest commercialization process. The automatic and nondestructive detection of infected fruits is still a challenge for the citrus industry. At present, the visual inspection of rotten citrus fruits is commonly performed by workers through the ultraviolet induction fluorescence technology or manual sorting in citrus packinghouses to remove fruit subject with fungal infection. However, the former entails a number of problems because exposing people to this kind of lighting is potentially hazardous to human health, and the latter is very inefficient. Orange is used as a research object. This study would focus on this problem and proposed an effective method based on Vis-NIR hyperspectral imaging in the wavelength range of 400-1000 nm with a spectroscopic resolution of 2.8 nm. In this work, three normalization approaches are applied prior to analysis to reduce the effect of sample curvature on spectral profiles, and it is found that mean normalization was the most effective pretreatment for decreasing spectral variability due to curvature. Then, principal component analysis (PCA) was applied to a dataset composing of average spectra from decayed and normal tissue to reduce the dimensionality of data and observe the ability of Vis-NIR hyper-spectra to discriminate data from two classes. In this case, it was observed that normal and decayed spectra were separable along the resultant first principal component (PC1) axis. Subsequently, five wavelengths (band) centered at 577, 702, 751, 808, and 923 nm were selected as the characteristic wavelengths by analyzing the loadings of PC1. A multispectral combination image was generated based on five selected characteristic wavelength images. Based on the obtained multispectral combination image, the intensity slicing pseudocolor image processing method is used to generate a 2-D visual classification image that would enhance the contrast between normal and decayed tissue. Finally, an image segmentation algorithm for detection of decayed fruit was developed based on the pseudocolor image coupled with a simple thresholding method. For the investigated 238 independent set samples including infected fruits infected by Penicillium digitatum and normal fruits, the total success rate is 100% and 97.5%, respectively, and, the proposed algorithm also used to identify the orange infected by penicillium italicum with a 100% identification accuracy, indicating that the proposed multispectral algorithm here is an effective method and it is potential to be applied in citrus industry.

Keywords: citrus fruit, early rotten, fungal infection, hyperspectral imaging

Procedia PDF Downloads 304
931 The Reflection Framework to Enhance the User Experience for Cultural Heritage Spaces’ Websites in Post-Pandemic Times

Authors: Duyen Lam, Thuong Hoang, Atul Sajjanhar, Feifei Chen

Abstract:

With the emerging interactive technology applications helping users connect progressively with cultural artefacts in new approaches, the cultural heritage sector gains significantly. The interactive apps’ issues can be tested via several techniques, including usability surveys and usability evaluations. The severe usability problems for museums’ interactive technologies commonly involve interactions, control, and navigation processes. This study confirms the low quality of being immersive for audio guides in navigating the exhibition and involving experience in the virtual environment, which are the most vital features of new interactive technologies such as AR and VR. In addition, our usability surveys and heuristic evaluations disclosed many usability issues of these interactive technologies relating to interaction functions. Additionally, we use the Wayback Machine to examine what interactive apps/technologies were deployed on these websites during the physical visits limited due to the COVID-19 pandemic lockdown. Based on those inputs, we propose the reflection framework to enhance the UX in the cultural heritage domain with detailed guidelines.

Keywords: framework, user experience, cultural heritage, interactive technology, museum, COVID-19 pandemic, usability survey, heuristic evaluation, guidelines

Procedia PDF Downloads 69
930 Basics of Gamma Ray Burst and Its Afterglow

Authors: Swapnil Kumar Singh

Abstract:

Gamma-ray bursts (GRB's), short and intense pulses of low-energy γ rays, have fascinated astronomers and astrophysicists since their unexpected discovery in the late sixties. GRB'sare accompanied by long-lasting afterglows, and they are associated with core-collapse supernovae. The detection of delayed emission in X-ray, optical, and radio wavelength, or "afterglow," following a γ-ray burst can be described as the emission of a relativistic shell decelerating upon collision with the interstellar medium. While it is fair to say that there is strong diversity amongst the afterglow population, probably reflecting diversity in the energy, luminosity, shock efficiency, baryon loading, progenitor properties, circumstellar medium, and more, the afterglows of GRBs do appear more similar than the bursts themselves, and it is possible to identify common features within afterglows that lead to some canonical expectations. After an initial flash of gamma rays, a longer-lived "afterglow" is usually emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, microwave, and radio). It is a slowly fading emission at longer wavelengths created by collisions between the burst ejecta and interstellar gas. In X-ray wavelengths, the GRB afterglow fades quickly at first, then transitions to a less-steep drop-off (it does other stuff after that, but we'll ignore that for now). During these early phases, the X-ray afterglow has a spectrum that looks like a power law: flux F∝ E^β, where E is energy and beta is some number called the spectral index. This kind of spectrum is characteristic of synchrotron emission, which is produced when charged particles spiral around magnetic field lines at close to the speed of light. In addition to the outgoing forward shock that ploughs into the interstellar medium, there is also a so-called reverse shock, which propagates backward through the ejecta. In many ways," reverse" shock can be misleading; this shock is still moving outward from the restframe of the star at relativistic velocity but is ploughing backward through the ejecta in their frame and is slowing the expansion. This reverse shock can be dynamically important, as it can carry comparable energy to the forward shock. The early phases of the GRB afterglow still provide a good description even if the GRB is highly collimated since the individual emitting regions of the outflow are not in causal contact at large angles and so behave as though they are expanding isotropically. The majority of afterglows, at times typically observed, fall in the slow cooling regime, and the cooling break lies between the optical and the X-ray. Numerous observations support this broad picture for afterglows in the spectral energy distribution of the afterglow of the very bright GRB. The bluer light (optical and X-ray) appears to follow a typical synchrotron forward shock expectation (note that the apparent features in the X-ray and optical spectrum are due to the presence of dust within the host galaxy). We need more research in GRB and Particle Physics in order to unfold the mysteries of afterglow.

Keywords: GRB, synchrotron, X-ray, isotropic energy

Procedia PDF Downloads 89
929 Electroencephalogram Based Approach for Mental Stress Detection during Gameplay with Level Prediction

Authors: Priyadarsini Samal, Rajesh Singla

Abstract:

Many mobile games come with the benefits of entertainment by introducing stress to the human brain. In recognizing this mental stress, the brain-computer interface (BCI) plays an important role. It has various neuroimaging approaches which help in analyzing the brain signals. Electroencephalogram (EEG) is the most commonly used method among them as it is non-invasive, portable, and economical. Here, this paper investigates the pattern in brain signals when introduced with mental stress. Two healthy volunteers played a game whose aim was to search hidden words from the grid, and the levels were chosen randomly. The EEG signals during gameplay were recorded to investigate the impacts of stress with the changing levels from easy to medium to hard. A total of 16 features of EEG were analyzed for this experiment which includes power band features with relative powers, event-related desynchronization, along statistical features. Support vector machine was used as the classifier, which resulted in an accuracy of 93.9% for three-level stress analysis; for two levels, the accuracy of 92% and 98% are achieved. In addition to that, another game that was similar in nature was played by the volunteers. A suitable regression model was designed for prediction where the feature sets of the first and second game were used for testing and training purposes, respectively, and an accuracy of 73% was found.

Keywords: brain computer interface, electroencephalogram, regression model, stress, word search

Procedia PDF Downloads 188
928 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50

Procedia PDF Downloads 130
927 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 152
926 The Proposal for a Framework to Face Opacity and Discrimination ‘Sins’ Caused by Consumer Creditworthiness Machines in the EU

Authors: Diogo José Morgado Rebelo, Francisco António Carneiro Pacheco de Andrade, Paulo Jorge Freitas de Oliveira Novais

Abstract:

Not everything in AI-power consumer credit scoring turns out to be a wonder. When using AI in Creditworthiness Assessment (CWA), opacity and unfairness ‘sins’ must be considered to the task be deemed Responsible. AI software is not always 100% accurate, which can lead to misclassification. Discrimination of some groups can be exponentiated. A hetero personalized identity can be imposed on the individual(s) affected. Also, autonomous CWA sometimes lacks transparency when using black box models. However, for this intended purpose, human analysts ‘on-the-loop’ might not be the best remedy consumers are looking for in credit. This study seeks to explore the legality of implementing a Multi-Agent System (MAS) framework in consumer CWA to ensure compliance with the regulation outlined in Article 14(4) of the Proposal for an Artificial Intelligence Act (AIA), dated 21 April 2021 (as per the last corrigendum by the European Parliament on 19 April 2024), Especially with the adoption of Art. 18(8)(9) of the EU Directive 2023/2225, of 18 October, which will go into effect on 20 November 2026, there should be more emphasis on the need for hybrid oversight in AI-driven scoring to ensure fairness and transparency. In fact, the range of EU regulations on AI-based consumer credit will soon impact the AI lending industry locally and globally, as shown by the broad territorial scope of AIA’s Art. 2. Consequently, engineering the law of consumer’s CWA is imperative. Generally, the proposed MAS framework consists of several layers arranged in a specific sequence, as follows: firstly, the Data Layer gathers legitimate predictor sets from traditional sources; then, the Decision Support System Layer, whose Neural Network model is trained using k-fold Cross Validation, provides recommendations based on the feeder data; the eXplainability (XAI) multi-structure comprises Three-Step-Agents; and, lastly, the Oversight Layer has a 'Bottom Stop' for analysts to intervene in a timely manner. From the analysis, one can assure a vital component of this software is the XAY layer. It appears as a transparent curtain covering the AI’s decision-making process, enabling comprehension, reflection, and further feasible oversight. Local Interpretable Model-agnostic Explanations (LIME) might act as a pillar by offering counterfactual insights. SHapley Additive exPlanation (SHAP), another agent in the XAI layer, could address potential discrimination issues, identifying the contribution of each feature to the prediction. Alternatively, for thin or no file consumers, the Suggestion Agent can promote financial inclusion. It uses lawful alternative sources such as the share of wallet, among others, to search for more advantageous solutions to incomplete evaluation appraisals based on genetic programming. Overall, this research aspires to bring the concept of Machine-Centered Anthropocentrism to the table of EU policymaking. It acknowledges that, when put into service, credit analysts no longer exert full control over the data-driven entities programmers have given ‘birth’ to. With similar explanatory agents under supervision, AI itself can become self-accountable, prioritizing human concerns and values. AI decisions should not be vilified inherently. The issue lies in how they are integrated into decision-making and whether they align with non-discrimination principles and transparency rules.

Keywords: creditworthiness assessment, hybrid oversight, machine-centered anthropocentrism, EU policymaking

Procedia PDF Downloads 36
925 Distribution and Diversity of Pyrenocarpous Lichens in India with Special Reference to Forest Health

Authors: Gaurav Kumar Mishra, Sanjeeva Nayaka, Dalip Kumar Upreti

Abstract:

Our nature exhibited presence of a number of unique plants which can be used as indicator of environmental condition of particular place. Lichens are unique plant which has an ability to absorb not only organic, inorganic and metaloties but also absorb radioactive nuclide substances present in the environment. In the present study pyrenocarpous lichens will used as indicator of good forest health in a particular place. The Pyrenocarpous lichens are simple crust forming with black dot like perithecia have few characters for their taxonomical segregation as compared to their foliose and fruticose brethrean. The thallus colour and nature, presence and absence of hypothallus are only few characters of thallus are used to segregate the pyrenocarpous taxa. The fruiting bodies of pyrenolichens i.e. ascocarps are perithecia. The perithecia and the contents found within them posses many important criteria for the segregation of pyrenocarpous lichen taxa. The ascocarp morphology, ascocarp arrangement, the perithecial wall, ascocarp shape and colour, ostiole shape and position, ostiole colour, ascocarp anatomy including type of paraphyses, asci shape and size, ascospores septation, ascospores wall and periphyses are the valuable charcters used for segregation of different pyrenocarpous lichen taxa. India is represented by the occurrence of the 350 species of 44 genera and eleven families. Among the different genera Pyrenula is dominant with 82 species followed by the Porina with 70 species. Recently, systematic of the pyrenocarpous lichens have been revised by American and European lichenologists using phylogenetic methods. Still the taxonomy of pyrenocarpous lichens is in flux and information generated after the completion of this study will play vital role in settlement of the taxonomy of this peculiar group of lichens worldwide. The Indian Himalayan region exhibit rich diversity of pyrenocarpous lichens in India. The western Himalayan region has luxuriance of pyrenocarpous lichens due to its unique topography and climate condition. However, the eastern Himalayan region has rich diversity of pyrenocarpous lichens due to its warmer and moist climate condition. The rich moist and warmer climate in eastern Himalayan region supports forest with dominance of evergreen tree vegetation. The pyrenocarpous lichens communities are good indicator of young and regenerated forest type. The rich diversity of lichens clearly indicates that moist of the forest within the eastern Himalayan region has good health of forest. Due to fast pace of urbanization and other developmental activities will defiantly have adverse effects on the diversity and distribution of pyrenocarpous lichens in different forest type and the present distribution pattern will act as baseline data for carried out future biomonitoring studies in the area.

Keywords: lichen diversity, indicator species, environmental factors, pyrenocarpous

Procedia PDF Downloads 149
924 Nephroprotective Effect of Asparagus falcatus Leaf Extract on Adriamycin Induced Nephrotoxicity in Wistar Rats: A Dose Response Study

Authors: A. M. S. S. Amarasiri, A. P. Attanayake, K. A. P. W. Jayatilaka, L. K. B. Mudduwa

Abstract:

Adriamycin (ADR) is an effective anthracyclin antitumor drug, but its clinical use is limited due to renal toxicity. The leaves of Asparagus falcatus (Family: Liliaceae) have been used in the management of renal diseases since antiquity. In the present investigation, the aqueous leaf extract of A. falcatus was evaluated for acute nephroprotective activity in ADR induced nephrotoxic rats. Nephrotoxicity was induced in healthy male Wistar rats by intraperitoneal administration of ADR 20 mg/kg. The lyophilized powder of the aqueous refluxed (4h) leaf extract of A. falcatus was administered orally at three selected doses; 200, 400 and 600 mg/kg for three consecutive days. Fosinopril sodium (0.09 mg/kg) was used as the standard drug. Administration of the plant extract and the standard drug was commenced 24 hours after the induction of nephrotoxicity to rats. The nephroprotective effect was determined by selected biochemical parameters and by the assessment of histopathology on H and E stained kidney sections. The results were compared to a group of control rats with ADR induced nephrotoxicity. A group of rats administered with the equivalent volume of normal saline served as the healthy control. Administration of ADR 20 mg/kg produced a significant increase in the concentrations of serum creatinine (61%) and urine protein (73%) followed by a significant decrease in serum total protein (21%) and albumin (44%) of the plant extract treated animals compared to the healthy control group (p < 0.05). The aqueous extract of Asparagus falcatus at the three doses; 200, 400 and 600 mg/kg and the standard drug were found to decrease the elevation of concentrations of serum creatinine (33%, 51%, 54% and 42%) and urine protein (8%, 63%, 80% and 86%) respectively. The serum concentrations of total protein (12%, 17%, 29% and 12%) and albumin (3%, 17%, 17% and 16%) were significantly increased compared to the nephrotoxic control group respectively. Assessment of histopathology on H and E stained kidney sections demonstrated that ADR induced renal injury, as evidenced by loss of brush border, cytoplasmic vacuolization, pyknosis in renal tubular epithelial cells, haemorrhages, glomerular congestion and presence of hyaline casts. Treatment with the plant extract and the standard drug resulted in attenuation of the morphological destruction in rats. The results of the present study revealed that the aqueous leaf extract of A. falcatus possesses significant nephroprotective activity against adriamycin induced acute nephrotoxicity. The improved kidney functions were supported with the results of selected biochemical parameters and histological changes observed on H and E stained sections of the kidney tissues in Wistar rats.

Keywords: adriamycin induced nephrotoxicity, asparagus falcatus, biochemical assessment, histopathological assessment, nephroprotective activity

Procedia PDF Downloads 165
923 Difference between 'HDR Ir-192 and Co-60 Sources' for High Dose Rate Brachytherapy Machine

Authors: Md Serajul Islam

Abstract:

High Dose Rate (HDR) Brachytherapy is used for cancer patients. In our country’s prospect, we are using only cervices and breast cancer treatment by using HDR. The air kerma rate in air at a reference distance of less than a meter from the source is the recommended quantity for the specification of gamma ray source Ir-192 in brachytherapy. The absorbed dose for the patients is directly proportional to the air kerma rate. Therefore the air kerma rate should be determined before the first use of the source on patients by qualified medical physicist who is independent from the source manufacturer. The air kerma rate will then be applied in the calculation of the dose delivered to patients in their planning systems. In practice, high dose rate (HDR) Ir-192 afterloader machines are mostly used in brachytherapy treatment. Currently, HDR-Co-60 increasingly comes into operation too. The essential advantage of the use of Co-60 sources is its longer half-life compared to Ir-192. The use of HDRCo-60 afterloading machines is also quite interesting for developing countries. This work describes the dosimetry at HDR afterloading machines according to the protocols IAEA-TECDOC-1274 (2002) with the nuclides Ir-192 and Co-60. We have used 3 different measurement methods (with a ring chamber, with a solid phantom and in free air and with a well chamber) in dependence of each of the protocols. We have shown that the standard deviations of the measured air kerma rate for the Co-60 source are generally larger than those of the Ir-192 source. The measurements with the well chamber had the lowest deviation from the certificate value. In all protocols and methods, the deviations stood for both nuclides by a maximum of about 1% for Ir-192 and 2.5% for Co-60-Sources respectively.

Keywords: Ir-192 source, cancer, patients, cheap treatment cost

Procedia PDF Downloads 239
922 Bhumastra “Unmanned Ground Vehicle”

Authors: Vivek Krishna, Nikhil Jain, A. Mary Posonia A., Albert Mayan J

Abstract:

Terrorism and insurgency are significant global issues that require constant attention and effort from governments and scientists worldwide. To combat these threats, nations invest billions of dollars in developing new defensive technologies to protect civilians. Breakthroughs in vehicle automation have led to the use of sophisticated machines for many dangerous and critical anti-terrorist activities. Our concept of an "Unmanned Ground Vehicle" can carry out tasks such as border security, surveillance, mine detection, and active combat independently or in tandem with human control. The robot's movement can be wirelessly controlled by a person in a distant location or can travel to a pre-programmed destination autonomously in situations where personal control is not feasible. Our defence system comprises two units: the control unit that regulates mobility and the motion tracking unit. The remote operator robot uses the camera's live visual feed to manually operate both units, and the rover can automatically detect movement. The rover is operated by manpower who controls it using a joystick or mouse, and a wireless modem enables a soldier in a combat zone to control the rover via an additional controller feature.

Keywords: robotics, computer vision, Machine learning, Artificial intelligence, future of AI

Procedia PDF Downloads 126
921 A Sociolinguistic Approach to the Translation of Children’s Literature: Exploring Identity Issues in the American English Translation of Manolito Gafotas

Authors: Owen Harrington-Fernandez, Pilar Alderete-Diez

Abstract:

Up until recently, translation studies treated children’s literature as something of a marginal preoccupation, but the recent attention that this text type has attracted suggests that it may be fertile ground for research. This paper contributes to this new research avenue by applying a sociolinguistic theoretical framework to explore issues around the intersubjective co-construction of identity in the American English translation of the Spanish children’s story, Manolito Gafotas. The application of Bucholtz and Hall’s framework achieves two objectives: (1) it identifies shifts in the translation of the main character’s behaviour as culturally and morally motivated manipulations, and (2) it demonstrates how the context of translation becomes the very censorship machine that delegitimises the identity of the main character, and, concomitantly, the identity of the implied reader(s). If we take identity to be an intersubjective phenomenon, then it logicall follows that expurgating the identity of the main character necessarily shifts the identity of the implied reader(s) also. It is a double censorship of identity carried out under the auspices of an intellectual colonisation of a Spanish text. After reporting on the results of the analysis, the paper ends by raising the question of censorship in translation, and, more specifically, in children’s literature, in order to promote debate around this topic.

Keywords: censorship, identity, sociolinguistics, translation

Procedia PDF Downloads 261
920 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification

Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh

Abstract:

Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.

Keywords: cancer classification, feature selection, deep learning, genetic algorithm

Procedia PDF Downloads 112
919 Study of Isoprene Emissions in Biogenic ad Anthropogenic Environment in Urban Atmosphere of Delhi: The Capital City of India

Authors: Prabhat Kashyap, Krishan Kumar

Abstract:

Delhi, the capital of India, is one of the most populated and polluted city among the world. In terms of air quality, Delhi’s air is degrading day by day & becomes worst of any major city in the world. The role of biogenic volatile organic compounds (BVOCs) is not much studied in cities like Delhi as a culprit for degraded air quality. They not only play a critical role in rural areas but also determine the atmospheric chemistry of urban areas as well. Particularly, Isoprene (2-methyl 1,3-butadiene, C5H8) is the single largest emitted compound among other BVOCs globally, that influence the tropospheric ozone chemistry in urban environment as the ozone forming potential of isoprene is very high. It is mainly emitted by vegetation & a small but significant portion is also released by vehicular exhaust of petrol operated vehicles. This study investigates the spatial and temporal variations of quantitative measurements of isoprene emissions along with different traffic tracers in 2 different seasons (post-monsoon & winter) at four different locations of Delhi. For the quantification of anthropogenic and biogenic isoprene, two sites from traffic intersections (Punjabi Bagh & CRRI) and two sites from vegetative locations (JNU & Yamuna Biodiversity Park) were selected in the vicinity of isoprene emitting tree species like Ficus religiosa, Dalbergia sissoo, Eucalyptus species etc. The concentrations of traffic tracers like benzene, toluene were also determined & their robust ratios with isoprene were used to differentiate anthropogenic isoprene with biogenic portion at each site. The ozone forming potential (OFP) of all selected species along with isoprene was also estimated. For collection of intra-day samples (3 times a day) in each season, a pre-conditioned fenceline monitoring (FLM) carbopack X thermal desorption tubes were used and further analysis was done with Gas chromatography attached with mass spectrometry (GC-MS). The results of the study proposed that the ambient air isoprene is always higher in post-monsoon season as compared to winter season at all the sites because of high temperature & intense sunlight. The maximum isoprene emission flux was always observed during afternoon hours in both seasons at all sites. The maximum isoprene concentration was found to be 13.95 ppbv at Biodiversity Park during afternoon time in post monsoon season while the lower concentration was observed as low as 0.07 ppbv at the same location during morning hours in winter season. OFP of isoprene at vegetation sites is very high during post-monsoon because of high concentrations. However, OFP for other traffic tracers were high during winter seasons & at traffic locations. Furthermore, high correlation between isoprene emissions with traffic volume at traffic sites revealed that a noteworthy share of its emission also originates from road traffic.

Keywords: biogenic VOCs, isoprene emission, anthropogenic isoprene, urban vegetation

Procedia PDF Downloads 116
918 A Simulation-Optimization Approach to Control Production, Subcontracting and Maintenance Decisions for a Deteriorating Production System

Authors: Héctor Rivera-Gómez, Eva Selene Hernández-Gress, Oscar Montaño-Arango, Jose Ramon Corona-Armenta

Abstract:

This research studies the joint production, maintenance and subcontracting control policy for an unreliable deteriorating manufacturing system. Production activities are controlled by a derivation of the Hedging Point Policy, and given that the system is subject to deterioration, it reduces progressively its capacity to satisfy product demand. Multiple deterioration effects are considered, reflected mainly in the quality of the parts produced and the reliability of the machine. Subcontracting is available as support to satisfy product demand; also overhaul maintenance can be conducted to reduce the effects of deterioration. The main objective of the research is to determine simultaneously the production, maintenance and subcontracting rate which minimize the total incurred cost. A stochastic dynamic programming model is developed and solved through a simulation-based approach composed of statistical analysis and optimization with the response surface methodology. The obtained results highlight the strong interactions between production, deterioration and quality which justify the development of an integrated model. A numerical example and a sensitivity analysis are presented to validate our results.

Keywords: subcontracting, optimal control, deterioration, simulation, production planning

Procedia PDF Downloads 580
917 AI and the Future of Misinformation: Opportunities and Challenges

Authors: Noor Azwa Azreen Binti Abd. Aziz, Muhamad Zaim Bin Mohd Rozi

Abstract:

Moving towards the 4th Industrial Revolution, artificial intelligence (AI) is now more popular than ever. This subject is gaining significance every day and is continually expanding, often merging with other fields. Instead of merely being passive observers, there are benefits to understanding modern technology by delving into its inner workings. However, in a world teeming with digital information, the impact of AI on the spread of disinformation has garnered significant attention. The dissemination of inaccurate or misleading information is referred to as misinformation, posing a serious threat to democratic society, public debate, and individual decision-making. This article delves deep into the connection between AI and the dissemination of false information, exploring its potential, risks, and ethical issues as AI technology advances. The rise of AI has ushered in a new era in the dissemination of misinformation as AI-driven technologies are increasingly responsible for curating, recommending, and amplifying information on online platforms. While AI holds the potential to enhance the detection and mitigation of misinformation through natural language processing and machine learning, it also raises concerns about the amplification and propagation of false information. AI-powered deepfake technology, for instance, can generate hyper-realistic videos and audio recordings, making it increasingly challenging to discern fact from fiction.

Keywords: artificial intelligence, digital information, disinformation, ethical issues, misinformation

Procedia PDF Downloads 95
916 Correlation Analysis to Quantify Learning Outcomes for Different Teaching Pedagogies

Authors: Kanika Sood, Sijie Shang

Abstract:

A fundamental goal of education includes preparing students to become a part of the global workforce by making beneficial contributions to society. In this paper, we analyze student performance for multiple courses that involve different teaching pedagogies: a cooperative learning technique and an inquiry-based learning strategy. Student performance includes student engagement, grades, and attendance records. We perform this study in the Computer Science department for online and in-person courses for 450 students. We will perform correlation analysis to study the relationship between student scores and other parameters such as gender, mode of learning. We use natural language processing and machine learning to analyze student feedback data and performance data. We assess the learning outcomes of two teaching pedagogies for undergraduate and graduate courses to showcase the impact of pedagogical adoption and learning outcome as determinants of academic achievement. Early findings suggest that when using the specified pedagogies, students become experts on their topics and illustrate enhanced engagement with peers.

Keywords: bag-of-words, cooperative learning, education, inquiry-based learning, in-person learning, natural language processing, online learning, sentiment analysis, teaching pedagogy

Procedia PDF Downloads 77
915 Performance of On-site Earthquake Early Warning Systems for Different Sensor Locations

Authors: Ting-Yu Hsu, Shyu-Yu Wu, Shieh-Kung Huang, Hung-Wei Chiang, Kung-Chun Lu, Pei-Yang Lin, Kuo-Liang Wen

Abstract:

Regional earthquake early warning (EEW) systems are not suitable for Taiwan, as most destructive seismic hazards arise due to in-land earthquakes. These likely cause the lead-time provided by regional EEW systems before a destructive earthquake wave arrives to become null. On the other hand, an on-site EEW system can provide more lead-time at a region closer to an epicenter, since only seismic information of the target site is required. Instead of leveraging the information of several stations, the on-site system extracts some P-wave features from the first few seconds of vertical ground acceleration of a single station and performs a prediction of the oncoming earthquake intensity at the same station according to these features. Since seismometers could be triggered by non-earthquake events such as a passing of a truck or other human activities, to reduce the likelihood of false alarms, a seismometer was installed at three different locations on the same site and the performance of the EEW system for these three sensor locations were discussed. The results show that the location on the ground of the first floor of a school building maybe a good choice, since the false alarms could be reduced and the cost for installation and maintenance is the lowest.

Keywords: earthquake early warning, on-site, seismometer location, support vector machine

Procedia PDF Downloads 244
914 Combination Therapies Targeting Apoptosis Pathways in Pediatric Acute Myeloid Leukemia (AML)

Authors: Ahlam Ali, Katrina Lappin, Jaine Blayney, Ken Mills

Abstract:

Leukaemia is the most frequently (30%) occurring type of paediatric cancer. Of these, approximately 80% are acute lymphoblastic leukaemia (ALL) with acute myeloid leukaemia (AML) cases making up the remaining 20% alongside other leukaemias. Unfortunately, children with AML do not have promising prognosis with only 60% surviving 5 years or longer. It has been highlighted recently the need for age-specific therapies for AML patients, with paediatric AML cases having a different mutational landscape compared with AML diagnosed in adult patients. Drug Repurposing is a recognized strategy in drug discovery and development where an already approved drug is used for diseases other than originally indicated. We aim to identify novel combination therapies with the promise of providing alternative more effective and less toxic induction therapy options. Our in-silico analysis highlighted ‘cell death and survival’ as an aberrant, potentially targetable pathway in paediatric AML patients. On this basis, 83 apoptotic inducing compounds were screened. A preliminary single agent screen was also performed to eliminate potentially toxic chemicals, then drugs were constructed into a pooled library with 10 drugs per well over 160 wells, with 45 possible pairs and 120 triples in each well. Seven cell lines were used during this study to represent the clonality of AML in paediatric patients (Kasumi-1, CMK, CMS, MV11-14, PL21, THP1, MOLM-13). Cytotoxicity was assessed up to 72 hours using CellTox™ Green reagent. Fluorescence readings were normalized to a DMSO control. Z-Score was assigned to each well based on the mean and standard deviation of all the data. Combinations with a Z-Score <2 were eliminated and the remaining wells were taken forward for further analysis. A well was considered ‘successful’ if each drug individually demonstrated a Z-Score <2, while the combination exhibited a Z-Score >2. Each of the ten compounds in one well (155) had minimal or no effect as single agents on cell viability however, a combination of two or more of the compounds resulted in a substantial increase in cell death, therefore the ten compounds were de-convoluted to identify a possible synergistic pair/triple combinations. The screen identified two possible ‘novel’ drug pairing, with BCL2 inhibitor ABT-737, combined with either a CDK inhibitor Purvalanol A, or AKT/ PI3K inhibitor LY294002. (ABT-737- 100 nM+ Purvalanol A- 1 µM) (ABT-737- 100 nM+ LY294002- 2 µM). Three possible triple combinations were identified (LY2409881+Akti-1/2+Purvalanol A, SU9516+Akti-1/2+Purvalanol A, and ABT-737+LY2409881+Purvalanol A), which will be taken forward for examining their efficacy at varying concentrations and dosing schedules, across multiple paediatric AML cell lines for optimisation of maximum synergy. We believe that our combination screening approach has potential for future use with a larger cohort of drugs including FDA approved compounds and patient material.

Keywords: AML, drug repurposing, ABT-737, apoptosis

Procedia PDF Downloads 205
913 Application of Latent Class Analysis and Self-Organizing Maps for the Prediction of Treatment Outcomes for Chronic Fatigue Syndrome

Authors: Ben Clapperton, Daniel Stahl, Kimberley Goldsmith, Trudie Chalder

Abstract:

Chronic fatigue syndrome (CFS) is a condition characterised by chronic disabling fatigue and other symptoms that currently can't be explained by any underlying medical condition. Although clinical trials support the effectiveness of cognitive behaviour therapy (CBT), the success rate for individual patients is modest. Patients vary in their response and little is known which factors predict or moderate treatment outcomes. The aim of the project is to develop a prediction model from baseline characteristics of patients, such as demographics, clinical and psychological variables, which may predict likely treatment outcome and provide guidance for clinical decision making and help clinicians to recommend the best treatment. The project is aimed at identifying subgroups of patients with similar baseline characteristics that are predictive of treatment effects using modern cluster analyses and data mining machine learning algorithms. The characteristics of these groups will then be used to inform the types of individuals who benefit from a specific treatment. In addition, results will provide a better understanding of for whom the treatment works. The suitability of different clustering methods to identify subgroups and their response to different treatments of CFS patients is compared.

Keywords: chronic fatigue syndrome, latent class analysis, prediction modelling, self-organizing maps

Procedia PDF Downloads 226
912 Correlation of Material Mechanical Characteristics Obtained by Means of Standardized and Miniature Test Specimens

Authors: Vaclav Mentl, P. Zlabek, J. Volak

Abstract:

New methods of mechanical testing were developed recently that are based on making use of miniature test specimens (e.g. Small Punch Test). The most important advantage of these method is the nearly non-destructive withdrawal of test material and small size of test specimen what is interesting in cases of remaining lifetime assessment when a sufficient volume of the representative material cannot be withdrawn of the component in question. In opposite, the most important disadvantage of such methods stems from the necessity to correlate test results with the results of standardised test procedures and to build up a database of material data in service. The correlations among the miniature test specimen data and the results of standardised tests are necessary. The paper describes the results of fatigue tests performed on miniature tests specimens in comparison with traditional fatigue tests for several steels applied in power producing industry. Special miniature test specimens fixtures were designed and manufactured for the purposes of fatigue testing at the Zwick/Roell 10HPF5100 testing machine. The miniature test specimens were produced of the traditional test specimens. Seven different steels were fatigue loaded (R = 0.1) at room temperature.

Keywords: mechanical properties, miniature test specimens, correlations, small punch test, micro-tensile test, mini-charpy impact test

Procedia PDF Downloads 540