Search results for: simulated rainfall events
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4336

Search results for: simulated rainfall events

676 Comparative Coverage Analysis of Football and Other Sports by the Leading English Newspapers of India during FIFA World Cup 2014

Authors: Rajender Lal, Seema Kaushik

Abstract:

The FIFA World Cup, often simply called the World Cup, is an international association football competition contested by the senior men's national teams of the members of Fédération Internationale de Football Association (FIFA), the sport's global governing body. The championship has been awarded every four years since the inaugural tournament in 1930, except in 1942 and 1946 when it was not held because of the Second World War. Its 20th edition took place in Brazil from 12 June to 13 July 2014, which was won by Germany. The World Cup is the most widely viewed and followed sporting event in the world, exceeding even the Olympic Games; the cumulative audience of all matches of the 2006 FIFA World Cup was estimated to be 26.29 billion with an estimated 715.1 million people watching the final match, a ninth of the entire population of the planet. General-interest newspapers typically publish news articles and feature articles on national and international news as well as local news. The news includes political events and personalities, business and finance, crime, severe weather, and natural disasters; health and medicine, science, and technology; sports; and entertainment, society, food and cooking, clothing and home fashion, and the arts. It became curiosity to investigate that how much coverage is given to this most widely viewed international event as compared to other sports in India. Hence, the present study was conducted with the aim of examining the comparative coverage of FIFA World Cup 2014 and other sports in the four leading Newspapers of India including Hindustan Times, The Hindu, The Times of India, and The Tribune. Specific objectives were to measure the source of news, type of news items and the placement of news related to FIFA World Cup and other sports. Representative sample of ten editions each of the four English dailies was chosen for the purpose of the study. The analysis was based on the actual scanning of data from the representative sample of the dailies for the period of the competition. It can be concluded from the analysis that this event was given maximum coverage by the Hindustan Times while other sports were equally covered by The Hindu.

Keywords: coverage analysis, FIFA World Cup 2014, Hindustan Times, the Hindu, The Times of India, The Tribune

Procedia PDF Downloads 286
675 Developing Cause-effect Model of Urban Resilience versus Flood in Karaj City using TOPSIS and Shannon Entropy Techniques

Authors: Mohammad Saber Eslamlou, Manouchehr Tabibian, Mahta Mirmoghtadaei

Abstract:

The history of urban development and the increasing complexities of urban life have long been intertwined with different natural and man-made disasters. Sometimes, these unpleasant events have destroyed the cities forever. The growth of the urban population and the increase of social and economic resources in the cities increased the importance of developing a holistic approach to dealing with unknown urban disasters. As a result, the interest in resilience has increased in most of the scientific fields, and the urban planning literature has been enriched with the studies of the social, economic, infrastructural, and physical abilities of the cities. In this regard, different conceptual frameworks and patterns have been developed focusing on dimensions of resilience and different kinds of disasters. As the most frequent and likely natural disaster in Iran is flooding, the present study aims to develop a cause-effect model of urban resilience against flood in Karaj City. In this theoretical study, desk research and documentary studies were used to find the elements and dimensions of urban resilience. In this regard, 6 dimensions and 32 elements were found for urban resilience and a questionnaire was made by considering the requirements of TOPSIS techniques (pairwise comparison). The sample of the research consisted of 10 participants who were faculty members, academicians, board members of research centers, managers of the Ministry of Road and Urban Development, board members of New Towns Development Company, experts, and practitioners of consulting companies who had scientific and research backgrounds. The gathered data in this survey were analyzed using TOPSIS and Shannon Entropy techniques. The results show that Infrastructure/Physical, Social, Organizational/ Institutional, Structural/Physical, Economic, and Environmental dimensions are the most effective factors in urban resilience against floods in Karaj, respectively. Finally, a comprehensive model and a systematic framework of factors that affect the urban resilience of Karaj against floods was developed. This cause – effect model shows how different factors are related and influence each other, based on their connected structure and preferences.

Keywords: urban resilience, TOPSIS, Shannon entropy, cause-effect model of resilience, flood

Procedia PDF Downloads 58
674 Netnography Research in Leisure, Tourism, and Hospitality: Lessons from Research and Education

Authors: Marisa P. De Brito

Abstract:

The internet is affecting the way the industry operates and communicates. It is also becoming a customary means for leisure, tourism, and hospitality consumers to seek and exchange information and views on hotels, destinations events and attractions, or to develop social ties with other users. On the one hand, the internet is a rich field to conduct leisure, tourism, and hospitality research; on the other hand, however, there are few researchers formally embracing online methods of research, such as netnography. Within social sciences, netnography falls under the interpretative/ethnographic research methods umbrella. It is an adaptation of anthropological techniques such as participant and non-participant observation, used to study online interactions happening on social media platforms, such as Facebook. It is, therefore, a research method applied to the study of online communities, being the term itself a contraction of the words network (as on internet), and ethnography. It was developed in the context of marketing research in the nineties, and in the last twenty years, it has spread to other contexts such as education, psychology, or urban studies. Since netnography is not universally known, it may discourage researchers and educators from using it. This work offers guidelines for researchers wanting to apply this method in the field of leisure, tourism, and hospitality or for educators wanting to teach about it. This is done by means of a double approach: a content analysis of the literature side-by-side with educational data, on the use of netnography. The content analysis is of the incidental research using netnography in leisure, tourism, and hospitality in the last twenty years. The educational data is the author and her colleagues’ experience in coaching students throughout the process of writing a paper using primary netnographic data - from identifying the phenomenon to be studied, selecting an online community, collecting and analyzing data to writing their findings. In the end, this work puts forward, on the one hand, a research agenda, and on the other hand, an educational roadmap for those wanting to apply netnography in the field or the classroom. The educator’s roadmap will summarise what can be expected from mini-netnographies conducted by students and how to set it up. The research agenda will highlight for which issues and research questions the method is most suitable; what are the most common bottlenecks and drawbacks of the method and of its application, but also where most knowledge opportunities lay.

Keywords: netnography, online research, research agenda, educator's roadmap

Procedia PDF Downloads 186
673 Ways to Effectively Use Tourism Potential Through International Marketing and PR Communication Strategy in the Post-pandemic Period (On the Example of Georgia)

Authors: Marine Kobalava

Abstract:

The article analyzes the level of Georgia's tourism potential usage during the pandemic. The conclusion is drawnthat Georgia, as a tourism brand, is in a significant crisis at this stage, revenues from this sector have been substantially reduced, communication with potential customers is interrupted, no international marketing and PR communication strategies have been developed for the post-pandemic period. In order to rehabilitate the tourism industry of Georgia, it is considered vital to take measures using international marketing and PR communication strategies adjusted to the needs of the sectorthat will improve the use of tourism potential and stimulate the development of the sector. The goal of the research is to identify the factors hindering the use of tourism potential in the direction of international marketing and PR communication strategies in the post-pandemic period and to develop recommendations on ways to solve them. Research methods. The paper uses various theoretical and methodological tools of research, including Bibliographic research has been conducted on the main research issues; Analysis, synthesis, induction, and other methods are used to select and group data, identify similarities and differences, and identify trends; Endogenous and exogenous factors affecting the field of tourism have been studied by means of SWOT and PESTEL analyzes. A comparison model is used to analyze the strategy documents. Primary accounting materials are obtained from the National Statistics Office and the relevant ministries. Based on the results of the research, the directions of correct positioning of tourism products and marketing communication in the post-pandemic period have been developed. It is substantiated that a short-term international marketing strategy should include: probable goals of communication, maintaining a position on a potential traveler's “radar,” focusing communication on key motivating factors (gastronomy, winemaking, folklore, protected areas, mountainous regions). From a marketing point of view, it is important: holding international marketing events, compiling a list of target countries, formation of stimulus mechanisms, development of incentive programs for international tour operators, etc. The paper draws conclusions about the problems of using the tourism potential, recommendations on ways to solve this problems through international marketing and PR communication strategies are offered

Keywords: PR communication, international marketing strategy, tourism potential, post-pandemic period

Procedia PDF Downloads 173
672 The Short-Term Stress Indicators in Home and Experimental Dogs

Authors: Madara Nikolajenko, Jevgenija Kondratjeva

Abstract:

Stress is a response of the body to physical or psychological environmental stressors. Cortisol level in blood serum is determined as the main indicator of stress, but the blood collection, the animal preparation and other activities can cause unpleasant conditions and induce increase of these hormones. Therefore, less invasive methods are searched to determine stress hormone levels, for example, by measuring the cortisol level saliva. The aim of the study is to find out the changes of stress hormones in blood and saliva in home and experimental dogs in simulated short-term stress conditions. The study included clinically healthy experimental beagle dogs (n=6) and clinically healthy home American Staffordshire terriers (n=6). The animals were let into a fenced area to adapt. Loud drum sounds (in cooperation with 'Andžeja Grauda drum school') were used as a stressor. Blood serum samples were taken for sodium, potassium, glucose and cortisol level determination and saliva samples for cortisol determination only. Control parameters were taken immediately before the start of the stressor, and next samples were taken immediately after the stress. The last measurements were taken two hours after the stress. Electrolyte levels in blood serum were determined using direction selective electrode method (ILab Aries analyzer) and cortisol in blood serum and saliva using electrochemical luminescence method (Roche Diagnostics). Blood glucose level was measured with glucometer (ACCU-CHECK Active test strips). Cortisol level in the blood increased immediately after the stress in all home dogs (P < 0,05), but only in 33% (P < 0,05) of the experimental dogs. After two hours the measurement decreased in 83% (P < 0,05) of home dogs (in 50% returning to the control point) and in 83% (P < 0,05) of the experimental dogs. Cortisol in saliva immediately after the stress increased in 50% (P > 0,05) of home dogs and in 33% (P > 0,05) of the experimental dogs. After two hours in 83% (P > 0,05) of the home animals, the measurements decreased, only in 17% of the experimental dogs it decreased as well, while in 49% measurement was undetectable due to the lack of material. Blood sodium, potassium, and glucose measurements did not show any significant changes. The combination of short-term stress indicators, when, after the stressor, all indicators should immediately increase and decrease after two hours, confirmed in none of the animals. Therefore the authors can conclude that each animal responds to a stressful situation with different physiological mechanisms and hormonal activity. Cortisol level in saliva and blood is released with the different speed and is not an objective indicator of acute stress.

Keywords: animal behaivor, cortisol, short-term stress, stress indicators

Procedia PDF Downloads 270
671 Extreme Heat and Workforce Health in Southern Nevada

Authors: Erick R. Bandala, Kebret Kebede, Nicole Johnson, Rebecca Murray, Destiny Green, John Mejia, Polioptro Martinez-Austria

Abstract:

Summertemperature data from Clark County was collected and used to estimate two different heat-related indexes: the heat index (HI) and excess heat factor (EHF). These two indexes were used jointly with data of health-related deaths in Clark County to assess the effect of extreme heat on the exposed population. The trends of the heat indexes were then analyzed for the 2007-2016 decadeandthe correlation between heat wave episodes and the number of heat-related deaths in the area was estimated. The HI showed that this value has increased significantly in June, July, and August over the last ten years. The same trend was found for the EHF, which showed a clear increase in the severity and number of these events per year. The number of heat wave episodes increased from 1.4 per year during the 1980-2016 period to 1.66 per yearduring the 2007-2016 period. However, a different trend was found for heat-wave-event duration, which decreasedfrom an average of 20.4 days during the trans-decadal period (1980-2016) to 18.1 days during the most recent decade(2007-2016). The number of heat-related deaths was also found to increase from 2007 to 2016, with 2016 with the highest number of heat-related deaths. Both HI and the number of deaths showeda normal-like distribution for June, July, and August, with the peak values reached in late July and early August. The average maximum HI values better correlated with the number of deaths registered in Clark County than the EHF, probably because HI uses the maximum temperature and humidity in its estimation,whereas EHF uses the average medium temperature. However, it is worth testing the EHF of the study zone because it was reported to fit properly in the case of heat-related morbidity. For the overall period, 437 heat-related deaths were registered in Clark County, with 20% of the deaths occurring in June, 52% occurring in July, 18% occurring in August,and the remaining 10% occurring in the other months of the year. The most vulnerable subpopulation was people over 50 years old, for which 76% of the heat-related deaths were registered.Most of the cases were associated with heart disease preconditions. The second most vulnerable subpopulation was young adults (20-50), which accounted for 23% of the heat-related deaths. These deathswere associated with alcoholic/illegal drug intoxication.

Keywords: heat, health, hazards, workforce

Procedia PDF Downloads 104
670 The Use of Non-Parametric Bootstrap in Computing of Microbial Risk Assessment from Lettuce Consumption Irrigated with Contaminated Water by Sanitary Sewage in Infulene Valley

Authors: Mario Tauzene Afonso Matangue, Ivan Andres Sanchez Ortiz

Abstract:

The Metropolitan area of Maputo (Mozambique Capital City) is located in semi-arid zone (800 mm annual rainfall) with 1101170 million inhabitants. On the west side, there are the flatlands of Infulene where the Mulauze River flows towards to the Indian Ocean, receiving at this site, the storm water contaminated with sanitary sewage from Maputo, transported through a concrete open channel. In Infulene, local communities grow salads crops such as tomato, onion, garlic, lettuce, and cabbage, which are then commercialized and consumed in several markets in Maputo City. Lettuce is the most daily consumed salad crop in different meals, generally in fast-foods, breakfasts, lunches, and dinners. However, the risk of infection by several pathogens due to the consumption of lettuce, using the Quantitative Microbial Risk Assessment (QMRA) tools, is still unknown since there are few studies or publications concerning to this matter in Mozambique. This work is aimed at determining the annual risk arising from the consumption of lettuce grown in Infulene valley, in Maputo, using QMRA tools. The exposure model was constructed upon the volume of contaminated water remaining in the lettuce leaves, the empirical relations between the number of pathogens and the indicator of microorganisms (E. coli), the consumption of lettuce (g) and reduction of pathogens (days). The reference pathogens were Vibrio cholerae, Cryptosporidium, norovirus, and Ascaris. The water quality samples (E. coli) were collected in the storm water channel from January 2016 to December 2018, comprising 65 samples, and the urban lettuce consumption data were collected through inquiry in Maputo Metropolis covering 350 persons. A non-parametric bootstrap was performed involving 10,000 iterations over the collected dataset, namely, water quality (E. coli) and lettuce consumption. The dose-response models were: Exponential for Cryptosporidium, Kummer Confluent hypergeomtric function (1F1) for Vibrio and Ascaris Gaussian hypergeometric function (2F1-(a,b;c;z) for norovirus. The annual infection risk estimates were performed using R 3.6.0 (CoreTeam) software by Monte Carlo (Latin hypercubes), a sampling technique involving 10,000 iterations. The annual infection risks values expressed by Median and the 95th percentile, per person per year (pppy) arising from the consumption of lettuce are as follows: Vibrio cholerae (1.00, 1.00), Cryptosporidium (3.91x10⁻³, 9.72x 10⁻³), nororvirus (5.22x10⁻¹, 9.99x10⁻¹) and Ascaris (2.59x10⁻¹, 9.65x10⁻¹). Thus, the consumption of the lettuce would result in greater risks than the tolerable levels ( < 10⁻³ pppy or 10⁻⁶ DALY) for all pathogens, and the Vibrio cholerae is the most virulent pathogens, according to the hit-single models followed by the Ascaris lumbricoides and norovirus. The sensitivity analysis carried out in this work pointed out that in the whole QMRA, the most important input variable was the reduction of pathogens (Spearman rank value was 0.69) between harvest and consumption followed by water quality (Spearman rank value was 0.69). The decision-makers (Mozambique Government) must strengthen the prevention measures related to pathogens reduction in lettuce (i.e., washing) and engage in wastewater treatment engineering.

Keywords: annual infections risk, lettuce, non-parametric bootstrapping, quantitative microbial risk assessment tools

Procedia PDF Downloads 121
669 Impacts of Urban Morphologies on Air Pollutants Dispersion in Porto's Urban Area

Authors: Sandra Rafael, Bruno Vicente, Vera Rodrigues, Carlos Borrego, Myriam Lopes

Abstract:

Air pollution is an environmental and social issue at different spatial scales, especially in a climate change context, with an expected decrease of air quality. Air pollution is a combination of high emissions and unfavourable weather conditions, where wind speed and wind direction play a key role. The urban design (location and structure of buildings and trees) can both promote the air pollutants dispersion as well as promote their retention within the urban area. Today, most of the urban areas are applying measures to adapt to future extreme climatic events. Most of these measures are grounded on nature-based solutions, namely green roofs and green areas. In this sense, studies are required to evaluate how the implementation of these actions will influence the wind flow within the urban area and, consequently, how this will influence air pollutants' dispersion. The main goal of this study was to evaluate the influence of a set of urban morphologies in the wind conditions and in the dispersion of air pollutants, in a built-up area in Portugal. For that, two pollutants were analysed (NOx and PM10) and four scenarios were developed: i) a baseline scenario, which characterizes the current status of the study area, ii) an urban green scenario, which implies the implementation of a green area inside the domain, iii) a green roof scenario, which consists in the implementation of green roofs in a specific area of the domain; iv) a 'grey' scenario, which consists in a scenario with absence of vegetation. For that, two models were used, namely the Weather Research and Forecasting model (WRF) and the CFD model VADIS (pollutant dispersion in the atmosphere under variable wind conditions). The WRF model was used to initialize the CFD model, while the last was used to perform the set of numerical simulations, on an hourly basis. The implementation of the green urban area promoted a reduction of air pollutants' concentrations, 16% on average, related to the increase in the wind flow, which promotes air pollutants dispersion; while the application of green roofs showed an increase of concentrations (reaching 60% during specific time periods). Overall the results showed that a strategic placement of vegetation in cities has the potential to make an important contribution to increase air pollutants dispersion and so promote the improvement of air quality and sustainability of urban environments.

Keywords: air pollutants dispersion, wind conditions, urban morphologies, road traffic emissions

Procedia PDF Downloads 347
668 Optimizing Residential Housing Renovation Strategies at Territorial Scale: A Data Driven Approach and Insights from the French Context

Authors: Rit M., Girard R., Villot J., Thorel M.

Abstract:

In a scenario of extensive residential housing renovation, stakeholders need models that support decision-making through a deep understanding of the existing building stock and accurate energy demand simulations. To address this need, we have modified an optimization model using open data that enables the study of renovation strategies at both territorial and national scales. This approach provides (1) a definition of a strategy to simplify decision trees from theoretical combinations, (2) input to decision makers on real-world renovation constraints, (3) more reliable identification of energy-saving measures (changes in technology or behaviour), and (4) discrepancies between currently planned and actually achieved strategies. The main contribution of the studies described in this document is the geographic scale: all residential buildings in the areas of interest were modeled and simulated using national data (geometries and attributes). These buildings were then renovated, when necessary, in accordance with the environmental objectives, taking into account the constraints applicable to each territory (number of renovations per year) or at the national level (renovation of thermal deficiencies (Energy Performance Certificates F&G)). This differs from traditional approaches that focus only on a few buildings or archetypes. This model can also be used to analyze the evolution of a building stock as a whole, as it can take into account both the construction of new buildings and their demolition or sale. Using specific case studies of French territories, this paper highlights a significant discrepancy between the strategies currently advocated by decision-makers and those proposed by our optimization model. This discrepancy is particularly evident in critical metrics such as the relationship between the number of renovations per year and achievable climate targets or the financial support currently available to households and the remaining costs. In addition, users are free to seek optimizations for their building stock across a range of different metrics (e.g., financial, energy, environmental, or life cycle analysis). These results are a clear call to re-evaluate existing renovation strategies and take a more nuanced and customized approach. As the climate crisis moves inexorably forward, harnessing the potential of advanced technologies and data-driven methodologies is imperative.

Keywords: residential housing renovation, MILP, energy demand simulations, data-driven methodology

Procedia PDF Downloads 68
667 Artificial Intelligence in Patient Involvement: A Comprehensive Review

Authors: Igor A. Bessmertny, Bidru C. Enkomaryam

Abstract:

Active involving patients and communities in health decisions can improve both people’s health and the healthcare system. Adopting artificial intelligence can lead to more accurate and complete patient record management. This review aims to identify the current state of researches conducted using artificial intelligence techniques to improve patient engagement and wellbeing, medical domains used in patient engagement context, and lastly, to assess opportunities and challenges for patient engagement in the wellness process. A search of peer-reviewed publications, reviews, conceptual analyses, white papers, author’s manuscripts and theses was undertaken. English language literature published in 2013– 2022 period and publications, report and guidelines of World Health Organization (WHO) were also assessed. About 281 papers were retrieved. Duplicate papers in the databases were removed. After application of the inclusion and exclusion criteria, 41 papers were included to the analysis. Patient counseling in preventing adverse drug events, in doctor-patient risk communication, surgical, drug development, mental healthcare, hypertension & diabetes, metabolic syndrome and non-communicable chronic diseases are implementation areas in healthcare where patient engagement can be implemented using artificial intelligence, particularly machine learning and deep learning techniques and tools. The five groups of factors that potentially affecting patient engagement in safety are related to: patient, health conditions, health care professionals, tasks and health care setting. Active involvement of patients and families can help accelerate the implementation of healthcare safety initiatives. In sub-Saharan Africa, using digital technologies like artificial intelligence in patient engagement context is low due to poor level of technological development and deployment. The opportunities and challenges available to implement patient engagement strategies vary greatly from country to country and from region to region. Thus, further investigation will be focused on methods and tools using the potential of artificial intelligence to support more simplified care that might be improve communication with patients and train health care professionals.

Keywords: artificial intelligence, patient engagement, machine learning, patient involvement

Procedia PDF Downloads 77
666 Russian pipeline natural gas export strategy under uncertainty

Authors: Koryukaeva Ksenia, Jinfeng Sun

Abstract:

Europe has been a traditional importer of Russian natural gas for more than 50 years. In 2021, Russian state-owned company Gazprom supplied about a third of all gas consumed in Europe. The Russia-Europe mutual dependence in terms of natural gas supplies has been causing many concerns about the energy security of the two sides for a long period of time. These days the issue has become more urgent than ever considering recent Russian invasion in Ukraine followed by increased large-scale geopolitical conflicts, making the future of Russian natural gas supplies and global gas markets as well highly uncertain. Hence, the main purpose of this study is to get insight into the possible futures of Russian pipeline natural gas exports by a scenario planning method based on Monte-Carlo simulation within LUSS model framework, and propose Russian pipeline natural gas export strategies based on the obtained scenario planning results. The scenario analysis revealed that recent geopolitical disputes disturbed the traditional, longstanding model of Russian pipeline gas exports, and, as a result, the prospects and the pathways for Russian pipeline gas on the world markets will differ significantly from those before 2022. Specifically, our main findings show, that (i) the events of 2022 generated many uncertainties for the long-term future of Russian pipeline gas export perspectives on both western and eastern supply directions, including geopolitical, regulatory, economic, infrastructure and other uncertainties; (ii) according to scenario modelling results, Russian pipeline exports will face many challenges in the future, both on western and eastern directions. A decrease in pipeline gas exports will inevitably affect country’s natural gas production and significantly reduce fossil fuel export revenues, jeopardizing the energy security of the country; (iii) according to proposed strategies, in order to ensure the long-term stable export supplies in the changing environment, Russia may need to adjust its traditional export strategy by performing export flows and product diversification, entering new markets, adapting its contracting mechanism, increasing competitiveness and gaining a reputation of a reliable gas supplier.

Keywords: Russian natural gas, Pipeline natural gas, Uncertainty, Scenario simulation, Export strategy

Procedia PDF Downloads 60
665 Analysis of Wheel Lock up Effects on Skidding Distance for Heavy Vehicles

Authors: Mahdieh Zamzamzadeh, Ahmad Abdullah Saifizul, Rahizar Ramli

Abstract:

The road accidents involving heavy vehicles have been showing worrying trends and, year after year, have increased the concern and awareness levels on safety of roads and transportations especially in developing countries like Malaysia. Statistics of road crashes continue to show that there are many contributing factors on the capability of a heavy vehicle to stop on safe distance and ultimately prevent traffic crashes. However, changes in the road condition due to weather variations and the vehicle dynamic specifications such as loading conditions and speed are the main risk factors because they will affect a heavy vehicle’s braking performance due to losing control and not being able to stop the vehicle, and in many cases will cause wheel lock up and accordingly skidding. Predicting heavy vehicle skidding distance is crucial for accident reconstruction and roadside safety engineers. Despite this, formal tools to study heavy vehicle skidding distance before stopping completely are totally limited, and most researchers have only considered braking distance in their studies. As a possible new tool, this work presents the iterative use of vehicle dynamic simulations to study heavy vehicle-roadway interaction in order to predict wheel lock up effects on skidding distance and safety. This research addresses the influence of the vehicle and road conditions on skidding distance after wheel lock up and presents a precise analysis of skidding phenomenon. The vehicle speed, vehicle loading condition and road friction parameters were all varied in a simulation-based analysis. In order to simulate the wheel lock up situation, a heavy vehicle model was constructed and simulated using multibody vehicle dynamics simulation software, and careful analysis was made on the conditions which caused the skidding distance to increase or decrease through a method using to predict skidding distance as part of braking distance. By applying many simulations, the results were quite revealing relation between the heavy vehicles loading condition, various sets of speed and road coefficient of friction and their interaction effect on the skidding distance. A number of results are presented which illustrate how the heavy vehicle overloading can seriously affect the skidding distance. Moreover, the results of simulation give the skid mark length, which is a necessary input data during accident reconstruction involving emergency braking.

Keywords: accident reconstruction, Braking, heavy vehicle, skidding distance, skid mark, wheel lock up

Procedia PDF Downloads 499
664 Estimation of Ribb Dam Catchment Sediment Yield and Reservoir Effective Life Using Soil and Water Assessment Tool Model and Empirical Methods

Authors: Getalem E. Haylia

Abstract:

The Ribb dam is one of the irrigation projects in the Upper Blue Nile basin, Ethiopia, to irrigate the Fogera plain. Reservoir sedimentation is a major problem because it reduces the useful reservoir capacity by the accumulation of sediments coming from the watersheds. Estimates of sediment yield are needed for studies of reservoir sedimentation and planning of soil and water conservation measures. The objective of this study was to simulate the Ribb dam catchment sediment yield using SWAT model and to estimate Ribb reservoir effective life according to trap efficiency methods. The Ribb dam catchment is found in North Western part of Ethiopia highlands, and it belongs to the upper Blue Nile and Lake Tana basins. Soil and Water Assessment Tool (SWAT) was selected to simulate flow and sediment yield in the Ribb dam catchment. The model sensitivity, calibration, and validation analysis at Ambo Bahir site were performed with Sequential Uncertainty Fitting (SUFI-2). The flow data at this site was obtained by transforming the Lower Ribb gauge station (2002-2013) flow data using Area Ratio Method. The sediment load was derived based on the sediment concentration yield curve of Ambo site. Stream flow results showed that the Nash-Sutcliffe efficiency coefficient (NSE) was 0.81 and the coefficient of determination (R²) was 0.86 in calibration period (2004-2010) and, 0.74 and 0.77 in validation period (2011-2013), respectively. Using the same periods, the NS and R² for the sediment load calibration were 0.85 and 0.79 and, for the validation, it became 0.83 and 0.78, respectively. The simulated average daily flow rate and sediment yield generated from Ribb dam watershed were 3.38 m³/s and 1772.96 tons/km²/yr, respectively. The effective life of Ribb reservoir was estimated using the developed empirical methods of the Brune (1953), Churchill (1948) and Brown (1958) methods and found to be 30, 38 and 29 years respectively. To conclude, massive sediment comes from the steep slope agricultural areas, and approximately 98-100% of this incoming annual sediment loads have been trapped by the Ribb reservoir. In Ribb catchment, as well as reservoir systematic and thorough consideration of technical, social, environmental, and catchment managements and practices should be made to lengthen the useful life of Ribb reservoir.

Keywords: catchment, reservoir effective life, reservoir sedimentation, Ribb, sediment yield, SWAT model

Procedia PDF Downloads 188
663 Active Power Filters and their Smart Grid Integration - Applications for Smart Cities

Authors: Pedro Esteban

Abstract:

Most installations nowadays are exposed to many power quality problems, and they also face numerous challenges to comply with grid code and energy efficiency requirements. The reason behind this is that they are not designed to support nonlinear, non-balanced, and variable loads and generators that make up a large percentage of modern electric power systems. These problems and challenges become especially critical when designing green buildings and smart cities. These problems and challenges are caused by equipment that can be typically found in these installations like variable speed drives (VSD), transformers, lighting, battery chargers, double-conversion UPS (uninterruptible power supply) systems, highly dynamic loads, single-phase loads, fossil fuel generators and renewable generation sources, to name a few. Moreover, events like capacitor switching (from existing capacitor banks or passive harmonic filters), auto-reclose operations of transmission and distribution lines, or the starting of large motors also contribute to these problems and challenges. Active power filters (APF) are one of the fastest-growing power electronics technologies for solving power quality problems and meeting grid code and energy efficiency requirements for a wide range of segments and applications. They are a high performance, flexible, compact, modular, and cost-effective type of power electronics solutions that provide an instantaneous and effective response in low or high voltage electric power systems. They enable longer equipment lifetime, higher process reliability, improved power system capacity and stability, and reduced energy losses, complying with most demanding power quality and energy efficiency standards and grid codes. There can be found several types of active power filters, including active harmonic filters (AHF), static var generators (SVG), active load balancers (ALB), hybrid var compensators (HVC), and low harmonic drives (LHD) nowadays. All these devices can be used in applications in Smart Cities bringing several technical and economic benefits.

Keywords: power quality improvement, energy efficiency, grid code compliance, green buildings, smart cities

Procedia PDF Downloads 113
662 Hybrid Speciation and Morphological Differentiation in Senecio (Senecioneae, Asteraceae) from the Andes

Authors: Luciana Salomon

Abstract:

The Andes hold one of the highest plant species diversity in the world. How such diversity originated is one of the most intriguing questions in studies addressing the pattern of plant diversity worldwide. Recently, the explosive adaptive radiations found in high Andean groups have been pointed as major triggers of this spectacular diversity. The Andes are one of the most species-rich area for the largest genus from the Asteraceae family, Senecio. There, the genus presents an incredible variation in growth form and ecological niche space. If this diversity of Andean Senecio can be explained by a monophyletic origin and subsequent radiation has not been tested up to now. Previous studies trying to disentangle the evolutionary history of some Andean Senecio struggled with the relatively low resolution and support of the phylogenies, which is indicative of recently radiated groups. Using Hyb-Seq, a powerful approach is available to address phylogenetic questions in groups whose evolutionary histories are recent and rapid. This approach was used for Senecio to build a phylogenetic backbone on which to study the mechanisms shaping its hyper-diversity in the Andes, focusing on Senecio ser. Culcitium, an exclusively Andean and well circumscribed group presenting large morphological variation and which is widely distributed across the Andes. Hyb-Seq data for about 130 accessions of Seneciowas generated. Using standard data analysis work flows and a newly developed tool to utilize paralogs for phylogenetic reconstruction, robustness of the species treewas investigated. Fully resolved and moderately supported species trees were obtained, showing Senecio ser. Culcitium as monophyletic. Within this group, some species formed well-supported clades congruent with morphology, while some species would not have exclusive ancestry, in concordance with previous studies showing a geographic differentiation. Additionally, paralogs were detected for a high number of loci, indicating duplication events and hybridization, known to be common in Senecio ser. Culcitium might have lead to hybrid speciation. The rapid diversification of the group seems to have followed a south-north distribution throughout the Andes, having accelerated in the conquest of new habitats more recently available: i.e., Montane forest, Paramo, and Superparamo.

Keywords: evolutionary radiations, andes, paralogy, hybridization, senecio

Procedia PDF Downloads 129
661 The Need to Teach the Health Effects of Climate Change in Medical Schools

Authors: Ábrám Zoltán

Abstract:

Introduction: Climate change is now a major health risk, and its environmental and health effects have become frequently discussed topics. The consequences of climate change are clearly visible in natural disasters and excess deaths caused by extreme weather conditions. Global warming and the increasingly frequent extreme weather events have direct, immediate effects or long-term, indirect effects on health. For this reason, it is a need to teach the health effects of climate change in medical schools. Material and methods: We looked for various surveys, studies, and reports on the main pathways through which global warming affects health. Medical schools face the challenge of teaching the health implications of climate change and integrating knowledge about the health effects of climate change into medical training. For this purpose, there were organised World Café workshops for three target groups: medical students, academic staff, and practising medical doctors. Results: Among the goals of the research is the development of a detailed curriculum for medical students, which serves to expand their knowledge in basic education. At the same time, the project promotes the increase of teacher motivation and the development of methodological guidelines for university teachers; it also provides further training for practicing doctors. The planned teaching materials will be developed in a format suitable for traditional face-to-face teaching, as well as e-learning teaching materials. CLIMATEMED is a project based on the cooperation of six universities and institutions from four countries, the aim of which is to improve the curriculum and expand knowledge about the health effects of climate change at medical universities. Conclusions: In order to assess the needs, summarize the proposals, to develop the necessary strategy, World Café type, one-and-a-half to two-hour round table discussions will take place separately for medical students, academic staff, and practicing doctors. The CLIMATEMED project can facilitate the integration of knowledge about the health effects of climate change into curricula and can promote practical use. The avoidance of the unwanted effects of global warming and climate change is not only a public matter, but it is also a challenge to change our own lifestyle. It is the responsibility of all of us to protect the Earth's ecosystem and the physical and mental health of ourselves and future generations.

Keywords: climate change, health effects, medical schools, World Café, medical students

Procedia PDF Downloads 84
660 Corrosion Study of Magnetically Driven Components in Spinal Implants by Immersion Testing in Simulated Body Fluids

Authors: Benjawan Saengwichian, Alasdair E. Charles, Philip J. Hyde

Abstract:

Magnetically controlled growing rods (MCGRs) have been used to stabilise and correct spinal curvature in children to support non-invasive scoliosis adjustment. Although the encapsulated driving components are intended to be isolated from body fluid contact, in vivo corrosion was observed on these components due to sealing mechanism damage. Consequently, a corrosion circuit is created with the body fluids, resulting in malfunction of the lengthening mechanism. Particularly, the chloride ions in blood plasma or cerebrospinal fluid (CSF) may corrode the MCGR alloys, possibly resulting in metal ion release in long-term use. However, there is no data available on the corrosion resistance of spinal implant alloys in CSF. In this study, an in vitro immersion configuration was designed to simulate in vivo corrosion of 440C SS-Ti6Al4V couples. The 440C stainless steel (SS) was heat-treated to investigate the effect of tempering temperature on intergranular corrosion (IGC), while crevice and galvanic corrosion were studied by limiting the clearance of dissimilar couples. Tests were carried out in a neutral artificial cerebrospinal fluid (ACSF) and phosphate-buffered saline (PBS) under aeration and deaeration for 2 months. The composition of the passive films and metal ion release were analysed. The effect of galvanic coupling, pH, dissolved oxygen and anion species on corrosion rates and corrosion mechanisms are discussed based on quantitative and qualitative measurements. The results suggest that ACSF is more aggressive than PBS due to the combination of aggressive chlorides and sulphate anions, while phosphate in PBS acts as an inhibitor to delay corrosion. The presence of Vivianite on the SS surface in PBS lowered the corrosion rate (CR) more than 5 times for aeration and nearly 2 times for deaeration, compared with ACSF. The CR of 440C is dependent on passive film properties varied by tempering temperature and anion species. Although the CR of Ti6Al4V is insignificant, it tends to release more Ti ions in deaerated ACSF than under aeration, about 6 µg/L. It seems the crevice-like design has more effect on macroscopic corrosion than combining the dissimilar couple, whereas IGC is dominantly observed on sensitized microstructure.

Keywords: cerebrospinal fluid, crevice corrosion, intergranular corrosion, magnetically controlled growing rods

Procedia PDF Downloads 129
659 Targeting APP IRE mRNA to Combat Amyloid -β Protein Expression in Alzheimer’s Disease

Authors: Mateen A Khan, Taj Mohammad, Md. Imtaiyaz Hassan

Abstract:

Alzheimer’s disease is characterized by the accumulation of the processing products of the amyloid beta peptide cleaved by amyloid precursor protein (APP). Iron increases the synthesis of amyloid beta peptides, which is why iron is present in Alzheimer's disease patients' amyloid plaques. Iron misregulation in the brain is linked to the overexpression of APP protein, which is directly related to amyloid-β aggregation in Alzheimer’s disease. The APP 5'-UTR region encodes a functional iron-responsive element (IRE) stem-loop that represents a potential target for modulating amyloid production. Targeted regulation of APP gene expression through the modulation of 5’-UTR sequence function represents a novel approach for the potential treatment of AD because altering APP translation can be used to improve both the protective brain iron balance and provide anti-amyloid efficacy. The molecular docking analysis of APP IRE RNA with eukaryotic translation initiation factors yields several models exhibiting substantial binding affinity. The finding revealed that the interaction involved a set of functionally active residues within the binding sites of eIF4F. Notably, APP IRE RNA and eIF4F interaction were stabilized by multiple hydrogen bonds with residues of APP IRE RNA and eIF4F. It was evident that APP IRE RNA exhibited a structural complementarity that tightly fit within binding pockets of eIF4F. The simulation studies further revealed the stability of the complexes formed between RNA and eIF4F, which is crucial for assessing the strength of these interactions and subsequent roles in the pathophysiology of Alzheimer’s disease. In addition, MD simulations would capture conformational changes in the IRE RNA and protein molecules during their interactions, illustrating the mechanism of interaction, conformational change, and unbinding events and how it may affect aggregation propensity and subsequent therapeutic implications. Our binding studies correlated well with the translation efficiency of APP mRNA. Overall, the outcome of this study suggests that the genomic modification and/or inhibiting the expression of amyloid protein by targeting APP IRE RNA can be a viable strategy to identify potential therapeutic targets for AD and subsequently be exploited for developing novel therapeutic approaches.

Keywords: Alzheimer's disease, Protein-RNA interaction analysis, molecular docking simulations, conformational dynamics, binding stability, binding kinetics, protein synthesis.

Procedia PDF Downloads 66
658 Applications of Artificial Intelligence (AI) in Cardiac imaging

Authors: Angelis P. Barlampas

Abstract:

The purpose of this study is to inform the reader, about the various applications of artificial intelligence (AI), in cardiac imaging. AI grows fast and its role is crucial in medical specialties, which use large amounts of digital data, that are very difficult or even impossible to be managed by human beings and especially doctors.Artificial intelligence (AI) refers to the ability of computers to mimic human cognitive function, performing tasks such as learning, problem-solving, and autonomous decision making based on digital data. Whereas AI describes the concept of using computers to mimic human cognitive tasks, machine learning (ML) describes the category of algorithms that enable most current applications described as AI. Some of the current applications of AI in cardiac imaging are the follows: Ultrasound: Automated segmentation of cardiac chambers across five common views and consequently quantify chamber volumes/mass, ascertain ejection fraction and determine longitudinal strain through speckle tracking. Determine the severity of mitral regurgitation (accuracy > 99% for every degree of severity). Identify myocardial infarction. Distinguish between Athlete’s heart and hypertrophic cardiomyopathy, as well as restrictive cardiomyopathy and constrictive pericarditis. Predict all-cause mortality. CT Reduce radiation doses. Calculate the calcium score. Diagnose coronary artery disease (CAD). Predict all-cause 5-year mortality. Predict major cardiovascular events in patients with suspected CAD. MRI Segment of cardiac structures and infarct tissue. Calculate cardiac mass and function parameters. Distinguish between patients with myocardial infarction and control subjects. It could potentially reduce costs since it would preclude the need for gadolinium-enhanced CMR. Predict 4-year survival in patients with pulmonary hypertension. Nuclear Imaging Classify normal and abnormal myocardium in CAD. Detect locations with abnormal myocardium. Predict cardiac death. ML was comparable to or better than two experienced readers in predicting the need for revascularization. AI emerge as a helpful tool in cardiac imaging and for the doctors who can not manage the overall increasing demand, in examinations such as ultrasound, computed tomography, MRI, or nuclear imaging studies.

Keywords: artificial intelligence, cardiac imaging, ultrasound, MRI, CT, nuclear medicine

Procedia PDF Downloads 79
657 Youth Conflict-Related Trauma through Generations: An Ethnography on the Relationship between Health and Society in Post-Conflict Northern Ireland

Authors: Chiara Magliacane

Abstract:

This project aims to analyse the relationship between the post-conflict Northern Irish environment and youth trauma in deprived areas. Using an anthropological perspective and methodology, the study investigates the possible contribution that a socio-cultural perspective can give to the current research on the field, with a special focus on the role of transgenerational trauma. The recognition of the role that socio-economic determinants have on health is usually a challenge for social researchers. In post-conflict Northern Ireland, the overall lack of research about connections between the social context and youth trauma opens the way to the present project. Anthropological studies on social implications of mental disorders have achieved impressive results in many societies; they show how conditions of sufferance and poverty are not intrinsically given, but are the products of historical processes and events. The continuum of violence and the politics of victimhood sustains a culture of silence and fear in deprived areas; this implies the need of investigating the structural and symbolic violence that lies behind the diffusion of mental suffering. The project refers to these concepts from Medical Anthropology and looks at connections between trauma and social, political and economic structures. Accordingly, the study considers factors such as poverty, unemployment, social inequality and gender and class perspectives. At the same time, the project problematises categories such as youth and trauma. 'Trauma' is currently debated within the social sciences since the 'invention' of the Post-Traumatic Stress Disorder (PTSD) in 1980. Current critics made to its clinical conception show how trauma has been mainly analysed as a memory of the past. On the contrary, medical anthropological research focuses on wider perspectives on society and its structures; this is a new and original approach to the study of youth trauma considering that, to author’s best knowledge, there is no research of this kind regarding Northern Ireland. Methods: Qualitative interviews, participant observation. Expected Impact: Local Northern Ireland organizations, i.e. specific charities that provide mental health support. Ongoing and present connections will ensure they will hear about this research.

Keywords: health and social inequalities, Northern Ireland, structural violence, youth

Procedia PDF Downloads 211
656 Localization of Radioactive Sources with a Mobile Radiation Detection System using Profit Functions

Authors: Luís Miguel Cabeça Marques, Alberto Manuel Martinho Vale, José Pedro Miragaia Trancoso Vaz, Ana Sofia Baptista Fernandes, Rui Alexandre de Barros Coito, Tiago Miguel Prates da Costa

Abstract:

The detection and localization of hidden radioactive sources are of significant importance in countering the illicit traffic of Special Nuclear Materials and other radioactive sources and materials. Radiation portal monitors are commonly used at airports, seaports, and international land borders for inspecting cargo and vehicles. However, these equipment can be expensive and are not available at all checkpoints. Consequently, the localization of SNM and other radioactive sources often relies on handheld equipment, which can be time-consuming. The current study presents the advantages of real-time analysis of gamma-ray count rate data from a mobile radiation detection system based on simulated data and field tests. The incorporation of profit functions and decision criteria to optimize the detection system's path significantly enhances the radiation field information and reduces survey time during cargo inspection. For source position estimation, a maximum likelihood estimation algorithm is employed, and confidence intervals are derived using the Fisher information. The study also explores the impact of uncertainties, baselines, and thresholds on the performance of the profit function. The proposed detection system, utilizing a plastic scintillator with silicon photomultiplier sensors, boasts several benefits, including cost-effectiveness, high geometric efficiency, compactness, and lightweight design. This versatility allows for seamless integration into any mobile platform, be it air, land, maritime, or hybrid, and it can also serve as a handheld device. Furthermore, integration of the detection system into drones, particularly multirotors, and its affordability enable the automation of source search and substantial reduction in survey time, particularly when deploying a fleet of drones. While the primary focus is on inspecting maritime container cargo, the methodologies explored in this research can be applied to the inspection of other infrastructures, such as nuclear facilities or vehicles.

Keywords: plastic scintillators, profit functions, path planning, gamma-ray detection, source localization, mobile radiation detection system, security scenario

Procedia PDF Downloads 118
655 Sustainability Impact Assessment of Construction Ecology to Engineering Systems and Climate Change

Authors: Moustafa Osman Mohammed

Abstract:

Construction industry, as one of the main contributor in depletion of natural resources, influences climate change. This paper discusses incremental and evolutionary development of the proposed models for optimization of a life-cycle analysis to explicit strategy for evaluation systems. The main categories are virtually irresistible for introducing uncertainties, uptake composite structure model (CSM) as environmental management systems (EMSs) in a practice science of evaluation small and medium-sized enterprises (SMEs). The model simplified complex systems to reflect nature systems’ input, output and outcomes mode influence “framework measures” and give a maximum likelihood estimation of how elements are simulated over the composite structure. The traditional knowledge of modeling is based on physical dynamic and static patterns regarding parameters influence environment. It unified methods to demonstrate how construction systems ecology interrelated from management prospective in procedure reflects the effect of the effects of engineering systems to ecology as ultimately unified technologies in extensive range beyond constructions impact so as, - energy systems. Sustainability broadens socioeconomic parameters to practice science that meets recovery performance, engineering reflects the generic control of protective systems. When the environmental model employed properly, management decision process in governments or corporations could address policy for accomplishment strategic plans precisely. The management and engineering limitation focuses on autocatalytic control as a close cellular system to naturally balance anthropogenic insertions or aggregation structure systems to pound equilibrium as steady stable conditions. Thereby, construction systems ecology incorporates engineering and management scheme, as a midpoint stage between biotic and abiotic components to predict constructions impact. The later outcomes’ theory of environmental obligation suggests either a procedures of method or technique that is achieved in sustainability impact of construction system ecology (SICSE), as a relative mitigation measure of deviation control, ultimately.

Keywords: sustainability, environmental impact assessment, environemtal management, construction ecology

Procedia PDF Downloads 394
654 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations

Authors: K. Al Ammari, B. G. Clarke

Abstract:

Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.

Keywords: bearing capacity, design, installation, numerical analysis, settlement, stone column

Procedia PDF Downloads 375
653 Early-Warning Lights Classification Management System for Industrial Parks in Taiwan

Authors: Yu-Min Chang, Kuo-Sheng Tsai, Hung-Te Tsai, Chia-Hsin Li

Abstract:

This paper presents the early-warning lights classification management system for industrial parks promoted by the Taiwan Environmental Protection Administration (EPA) since 2011, including the definition of each early-warning light, objectives, action program and accomplishments. All of the 151 industrial parks in Taiwan were classified into four early-warning lights, including red, orange, yellow and green, for carrying out respective pollution management according to the monitoring data of soil and groundwater quality, regulatory compliance, and regulatory listing of control site or remediation site. The Taiwan EPA set up a priority list for high potential polluted industrial parks and investigated their soil and groundwater qualities based on the results of the light classification and pollution potential assessment. In 2011-2013, there were 44 industrial parks selected and carried out different investigation, such as the early warning groundwater well networks establishment and pollution investigation/verification for the red and orange-light industrial parks and the environmental background survey for the yellow-light industrial parks. Among them, 22 industrial parks were newly or continuously confirmed that the concentrations of pollutants exceeded those in soil or groundwater pollution control standards. Thus, the further investigation, groundwater use restriction, listing of pollution control site or remediation site, and pollutant isolation measures were implemented by the local environmental protection and industry competent authorities; the early warning lights of those industrial parks were proposed to adjust up to orange or red-light. Up to the present, the preliminary positive effect of the soil and groundwater quality management system for industrial parks has been noticed in several aspects, such as environmental background information collection, early warning of pollution risk, pollution investigation and control, information integration and application, and inter-agency collaboration. Finally, the work and goal of self-initiated quality management of industrial parks will be carried out on the basis of the inter-agency collaboration by the classified lights system of early warning and management as well as the regular announcement of the status of each industrial park.

Keywords: industrial park, soil and groundwater quality management, early-warning lights classification, SOP for reporting and treatment of monitored abnormal events

Procedia PDF Downloads 327
652 Application of Satellite Remote Sensing in Support of Water Exploration in the Arab Region

Authors: Eman Ghoneim

Abstract:

The Arabian deserts include some of the driest areas on Earth. Yet, its landforms reserved a record of past wet climates. During humid phases, the desert was green and contained permanent rivers, inland deltas and lakes. Some of their water would have seeped and replenished the groundwater aquifers. When the wet periods came to an end, several thousand years ago, the entire region transformed into an extended band of desert and its original fluvial surface was totally covered by windblown sand. In this work, radar and thermal infrared images were used to reveal numerous hidden surface/subsurface features. Radar long wavelength has the unique ability to penetrate surface dry sands and uncover buried subsurface terrain. Thermal infrared also proven to be capable of spotting cooler moist areas particularly in hot dry surfaces. Integrating Radarsat images and GIS revealed several previously unknown paleoriver and lake basins in the region. One of these systems, known as the Kufrah, is the largest yet identified river basin in the Eastern Sahara. This river basin, which straddles the border between Egypt and Libya, flowed north parallel to the adjacent Nile River with an extensive drainage area of 235,500 km2 and massive valley width of 30 km in some parts. This river was most probably served as a spillway for an overflow from Megalake Chad to the Mediterranean Sea and, thus, may have acted as a natural water corridor used by human ancestors to migrate northward across the Sahara. The Gilf-Kebir is another large paleoriver system located just east of Kufrah and emanates from the Gilf Plateau in Egypt. Both river systems terminate with vast inland deltas at the southern margin of the Great Sand Sea. The trends of their distributary channels indicate that both rivers drained to a topographic depression that was periodically occupied by a massive lake. During dry climates, the lake dried up and roofed by sand deposits, which is today forming the Great Sand Sea. The enormity of the lake basin provides explanation as to why continuous extraction of groundwater in this area is possible. A similar lake basin, delimited by former shorelines, was detected by radar space data just across the border of Sudan. This lake, called the Northern Darfur Megalake, has a massive size of 30,750 km2. These former lakes and rivers could potentially hold vast reservoirs of groundwater, oil and natural gas at depth. Similar to radar data, thermal infrared images were proven to be useful in detecting potential locations of subsurface water accumulation in desert regions. Analysis of both Aster and daily MODIS thermal channels reveal several subsurface cool moist patches in the sandy desert of the Arabian Peninsula. Analysis indicated that such evaporative cooling anomalies were resulted from the subsurface transmission of the Monsoonal rainfall from the mountains to the adjacent plain. Drilling a number of wells in several locations proved the presence of productive water aquifers confirming the validity of the used data and the adopted approaches for water exploration in dry regions.

Keywords: radarsat, SRTM, MODIS, thermal infrared, near-surface water, ancient rivers, desert, Sahara, Arabian peninsula

Procedia PDF Downloads 247
651 CFD Simulation of Spacer Effect on Turbulent Mixing Phenomena in Sub Channels of Boiling Nuclear Assemblies

Authors: Shashi Kant Verma, S. L. Sinha, D. K. Chandraker

Abstract:

Numerical simulations of selected subchannel tracer (Potassium Nitrate) based experiments have been performed to study the capabilities of state-of-the-art of Computational Fluid Dynamics (CFD) codes. The Computational Fluid Dynamics (CFD) methodology can be useful for investigating the spacer effect on turbulent mixing to predict turbulent flow behavior such as Dimensionless mixing scalar distributions, radial velocity and vortices in the nuclear fuel assembly. A Gibson and Launder (GL) Reynolds stress model (RSM) has been selected as the primary turbulence model to be applied for the simulation case as it has been previously found reasonably accurate to predict flows inside rod bundles. As a comparison, the case is also simulated using a standard k-ε turbulence model that is widely used in industry. Despite being an isotropic turbulence model, it has also been used in the modeling of flow in rod bundles and to produce lateral velocities after thorough mixing of coolant fairly. Both these models have been solved numerically to find out fully developed isothermal turbulent flow in a 30º segment of a 54-rod bundle. Numerical simulation has been carried out for the study of natural mixing of a Tracer (Passive scalar) to characterize the growth of turbulent diffusion in an injected sub-channel and, afterwards on, cross-mixing between adjacent sub-channels. The mixing with water has been numerically studied by means of steady state CFD simulations with the commercial code STAR-CCM+. Flow enters into the computational domain through the mass inflow at the three subchannel faces. Turbulence intensity and hydraulic diameter of 1% and 5.9 mm respectively were used for the inlet. A passive scalar (Potassium nitrate) is injected through the mass fraction of 5.536 PPM at subchannel 2 (Upstream of the mixing section). Flow exited the domain through the pressure outlet boundary (0 Pa), and the reference pressure was 1 atm. Simulation results have been extracted at different locations of the mixing zone and downstream zone. The local mass fraction shows uniform mixing. The effect of the applied turbulence model is nearly negligible just before the outlet plane because the distributions look like almost identical and the flow is fully developed. On the other hand, quantitatively the dimensionless mixing scalar distributions change noticeably, which is visible in the different scale of the colour bars.

Keywords: single-phase flow, turbulent mixing, tracer, sub channel analysis

Procedia PDF Downloads 208
650 Estimation of Scour Using a Coupled Computational Fluid Dynamics and Discrete Element Model

Authors: Zeinab Yazdanfar, Dilan Robert, Daniel Lester, S. Setunge

Abstract:

Scour has been identified as the most common threat to bridge stability worldwide. Traditionally, scour around bridge piers is calculated using the empirical approaches that have considerable limitations and are difficult to generalize. The multi-physic nature of scouring which involves turbulent flow, soil mechanics and solid-fluid interactions cannot be captured by simple empirical equations developed based on limited laboratory data. These limitations can be overcome by direct numerical modeling of coupled hydro-mechanical scour process that provides a robust prediction of bridge scour and valuable insights into the scour process. Several numerical models have been proposed in the literature for bridge scour estimation including Eulerian flow models and coupled Euler-Lagrange models incorporating an empirical sediment transport description. However, the contact forces between particles and the flow-particle interaction haven’t been taken into consideration. Incorporating collisional and frictional forces between soil particles as well as the effect of flow-driven forces on particles will facilitate accurate modeling of the complex nature of scour. In this study, a coupled Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) has been developed to simulate the scour process that directly models the hydro-mechanical interactions between the sediment particles and the flowing water. This approach obviates the need for an empirical description as the fundamental fluid-particle, and particle-particle interactions are fully resolved. The sediment bed is simulated as a dense pack of particles and the frictional and collisional forces between particles are calculated, whilst the turbulent fluid flow is modeled using a Reynolds Averaged Navier Stocks (RANS) approach. The CFD-DEM model is validated against experimental data in order to assess the reliability of the CFD-DEM model. The modeling results reveal the criticality of particle impact on the assessment of scour depth which, to the authors’ best knowledge, hasn’t been considered in previous studies. The results of this study open new perspectives to the scour depth and time assessment which is the key to manage the failure risk of bridge infrastructures.

Keywords: bridge scour, discrete element method, CFD-DEM model, multi-phase model

Procedia PDF Downloads 131
649 The Usefulness of Premature Chromosome Condensation Scoring Module in Cell Response to Ionizing Radiation

Authors: K. Rawojć, J. Miszczyk, A. Możdżeń, A. Panek, J. Swakoń, M. Rydygier

Abstract:

Due to the mitotic delay, poor mitotic index and disappearance of lymphocytes from peripheral blood circulation, assessing the DNA damage after high dose exposure is less effective. Conventional chromosome aberration analysis or cytokinesis-blocked micronucleus assay do not provide an accurate dose estimation or radiosensitivity prediction in doses higher than 6.0 Gy. For this reason, there is a need to establish reliable methods allowing analysis of biological effects after exposure in high dose range i.e., during particle radiotherapy. Lately, Premature Chromosome Condensation (PCC) has become an important method in high dose biodosimetry and a promising treatment modality to cancer patients. The aim of the study was to evaluate the usefulness of drug-induced PCC scoring procedure in an experimental mode, where 100 G2/M cells were analyzed in different dose ranges. To test the consistency of obtained results, scoring was performed by 3 independent persons in the same mode and following identical scoring criteria. Whole-body exposure was simulated in an in vitro experiment by irradiating whole blood collected from healthy donors with 60 MeV protons and 250 keV X-rays, in the range of 4.0 – 20.0 Gy. Drug-induced PCC assay was performed on human peripheral blood lymphocytes (HPBL) isolated after in vitro exposure. Cells were cultured for 48 hours with PHA. Then to achieve premature condensation, calyculin A was added. After Giemsa staining, chromosome spreads were photographed and manually analyzed by scorers. The dose-effect curves were derived by counting the excess chromosome fragments. The results indicated adequate dose estimates for the whole-body exposure scenario in the high dose range for both studied types of radiation. Moreover, compared results revealed no significant differences between scores, which has an important meaning in reducing the analysis time. These investigations were conducted as a part of an extended examination of 60 MeV protons from AIC-144 isochronous cyclotron, at the Institute of Nuclear Physics in Kraków, Poland (IFJ PAN) by cytogenetic and molecular methods and were partially supported by grant DEC-2013/09/D/NZ7/00324 from the National Science Centre, Poland.

Keywords: cell response to radiation exposure, drug induced premature chromosome condensation, premature chromosome condensation procedure, proton therapy

Procedia PDF Downloads 353
648 Dialysis Rehabilitation and Muscle Hypertrophy

Authors: Itsuo Yokoyama, Rika Kikuti, Naoko Watabe

Abstract:

Introduction: It has been known that chronic kidney disease (CKD) patients can benefit from physical exercise during dialysis therapy improving aerobic capacity, muscle function, cardiovascular function, and overall health-related quality of life. This study aimed to evaluate the effectiveness of dialysis rehabilitation. Materials and Methods: A total of 55 patients underwent two-hour resistance exercise training during each hemodialysis session for three consecutive months. Various routine clinical data were collected, including the calculation of the planar dimension of the muscle area in both upper legs at the level of the ischial bone. This area calculation was possible in 26 patients who had yearly plain abdominal computed tomography (CT) scans. DICOM files from the CT scans were used with 3D Slicer software for area calculation. An age and sex-matched group of 26 patients without dialysis rehabilitation also had yearly CT scans during the study period for comparison. Clinical data were compared between the two groups: Group A (rehabilitation) and Group B (non-rehabilitation). Results: There were no differences in basic laboratory data between the two groups. The average muscle area before and after rehabilitation in Group A was 212 cm² and 216 cm², respectively. In Group B, the average areas were 230.0 cm² and 225.8 cm². While there was no significant difference in absolute values, the average percentage increase in muscle area was +1.2% (ranging from -7.6% to 6.54%) for Group A and -2.0% (ranging from -12.1% to 4.9%) for Group B, which was statistically significant. In Group A, 9 of 26 were diabetic (DM), and 13 of 26 in Group B were non-DM. The increase in muscle area for DM patients was 4.9% compared to -0.7% for non-DM patients, which was significantly different. There were no significant differences between the two groups in terms of nutritional assessment, Kt/V, or incidence of clinical complications such as cardiovascular events. Considerations: Dialysis rehabilitation has been reported to prevent muscle atrophy by increasing muscle fibers and capillaries. This study demonstrated that muscle volume increased after dialysis exercise, as evidenced by the increased muscle area in the thighs. Notably, diabetic patients seemed to benefit more from dialysis exercise than non-diabetics. Although this study is preliminary due to its relatively small sample size, it suggests that intradialytic physical training may improve insulin utilization in muscle fiber cells, particularly in type II diabetic patients where insulin receptor function and signaling are altered. Further studies are needed to investigate the detailed mechanisms underlying the muscle hypertrophic effects of dialysis exercise.

Keywords: dialysis, excercise, muscle, hypertrophy, diabetes, insulin

Procedia PDF Downloads 24
647 Multiaxial Fatigue in Thermal Elastohydrodynamic Lubricated Contacts with Asperities and Slip

Authors: Carl-Magnus Everitt, Bo Alfredsson

Abstract:

Contact mechanics and tribology have been combined with fundamental fatigue and fracture mechanics to form the asperity mechanism which supplies an explanation for the surface-initiated rolling contact fatigue damage, called pitting or spalling. The cracks causing the pits initiates at one surface point and thereafter they slowly grow into the material before chipping of a material piece to form the pit. In the current study, the lubrication aspects on fatigue initiation are simulated by passing a single asperity through a thermal elastohydrodynamic lubricated, TEHL, contact. The physics of the lubricant was described with Reynolds equation and the lubricants pressure-viscosity relation was modeled by Roelands equation, formulated to include temperature dependence. A pressure dependent shear limit was incorporated. To capture the full phenomena of the sliding contact the temperature field was resolved through the incorporation of the energy flow. The heat was mainly generated due to shearing of the lubricant and from dry friction where metal contact occurred. The heat was then transported, and conducted, away by the solids and the lubricant. The fatigue damage caused by the asperities was evaluated through Findley’s fatigue criterion. The results show that asperities, in the size of surface roughness found in applications, may cause surface initiated fatigue damage and crack initiation. The simulations also show that the asperities broke through the lubricant in the inlet, causing metal to metal contact with high friction. When the asperities thereafter moved through the contact, the sliding provided the asperities with lubricant releasing the metal contact. The release of metal contact was possible due to the high viscosity the lubricant obtained from the high pressure. The metal contact in the inlet caused higher friction which increased the risk of fatigue damage. Since the metal contact occurred in the inlet it increased the fatigue risk more for asperities subjected to negative slip than positive slip. Therefore the fatigue evaluations showed that the asperities subjected to negative slip yielded higher fatigue stresses than the asperities subjected to positive slip of equal magnitude. This is one explanation for why pitting is more common in the dedendum than the addendum on pinion gear teeth. The simulations produced further validation for the asperity mechanism by showing that asperities cause surface initiated fatigue and crack initiation.

Keywords: fatigue, rolling, sliding, thermal elastohydrodynamic

Procedia PDF Downloads 123