Search results for: mapping algorithm
1006 Analysis of Heat Transfer in a Closed Cavity Ventilated Inside
Authors: Benseghir Omar, Bahmed Mohamed
Abstract:
In this work, we presented a numerical study of the phenomenon of heat transfer through the laminar, incompressible and steady mixed convection in a closed square cavity with the left vertical wall of the cavity is subjected to a warm temperature, while the right wall is considered to be cold. The horizontal walls are assumed adiabatic. The governing equations were discretized by finite volume method on a staggered mesh and the SIMPLER algorithm was used for the treatment of velocity-pressure coupling. The numerical simulations were performed for a wide range of Reynolds numbers 1, 10, 100, and 1000 numbers are equal to 0.01,0.1 Richardson, 0.5,1 and 10.The analysis of the results shows a flow bicellular (two cells), one is created by the speed of the fan placed in the inner cavity, one on the left is due to the difference between the temperatures right wall and the left wall. Knowledge of the intensity of each of these cells allowed us to get an original result. And the values obtained from each of Nuselt convection which allow to know the rate of heat transfer in the cavity.Finally we find that there is a significant influence on the position of the fan on the heat transfer (Nusselt evolution) for values of Reynolds studied and for low values of Richardson handed this influence is negligible for high values of the latter.Keywords: thermal transfer, mixed convection, square cavity, finite volume method
Procedia PDF Downloads 4331005 Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures
Authors: Tamanna Goyal, Divya Bansal, Sanjeev Sofat
Abstract:
In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results.Keywords: association rules, clustering, similarity measure, statistical approaches
Procedia PDF Downloads 3201004 Food Strategies in the Mediterranean Basin, Possible for Food Safety and Security
Authors: Lorenza Sganzetta, Nunzia Borrelli
Abstract:
The research intends to reflect on the current mapping of the Food Strategies, on the reasons why in the planning objectives panorama, such sustainability priorities are located in those geographic areas and on the evolutions of these priorities of the Mediterranean planning dispositions. The whirling population growth that is affecting global cities is causing an enormous challenge to conventional resource-intensive food production and supply and the urgent need to face food safety, food security and sustainability concerns. Urban or Territorial Food Strategies can provide an interesting path for the development of this new agenda within the imperative principle of sustainability. In the specific, it is relevant to explore what ‘sustainability’ means within these policies. Most of these plans include actions related to four main components and interpretations of sustainability that are food security and safety, food equity, environmental sustainability itself and cultural identity and, at the designing phase, they differ slightly from each other according to the degree of approximation to one of these dimensions. Moving from these assumptions, the article would analyze some practices and policies representatives of different Food Strategies of the world and focus on the Mediterranean ones, on the problems and negative externalities from which they start, on the first interventions that are implementing and on their main objectives. We will mainly use qualitative data from primary and secondary collections. So far, an essential observation could have been made about the relationship between these sustainability dimensions and geography. In statistical terms, the US and Canadian policies tended to devote a large research space to health issues and access to food; those northern European showed a special attention to the environmental issues and the shortening of the chain; and finally the policies that, even in limited numbers, were being developed in the Mediterranean basin, were characterized by a strong territorial and cultural imprint and their major aim was to preserve local production and the contact between the productive land and the end consumer. Recently, though, Mediterranean food planning strategies are focusing more on health related and food accessibility issues and analyzing our diets not just as a matter of culture and territorial branding but as tools for reducing public health costs and accessibility to fresh food for everyone. The article would reflect then on how Food Safety, Food Security and Health are entering the new agenda of the Mediterranean Food Strategies. The research hypothesis suggests that the economic crisis that in the last years invested both producers and consumers had a significant impact on the nutrition habits and on the redefinition of food poverty, even in the fatherland of the healthy Mediterranean diet. This trend and other variables influenced the orientation and the objectives of the food strategies.Keywords: food security, food strategy, health, sustainability
Procedia PDF Downloads 2231003 Assessment of Urban Infrastructure and Health Using Principal Component Analysis and Geographic Information System: A Case of Ahmedabad, India
Authors: Anusha Vaddiraj Pallapu
Abstract:
Across the globe, there is a steady increase in people residing in urban areas. Due to this increase in urban population, urban health is affecting. The major issues identified like overcrowding, air pollution, unhealthy diet, inadequate infrastructure, poor solid waste management systems and insufficient access to health facilities, these issues are gradually clearly observed in health statistics of diseases and deaths rapidly increase in urban areas. Therefore, the present study aims to assess the health statistics and infrastructure services at urban areas to know the cause and effect between Infrastructure, its management and diseases (water borne). Most of the Indian cities have the municipal boundaries, which authorized by their respective municipal corporations and development authorities. Generally, cities have various zones under which municipal wards exist. The paper focuses on the city Ahmedabad, at Gujarat state. Ahmedabad Municipal Corporation (AMC) is divided into six zones namely Central zone, West zone, New-West zone, East zone, North zone, and South zone. Each zone includes various wards within it. Incidence of diseases in Ahmadabad which are linked to infrastructure was identified such as water-borne diseases. Later on, the occurrence of water-borne diseases at urban area was examined at each zone level. The study methodology follows four steps i.e. 1) Pre-Field literature study: Study on Sewerage system in urban areas and its best practices and public health status globally and Indian scenario; 2) Field study: Data collection and interviews of stakeholders regarding heal status and issues at each zone and ward level; 3) Post field: Data analysis with qualitative description of each ward of zones, followed by correlation coefficient analysis between sewerage coverage, diseases and density of each ward using geographic information system mapping (GIS); 4) Identification of reasons: Affected health on each of zone and wards followed by correlation analysis on each reason. The results reveal that the health conditions in Ahmedabad municipal zones or boundaries are effected due to the slums created by the migrated people from various rural and urban areas. It is also observed that due to increase in population water supply and sewerage management is affecting. The overall effect on infrastructure is creating the health diseases which detailed in the paper using geographical information system in Indian city.Keywords: infrastructure, municipal wards, GIS, water supply, sewerage, medical facilities, water borne diseases
Procedia PDF Downloads 2101002 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network
Authors: Yuntao Liu, Lei Wang, Haoran Xia
Abstract:
Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability
Procedia PDF Downloads 661001 Assessment of Microclimate in Abu Dhabi Neighborhoods: On the Utilization of Native Landscape in Enhancing Thermal Comfort
Authors: Maryam Al Mheiri, Khaled Al Awadi
Abstract:
Urban population is continuously increasing worldwide and the speed at which cities urbanize creates major challenges, particularly in terms of creating sustainable urban environments. Rapid urbanization often leads to negative environmental impacts and changes in the urban microclimates. Moreover, when rapid urbanization is paired with limited landscape elements, the effects on human health due to the increased pollution, and thermal comfort due to Urban Heat Island effects are increased. Urban Heat Island (UHI) describes the increase of urban temperatures in urban areas in comparison to its rural surroundings, and, as we discuss in this paper, it impacts on pedestrian comfort, reducing the number of walking trips and public space use. It is thus very necessary to investigate the quality of outdoor built environments in order to improve the quality of life incites. The main objective of this paper is to address the morphology of Emirati neighborhoods, setting a quantitative baseline by which to assess and compare spatial characteristics and microclimate performance of existing typologies in Abu Dhabi. This morphological mapping and analysis will help to understand the built landscape of Emirati neighborhoods in this city, whose form has changed and evolved across different periods. This will eventually help to model the use of different design strategies, such as landscaping, to mitigate UHI effects and enhance outdoor urban comfort. Further, the impact of different native plants types and native species in reducing UHI effects and enhancing outdoor urban comfort, allowing for the assessment of the impact of increasing landscaped areas in these neighborhoods. This study uses ENVI-met, an analytical, three-dimensional, high-resolution microclimate modeling software. This micro-scale urban climate model will be used to evaluate existing conditions and generate scenarios in different residential areas, with different vegetation surfaces and landscaping, and examine their impact on surface temperatures during summer and autumn. In parallel to these simulations, field measurement will be included to calibrate the Envi-met model. This research therefore takes an experimental approach, using simulation software, and a case study strategy for the evaluation of a sample of residential neighborhoods. A comparison of the results of these scenarios constitute a first step towards making recommendations about what constitutes sustainable landscapes for Abu Dhabi neighborhoods.Keywords: landscape, microclimate, native plants, sustainable neighborhoods, thermal comfort, urban heat island
Procedia PDF Downloads 3101000 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System
Authors: R. Ramesh, K. K. Shivaraman
Abstract:
The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management
Procedia PDF Downloads 305999 Investigation of Chord Protocol in Peer to Peer Wireless Mesh Network with Mobility
Authors: P. Prasanna Murali Krishna, M. V. Subramanyam, K. Satya Prasad
Abstract:
File sharing in networks are generally achieved using Peer-to-Peer (P2P) applications. Structured P2P approaches are widely used in adhoc networks due to its distributed and scalability features. Efficient mechanisms are required to handle the huge amount of data distributed to all peers. The intrinsic characteristics of P2P system makes for easier content distribution when compared to client-server architecture. All the nodes in a P2P network act as both client and server, thus, distributing data takes lesser time when compared to the client-server method. CHORD protocol is a resource routing based where nodes and data items are structured into a 1- dimensional ring. The structured lookup algorithm of Chord is advantageous for distributed P2P networking applications. Though, structured approach improves lookup performance in a high bandwidth wired network it could contribute to unnecessary overhead in overlay networks leading to degradation of network performance. In this paper, the performance of existing CHORD protocol on Wireless Mesh Network (WMN) when nodes are static and dynamic is investigated.Keywords: wireless mesh network (WMN), structured P2P networks, peer to peer resource sharing, CHORD Protocol, DHT
Procedia PDF Downloads 480998 Inverse Heat Conduction Analysis of Cooling on Run-Out Tables
Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi
Abstract:
In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.Keywords: inverse analysis, function specification, neural net works, particle swarm, run-out table
Procedia PDF Downloads 240997 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine
Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen
Abstract:
Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.Keywords: cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma
Procedia PDF Downloads 155996 A Technique for Image Segmentation Using K-Means Clustering Classification
Authors: Sadia Basar, Naila Habib, Awais Adnan
Abstract:
The paper presents the Technique for Image Segmentation Using K-Means Clustering Classification. The presented algorithms were specific, however, missed the neighboring information and required high-speed computerized machines to run the segmentation algorithms. Clustering is the process of partitioning a group of data points into a small number of clusters. The proposed method is content-aware and feature extraction method which is able to run on low-end computerized machines, simple algorithm, required low-quality streaming, efficient and used for security purpose. It has the capability to highlight the boundary and the object. At first, the user enters the data in the representation of the input. Then in the next step, the digital image is converted into groups clusters. Clusters are divided into many regions. The same categories with same features of clusters are assembled within a group and different clusters are placed in other groups. Finally, the clusters are combined with respect to similar features and then represented in the form of segments. The clustered image depicts the clear representation of the digital image in order to highlight the regions and boundaries of the image. At last, the final image is presented in the form of segments. All colors of the image are separated in clusters.Keywords: clustering, image segmentation, K-means function, local and global minimum, region
Procedia PDF Downloads 376995 Cassava Plant Architecture: Insights from Genome-Wide Association Studies
Authors: Abiodun Olayinka, Daniel Dzidzienyo, Pangirayi Tongoona, Samuel Offei, Edwige Gaby Nkouaya Mbanjo, Chiedozie Egesi, Ismail Yusuf Rabbi
Abstract:
Cassava (Manihot esculenta Crantz) is a major source of starch for various industrial applications. However, the traditional cultivation and harvesting methods of cassava are labour-intensive and inefficient, limiting the supply of fresh cassava roots for industrial starch production. To achieve improved productivity and quality of fresh cassava roots through mechanized cultivation, cassava cultivars with compact plant architecture and moderate plant height are needed. Plant architecture-related traits, such as plant height, harvest index, stem diameter, branching angle, and lodging tolerance, are critical for crop productivity and suitability for mechanized cultivation. However, the genetics of cassava plant architecture remain poorly understood. This study aimed to identify the genetic bases of the relationships between plant architecture traits and productivity-related traits, particularly starch content. A panel of 453 clones developed at the International Institute of Tropical Agriculture, Nigeria, was genotyped and phenotyped for 18 plant architecture and productivity-related traits at four locations in Nigeria. A genome-wide association study (GWAS) was conducted using the phenotypic data from a panel of 453 clones and 61,238 high-quality Diversity Arrays Technology sequencing (DArTseq) derived Single Nucleotide Polymorphism (SNP) markers that are evenly distributed across the cassava genome. Five significant associations between ten SNPs and three plant architecture component traits were identified through GWAS. We found five SNPs on chromosomes 6 and 16 that were significantly associated with shoot weight, harvest index, and total yield through genome-wide association mapping. We also discovered an essential candidate gene that is co-located with peak SNPs linked to these traits in M. esculenta. A review of the cassava reference genome v7.1 revealed that the SNP on chromosome 6 is in proximity to Manes.06G101600.1, a gene that regulates endodermal differentiation and root development in plants. The findings of this study provide insights into the genetic basis of plant architecture and yield in cassava. Cassava breeders could leverage this knowledge to optimize plant architecture and yield in cassava through marker-assisted selection and targeted manipulation of the candidate gene.Keywords: Manihot esculenta Crantz, plant architecture, DArtseq, SNP markers, genome-wide association study
Procedia PDF Downloads 69994 A Portable Cognitive Tool for Engagement Level and Activity Identification
Authors: Terry Teo, Sun Woh Lye, Yufei Li, Zainuddin Zakaria
Abstract:
Wearable devices such as Electroencephalography (EEG) hold immense potential in the monitoring and assessment of a person’s task engagement. This is especially so in remote or online sites. Research into its use in measuring an individual's cognitive state while performing task activities is therefore expected to increase. Despite the growing number of EEG research into brain functioning activities of a person, key challenges remain in adopting EEG for real-time operations. These include limited portability, long preparation time, high number of channel dimensionality, intrusiveness, as well as level of accuracy in acquiring neurological data. This paper proposes an approach using a 4-6 EEG channels to determine the cognitive states of a subject when undertaking a set of passive and active monitoring tasks of a subject. Air traffic controller (ATC) dynamic-tasks are used as a proxy. The work found that when using the channel reduction and identifier algorithm, good trend adherence of 89.1% can be obtained between a commercially available BCI 14 channel Emotiv EPOC+ EEG headset and that of a carefully selected set of reduced 4-6 channels. The approach can also identify different levels of engagement activities ranging from general monitoring ad hoc and repeated active monitoring activities involving information search, extraction, and memory activities.Keywords: assessment, neurophysiology, monitoring, EEG
Procedia PDF Downloads 75993 A Lifetime-Enhancing Monitoring Node Distribution Using Minimum Spanning Tree in Mobile Ad Hoc Networks
Authors: Sungchul Ha, Hyunwoo Kim
Abstract:
In mobile ad hoc networks, all nodes in a network only have limited resources and calculation ability. Therefore communication topology which have long lifetime is good for all nodes in mobile ad hoc networks. There are a variety of researches on security problems in wireless ad hoc networks. The existing many researches try to make efficient security schemes to reduce network power consumption and enhance network lifetime. Because a new node can join the network at any time, the wireless ad hoc networks are exposed to various threats and can be destroyed by attacks. Resource consumption is absolutely necessary to secure networks, but more resource consumption can be a critical problem to network lifetime. This paper focuses on efficient monitoring node distribution to enhance network lifetime in wireless ad hoc networks. Since the wireless ad hoc networks cannot use centralized infrastructure and security systems of wired networks, a new special IDS scheme is necessary. The scheme should not only cover all nodes in a network but also enhance the network lifetime. In this paper, we propose an efficient IDS node distribution scheme using minimum spanning tree (MST) method. The simulation results show that the proposed algorithm has superior performance in comparison with existing algorithms.Keywords: MANETs, IDS, power control, minimum spanning tree
Procedia PDF Downloads 372992 Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning
Authors: Muhammad Maisam Abbas, Salman Tariq, Usama Riaz, Muhammad Tanveer, Humaira Abdul Ghafoor
Abstract:
Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system.Keywords: autism spectrum disorder, ASD, EigenFace, facial expression recognition, FisherFace, local binary pattern histogram, LBPH
Procedia PDF Downloads 174991 Revising Our Ideas on Revisions: Non-Contact Bridging Plate Fixation of Vancouver B1 and B2 Periprosthetic Femoral Fractures
Authors: S. Ayeko, J. Milton, C. Hughes, K. Anderson, R. G. Middleton
Abstract:
Background: Periprosthetic femoral fractures (PFF) in association with hip hemiarthroplasty or total hip arthroplasty is a common and serious complication. In the Vancouver Classification system algorithm, B1 fractures should be treated with Open Reduction and Internal Fixation (ORIF) and preferentially revised in combination with ORIF if B2 or B3. This study aims to assess patient outcomes after plate osteosynthesis alone for Vancouver B1 and B2 fractures. The main outcome is the 1-year re-revision rate, and secondary outcomes are 30-day and 1-year mortality. Method: This is a retrospective single-centre case-series review from January 2016 to June 2021. Vancouver B1 and B2, non-malignancy fractures in adults over 18 years of age treated with polyaxial Non-Contact Bridging plate osteosynthesis, have been included. Outcomes were gathered from electronic notes and radiographs. Results: There were 50 B1 and 64 B2 fractures. 26 B2 fractures were managed with ORIF and revision, 39 ORIF alone. Of the revision group, one died within 30 days (3.8%), one at one year (3.8%), and two were revised within one year (7.7). Of the B2 ORIF group, three died within 30-day mortality (7.96%), eight at one year (21.1%), and 0 were revised in 1 year. Conclusion: This study has demonstrated that satisfactory outcomes can be achieved with ORIF, excluding revision in the management of B2 fractures.Keywords: arthroplasty, bridging plate, periprosthetic fracture, revision surgery
Procedia PDF Downloads 101990 A Multi-Objective Optimization Tool for Dual-Mode Operating Active Magnetic Regenerator Model
Authors: Anna Ouskova Leonteva, Michel Risser, Anne Jeannin-Girardon, Pierre Parrend, Pierre Collet
Abstract:
This paper proposes an efficient optimization tool for an active magnetic regenerator (AMR) model, operating in two modes: magnetic refrigeration system (MRS) and thermo-magnetic generator (TMG). The aim of this optimizer is to improve the design of the AMR by applying a multi-physics multi-scales numerical model as a core of evaluation functions to achieve industrial requirements for refrigeration and energy conservation systems. Based on the multi-objective non-dominated sorting genetic algorithm 3 (NSGA3), it maximizes four different objectives: efficiency and power density for MRS and TMG. The main contribution of this work is in the simultaneously application of a CPU-parallel NSGA3 version to the AMR model in both modes for studying impact of control and design parameters on the performance. The parametric study of the optimization results are presented. The main conclusion is that the common (for TMG and MRS modes) optimal parameters can be found by the proposed tool.Keywords: ecological refrigeration systems, active magnetic regenerator, thermo-magnetic generator, multi-objective evolutionary optimization, industrial optimization problem, real-world application
Procedia PDF Downloads 114989 Combining Chiller and Variable Frequency Drives
Authors: Nasir Khalid, S. Thirumalaichelvam
Abstract:
In most buildings, according to US Department of Energy Data Book, the electrical consumption attributable to centralized heating and ventilation of air- condition (HVAC) component can be as high as 40-60% of the total electricity consumption for an entire building. To provide efficient energy management for the market today, researchers are finding new ways to develop a system that can save electrical consumption of buildings even more. In this concept paper, a system known as Intelligent Chiller Energy Efficiency (iCEE) System is being developed that is capable of saving up to 25% from the chiller’s existing electrical energy consumption. In variable frequency drives (VFDs), research has found significant savings up to 30% of electrical energy consumption. Together with the VFDs at specific Air Handling Unit (AHU) of HVAC component, this system will save even more electrical energy consumption. The iCEE System is compatible with any make, model or age of centrifugal, rotary or reciprocating chiller air-conditioning systems which are electrically driven. The iCEE system uses engineering principles of efficiency analysis, enthalpy analysis, heat transfer, mathematical prediction, modified genetic algorithm, psychometrics analysis, and optimization formulation to achieve true and tangible energy savings for consumers.Keywords: variable frequency drives, adjustable speed drives, ac drives, chiller energy system
Procedia PDF Downloads 558988 Assessment of the Landscaped Biodiversity in the National Park of Tlemcen (Algeria) Using Per-Object Analysis of Landsat Imagery
Authors: Bencherif Kada
Abstract:
In the forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape, and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification, that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction, and area of an object, etc.), and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify of the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak, and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants, and bare soils. Texture attributes seem to provide no useful information, while spatial attributes of shape and compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.Keywords: forest, oaks, remote sensing, diversity, shrublands
Procedia PDF Downloads 124987 Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems
Abstract:
Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.Keywords: artificial life, industrial control system (ICS), IDS, prey predator (PP), SCADA, SDC
Procedia PDF Downloads 301986 Effect of Rainflow Cycle Number on Fatigue Lifetime of an Arm of Vehicle Suspension System
Authors: Hatem Mrad, Mohamed Bouazara, Fouad Erchiqui
Abstract:
Fatigue, is considered as one of the main cause of mechanical properties degradation of mechanical parts. Probability and reliability methods are appropriate for fatigue analysis using uncertainties that exist in fatigue material or process parameters. Current work deals with the study of the effect of the number and counting Rainflow cycle on fatigue lifetime (cumulative damage) of an upper arm of the vehicle suspension system. The major part of the fatigue damage induced in suspension arm is caused by two main classes of parameters. The first is related to the materials properties and the second is the road excitation or the applied force of the passenger’s number. Therefore, Young's modulus and road excitation are selected as input parameters to conduct repetitive simulations by Monte Carlo (MC) algorithm. Latin hypercube sampling method is used to generate these parameters. Response surface method is established according to fatigue lifetime of each combination of input parameters according to strain-life method. A PYTHON script was developed to automatize finite element simulations of the upper arm according to a design of experiments.Keywords: fatigue, monte carlo, rainflow cycle, response surface, suspension system
Procedia PDF Downloads 256985 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic
Authors: Budoor Al Abid
Abstract:
Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.Keywords: machine learning, adaptive, fuzzy logic, data mining
Procedia PDF Downloads 196984 Proxisch: An Optimization Approach of Large-Scale Unstable Proxy Servers Scheduling
Authors: Xiaoming Jiang, Jinqiao Shi, Qingfeng Tan, Wentao Zhang, Xuebin Wang, Muqian Chen
Abstract:
Nowadays, big companies such as Google, Microsoft, which have adequate proxy servers, have perfectly implemented their web crawlers for a certain website in parallel. But due to lack of expensive proxy servers, it is still a puzzle for researchers to crawl large amounts of information from a single website in parallel. In this case, it is a good choice for researchers to use free public proxy servers which are crawled from the Internet. In order to improve efficiency of web crawler, the following two issues should be considered primarily: (1) Tasks may fail owing to the instability of free proxy servers; (2) A proxy server will be blocked if it visits a single website frequently. In this paper, we propose Proxisch, an optimization approach of large-scale unstable proxy servers scheduling, which allow anyone with extremely low cost to run a web crawler efficiently. Proxisch is designed to work efficiently by making maximum use of reliable proxy servers. To solve second problem, it establishes a frequency control mechanism which can ensure the visiting frequency of any chosen proxy server below the website’s limit. The results show that our approach performs better than the other scheduling algorithms.Keywords: proxy server, priority queue, optimization algorithm, distributed web crawling
Procedia PDF Downloads 211983 Urban Waste Management for Health and Well-Being in Lagos, Nigeria
Authors: Bolawole F. Ogunbodede, Mokolade Johnson, Adetunji Adejumo
Abstract:
High population growth rate, reactive infrastructure provision, inability of physical planning to cope with developmental pace are responsible for waste water crisis in the Lagos Metropolis. Septic tank is still the most prevalent waste-water holding system. Unfortunately, there is a dearth of septage treatment infrastructure. Public waste-water treatment system statistics relative to the 23 million people in Lagos State is worrisome. 1.85 billion Cubic meters of wastewater is generated on daily basis and only 5% of the 26 million population is connected to public sewerage system. This is compounded by inadequate budgetary allocation and erratic power supply in the last two decades. This paper explored community participatory waste-water management alternative at Oworonshoki Municipality in Lagos. The study is underpinned by decentralized Waste-water Management systems in built-up areas. The initiative accommodates 5 step waste-water issue including generation, storage, collection, processing and disposal through participatory decision making in two Oworonshoki Community Development Association (CDA) areas. Drone assisted mapping highlighted building footage. Structured interviews and focused group discussion of land lord associations in the CDA areas provided collaborator platform for decision-making. Water stagnation in primary open drainage channels and natural retention ponds in framing wetlands is traceable to frequent of climate change induced tidal influences in recent decades. Rise in water table resulting in septic-tank leakage and water pollution is reported to be responsible for the increase in the water born infirmities documented in primary health centers. This is in addition to unhealthy dumping of solid wastes in the drainage channels. The effect of uncontrolled disposal system renders surface waters and underground water systems unsafe for human and recreational use; destroys biotic life; and poisons the fragile sand barrier-lagoon urban ecosystems. Cluster decentralized system was conceptualized to service 255 households. Stakeholders agreed on public-private partnership initiative for efficient wastewater service delivery.Keywords: health, infrastructure, management, septage, well-being
Procedia PDF Downloads 174982 Trajectory Design and Power Allocation for Energy -Efficient UAV Communication Based on Deep Reinforcement Learning
Authors: Yuling Cui, Danhao Deng, Chaowei Wang, Weidong Wang
Abstract:
In recent years, unmanned aerial vehicles (UAVs) have been widely used in wireless communication, attracting more and more attention from researchers. UAVs can not only serve as a relay for auxiliary communication but also serve as an aerial base station for ground users (GUs). However, limited energy means that they cannot work all the time and cover a limited range of services. In this paper, we investigate 2D UAV trajectory design and power allocation in order to maximize the UAV's service time and downlink throughput. Based on deep reinforcement learning, we propose a depth deterministic strategy gradient algorithm for trajectory design and power distribution (TDPA-DDPG) to solve the energy-efficient and communication service quality problem. The simulation results show that TDPA-DDPG can extend the service time of UAV as much as possible, improve the communication service quality, and realize the maximization of downlink throughput, which is significantly improved compared with existing methods.Keywords: UAV trajectory design, power allocation, energy efficient, downlink throughput, deep reinforcement learning, DDPG
Procedia PDF Downloads 150981 FLIME - Fast Low Light Image Enhancement for Real-Time Video
Authors: Vinay P., Srinivas K. S.
Abstract:
Low Light Image Enhancement is of utmost impor- tance in computer vision based tasks. Applications include vision systems for autonomous driving, night vision devices for defence systems, low light object detection tasks. Many of the existing deep learning methods are resource intensive during the inference step and take considerable time for processing. The algorithm should take considerably less than 41 milliseconds in order to process a real-time video feed with 24 frames per second and should be even less for a video with 30 or 60 frames per second. The paper presents a fast and efficient solution which has two main advantages, it has the potential to be used for a real-time video feed, and it can be used in low compute environments because of the lightweight nature. The proposed solution is a pipeline of three steps, the first one is the use of a simple function to map input RGB values to output RGB values, the second is to balance the colors and the final step is to adjust the contrast of the image. Hence a custom dataset is carefully prepared using images taken in low and bright lighting conditions. The preparation of the dataset, the proposed model, the processing time are discussed in detail and the quality of the enhanced images using different methods is shown.Keywords: low light image enhancement, real-time video, computer vision, machine learning
Procedia PDF Downloads 205980 Interactive Winding Geometry Design of Power Transformers
Authors: Paffrath Meinhard, Zhou Yayun, Guo Yiqing, Ertl Harald
Abstract:
Winding geometry design is an important part of power transformer electrical design. Conventionally, the winding geometry is designed manually, which is a time-consuming job because it involves many iteration steps in order to meet all cost, manufacturing and electrical requirements. Here a method is presented which automatically generates the winding geometry for given user parameters and allows the user to interactively set and change parameters. To achieve this goal, the winding problem is transferred to a mixed integer nonlinear optimization problem. The relevant geometrical design parameters are defined as optimization variables. The cost and other requirements are modeled as constraints. For the solution, a stochastic ant colony optimization algorithm is applied. It is well-known, that an optimizer can get stuck in a local minimum. For the winding problem, we present efficient strategies to come out of local minima, furthermore a reduced variable search range helps to accelerate the solution process. Numerical examples show that the optimization result is delivered within seconds such that the user can interactively change the variable search area and constraints to improve the design.Keywords: ant colony optimization, mixed integer nonlinear programming, power transformer, winding design
Procedia PDF Downloads 380979 Cumulative Pressure Hotspot Assessment in the Red Sea and Arabian Gulf
Authors: Schröde C., Rodriguez D., Sánchez A., Abdul Malak, Churchill J., Boksmati T., Alharbi, Alsulmi H., Maghrabi S., Mowalad, Mutwalli R., Abualnaja Y.
Abstract:
Formulating a strategy for sustainable development of the Kingdom of Saudi Arabia’s coastal and marine environment is at the core of the “Marine and Coastal Protection Assessment Study for the Kingdom of Saudi Arabia Coastline (MCEP)”; that was set up in the context of the Vision 2030 by the Saudi Arabian government and aimed at providing a first comprehensive ‘Status Quo Assessment’ of the Kingdom’s marine environment to inform a sustainable development strategy and serve as a baseline assessment for future monitoring activities. This baseline assessment relied on scientific evidence of the drivers, pressures and their impact on the environments of the Red Sea and Arabian Gulf. A key element of the assessment was the cumulative pressure hotspot analysis developed for both national waters of the Kingdom following the principles of the Driver-Pressure-State-Impact-Response (DPSIR) framework and using the cumulative pressure and impact assessment methodology. The ultimate goals of the analysis were to map and assess the main hotspots of environmental pressures, and identify priority areas for further field surveillance and for urgent management actions. The study identified maritime transport, fisheries, aquaculture, oil, gas, energy, coastal industry, coastal and maritime tourism, and urban development as the main drivers of pollution in the Saudi Arabian marine waters. For each of these drivers, pressure indicators were defined to spatially assess the potential influence of the drivers on the coastal and marine environment. A list of hotspots of 90 locations could be identified based on the assessment. Spatially grouped the list could be reduced to come up with of 10 hotspot areas, two in the Arabian Gulf, 8 in the Red Sea. The hotspot mapping revealed clear spatial patterns of drivers, pressures and hotspots within the marine environment of waters under KSA’s maritime jurisdiction in the Red Sea and Arabian Gulf. The cascading assessment approach based on the DPSIR framework ensured that the root causes of the hotspot patterns, i.e. the human activities and other drivers, can be identified. The adapted CPIA methodology allowed for the combination of the available data to spatially assess the cumulative pressure in a consistent manner, and to identify the most critical hotspots by determining the overlap of cumulative pressure with areas of sensitive biodiversity. Further improvements are expected by enhancing the data sources of drivers and pressure indicators, fine-tuning the decay factors and distances of the pressure indicators, as well as including trans-boundary pressures across the regional seas.Keywords: Arabian Gulf, DPSIR, hotspot, red sea
Procedia PDF Downloads 140978 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria
Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah
Abstract:
The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models
Procedia PDF Downloads 35977 Roasting Process of Sesame Seeds Modelling Using Gene Expression Programming: A Comparative Analysis with Response Surface Methodology
Authors: Alime Cengiz, Talip Kahyaoglu
Abstract:
Roasting process has the major importance to obtain desired aromatic taste of nuts. In this study, two kinds of roasting process were applied to hulled sesame seeds - vacuum oven and hot air roasting. Efficiency of Gene Expression Programming (GEP), a new soft computing technique of evolutionary algorithm that describes the cause and effect relationships in the data modelling system, and response surface methodology (RSM) were examined in the modelling of roasting processes over a range of temperature (120-180°C) for various times (30-60 min). Color attributes (L*, a*, b*, Browning Index (BI)), textural properties (hardness and fracturability) and moisture content were evaluated and modelled by RSM and GEP. The GEP-based formulations and RSM approach were compared with experimental results and evaluated according to correlation coefficients. The results showed that both GEP and RSM were found to be able to adequately learn the relation between roasting conditions and physical and textural parameters of roasted seeds. However, GEP had better prediction performance than the RSM with the high correlation coefficients (R2 >0.92) for the all quality parameters. This result indicates that the soft computing techniques have better capability for describing the physical changes occuring in sesame seeds during roasting process.Keywords: genetic expression programming, response surface methodology, roasting, sesame seed
Procedia PDF Downloads 418