Search results for: solar irradiation modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5689

Search results for: solar irradiation modeling

2089 Synthesis and Characterization of Silver/Graphene Oxide Co-Decorated TiO2 Nanotubular Arrays for Biomedical Applications

Authors: Alireza Rafieerad, Bushroa Abd Razak, Bahman Nasiri Tabrizi, Jamunarani Vadivelu

Abstract:

Recently, reports on the fabrication of nanotubular arrays have generated considerable scientific interest, owing to the broad range of applications of the oxide nanotubes in solar cells, orthopedic and dental implants, photocatalytic devices as well as lithium-ion batteries. A more attractive approach for the fabrication of oxide nanotubes with controllable morphology is the electrochemical anodization of substrate in a fluoride-containing electrolyte. Consequently, titanium dioxide nanotubes (TiO2 NTs) have been highly considered as an applicable material particularly in the district of artificial implants. In addition, regarding long-term efficacy and reasons of failing and infection after surgery of currently used dental implants required to enhance the cytocompatibility properties of Ti-based bone-like tissue. As well, graphene oxide (GO) with relevant biocompatibility features in tissue sites, osseointegration and drug delivery functionalization was fully understood. Besides, the boasting antibacterial ability of silver (Ag) remarkably provided for implantable devices without infection symptoms. Here, surface modification of Ti–6Al–7Nb implants (Ti67IMP) by the development of Ag/GO co-decorated TiO2 NTs was examined. Initially, the anodic TiO2 nanotubes obtained at a constant potential of 60 V were annealed at 600 degree centigrade for 2 h to improve the adhesion of the coating. Afterward, the Ag/GO co-decorated TiO2 NTs were developed by spin coating on Ti67IM. The microstructural features, phase composition and wettability behavior of the nanostructured coating were characterized comparably. In a nutshell, the results of the present study may contribute to the development of the nanostructured Ti67IMP with improved surface properties.

Keywords: anodic tio2 nanotube, biomedical applications, graphene oxide, silver, spin coating

Procedia PDF Downloads 319
2088 Scientific Recommender Systems Based on Neural Topic Model

Authors: Smail Boussaadi, Hassina Aliane

Abstract:

With the rapid growth of scientific literature, it is becoming increasingly challenging for researchers to keep up with the latest findings in their fields. Academic, professional networks play an essential role in connecting researchers and disseminating knowledge. To improve the user experience within these networks, we need effective article recommendation systems that provide personalized content.Current recommendation systems often rely on collaborative filtering or content-based techniques. However, these methods have limitations, such as the cold start problem and difficulty in capturing semantic relationships between articles. To overcome these challenges, we propose a new approach that combines BERTopic (Bidirectional Encoder Representations from Transformers), a state-of-the-art topic modeling technique, with community detection algorithms in a academic, professional network. Experiences confirm our performance expectations by showing good relevance and objectivity in the results.

Keywords: scientific articles, community detection, academic social network, recommender systems, neural topic model

Procedia PDF Downloads 92
2087 Smooth Second Order Nonsingular Terminal Sliding Mode Control for a 6 DOF Quadrotor UAV

Authors: V. Tabrizi, A. Vali, R. GHasemi, V. Behnamgol

Abstract:

In this article, a nonlinear model of an under actuated six degrees of freedom (6 DOF) quadrotor UAV is derived on the basis of the Newton-Euler formula. The derivation comprises determining equations of the motion of the quadrotor in three dimensions and approximating the actuation forces through the modeling of aerodynamic coefficients and electric motor dynamics. The robust nonlinear control strategy includes a smooth second order non-singular terminal sliding mode control which is applied to stabilizing this model. The control method is on the basis of super twisting algorithm for removing the chattering and producing smooth control signal. Also, nonsingular terminal sliding mode idea is used for introducing a nonlinear sliding variable that guarantees the finite time convergence in sliding phase. Simulation results show that the proposed algorithm is robust against uncertainty or disturbance and guarantees a fast and precise control signal.

Keywords: quadrotor UAV, nonsingular terminal sliding mode, second order sliding mode t, electronics, control, signal processing

Procedia PDF Downloads 432
2086 A Dam Break Analysis Using MIKE11

Authors: Oussama Derdous, Lakhdar Djemili, Hamza Bouchahed

Abstract:

The consequences of a dam breach can be devastating; both in terms of lives lost and damaged infrastructure and property. Hydraulic modeling provides a clear picture of the possible consequences of partial or complete failure of a dam, which is the key to carry out emergency planning and conduct reliable risk assessments. In this paper, the MIKE11 model developed by the Danish Hydrologic Institute (DHI) was used to simulate the flood wave propagation associated with a potential failure analysis failure of Zardezas dam located in the city of Skikda in the North East of Algeria. MIKE11 results including inundation maps and the representative channel/valley cross-sections depicting flow depth and maximal flow velocities showed that Zardezas reservoir presents a significant risk to downstream areas in the event of a dam failure. These results can be used as the basis of the development of an Emergency Action Plan (EAP).The main objective of this plan is to predict the appropriate steps to avoid or at least decrease the consequences of unexpected failure of Zardezas dam.

Keywords: MIKE11, dam break, inundation maps, emergency action plan

Procedia PDF Downloads 452
2085 Long Term Love Relationships Analyzed as a Dynamic System with Random Variations

Authors: Nini Johana Marín Rodríguez, William Fernando Oquendo Patino

Abstract:

In this work, we model a coupled system where we explore the effects of steady and random behavior on a linear system like an extension of the classic Strogatz model. This is exemplified by modeling a couple love dynamics as a linear system of two coupled differential equations and studying its stability for four types of lovers chosen as CC='Cautious- Cautious', OO='Only other feelings', OP='Opposites' and RR='Romeo the Robot'. We explore the effects of, first, introducing saturation, and second, adding a random variation to one of the CC-type lover, which will shape his character by trying to model how its variability influences the dynamics between love and hate in couple in a long run relationship. This work could also be useful to model other kind of systems where interactions can be modeled as linear systems with external or internal random influence. We found the final results are not easy to predict and a strong dependence on initial conditions appear, which a signature of chaos.

Keywords: differential equations, dynamical systems, linear system, love dynamics

Procedia PDF Downloads 348
2084 Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network

Authors: A. Ejah Umraeni Salam, M. Tola, M. Selintung, F. Maricar

Abstract:

Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system.

Keywords: radial basis function neural network, leakage pipeline, EPANET, RMSE

Procedia PDF Downloads 352
2083 Numerical Solution of Porous Media Equation Using Jacobi Operational Matrix

Authors: Shubham Jaiswal

Abstract:

During modeling of transport phenomena in porous media, many nonlinear partial differential equations (NPDEs) encountered which greatly described the convection, diffusion and reaction process. To solve such types of nonlinear problems, a reliable and efficient technique is needed. In this article, the numerical solution of NPDEs encountered in porous media is derived. Here Jacobi collocation method is used to solve the considered problems which convert the NPDEs in systems of nonlinear algebraic equations that can be solved using Newton-Raphson method. The numerical results of some illustrative examples are reported to show the efficiency and high accuracy of the proposed approach. The comparison of the numerical results with the existing analytical results already reported in the literature and the error analysis for each example exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.

Keywords: nonlinear porous media equation, shifted Jacobi polynomials, operational matrix, spectral collocation method

Procedia PDF Downloads 431
2082 Agent-Based Simulation for Supply Chain Transport Corridors

Authors: Kamalendu Pal

Abstract:

Supply chains are the spinal cord of trade and commerce. Their logistics use different transport corridors on regular basis for operational purpose. The international supply chain transport corridors include different infrastructure elements (e.g. weighbridge, package handling equipment, border clearance authorities, and so on) in supply chains. This paper presents the use of multi-agent systems (MAS) to model and simulate some aspects of transportation corridors, and in particular the area of weighbridge resource optimization for operational profit generation purpose. An underlying multi-agent model provides a means of modeling the relationships among stakeholders in order to enable coordination in a transport corridor environment. Simulations of the costs of container unloading, reloading, and waiting time for queuing up tracks have been carried out using data sets. Results of the simulation provide the potential guidance in making decisions about optimal service resource allocation in a trade corridor.

Keywords: multi-agent systems, simulation, supply chain, transport corridor, weighbridge

Procedia PDF Downloads 351
2081 Infrared Photodetectors Based on Nanowire Arrays: Towards Far Infrared Region

Authors: Mohammad Karimi, Magnus Heurlin, Lars Samuelson, Magnus Borgstrom, Hakan Pettersson

Abstract:

Nanowire semiconductors are promising candidates for optoelectronic applications such as solar cells, photodetectors and lasers due to their quasi-1D geometry and large surface to volume ratio. The functional wavelength range of NW-based detectors is typically limited to the visible/near-infrared region. In this work, we present electrical and optical properties of IR photodetectors based on large square millimeter ensembles (>1million) of vertically processed semiconductor heterostructure nanowires (NWs) grown on InP substrates which operate in longer wavelengths. InP NWs comprising single or multiple (20) InAs/InAsP QDics axially embedded in an n-i-n geometry, have been grown on InP substrates using metal organic vapor phase epitaxy (MOVPE). The NWs are contacted in vertical direction by atomic layer deposition (ALD) deposition of 50 nm SiO2 as an insulating layer followed by sputtering of indium tin oxide (ITO) and evaporation of Ti and Au as top contact layer. In order to extend the sensitivity range to the mid-wavelength and long-wavelength regions, the intersubband transition within conduction band of InAsP QDisc is suggested. We present first experimental indications of intersubband photocurrent in NW geometry and discuss important design parameters for realization of intersubband detectors. Key advantages with the proposed design include large degree of freedom in choice of materials compositions, possible enhanced optical resonance effects due to periodically ordered NW arrays and the compatibility with silicon substrates. We believe that the proposed detector design offers the route towards monolithic integration of compact and sensitive III-V NW long wavelength detectors with Si technology.

Keywords: intersubband photodetector, infrared, nanowire, quantum disc

Procedia PDF Downloads 375
2080 Examinations of Sustainable Protection Possibilities against Granary Weevil (Sitophilus granarius L.) on Stored Products

Authors: F. Pal-Fam, R. Hoffmann, S. Keszthelyi

Abstract:

Granary weevil, Sitophilus granarius (L.) (Col.: Curculionidae) is a typical cosmopolitan pest. It can cause significant damage to stored grains, and can drastically decrease yields. Damaged grain has reduced nutritional and market value, weaker germination, and reduced weight. The commonly used protectants against stored-product pests in Europe are residual insecticides, applied directly to the product. Unfortunately, these pesticides can be toxic to mammals, the residues can accumulate in the treated products, and many pest species could become resistant to the protectants. During recent years, alternative solutions of grain protection have received increased attention. These solutions are considered as the most promising alternatives to residual insecticides. The aims of our comparative study were to obtain information about the efficacies of the 1. diatomaceous earth, 2. sterile insect technology and 3. herbal oils against the S. granarius on grain (foremost maize), and to evaluate the influence of the dose rate on weevil mortality and progeny. The main results of our laboratory experiments are the followings: 1. Diatomaceous earth was especially efficacious against S. granarius, but its insecticidal properties depend on exposure time and applied dose. The efficacy on barley was better than on maize. Mortality value of the highest dose was 85% on the 21st day in the case of barley. It can be ascertained that complete elimination of progeny was evidenced on both gain types. To summarize, a satisfactory efficacy level was obtained only on barley at a rate of 4g/kg. Alteration of efficacy between grain types can be explained with differences in grain surface. 2. The mortality consequences of Roentgen irradiation on the S. granarius was highly influenced by the exposure time, and the dose applied. At doses of 50 and 70Gy, the efficacy accepted in plant protection (mortality: 95%) was recorded only on the 21st day. During the application of 100 and 200Gy doses, high mortality values (83.5% and 97.5%) were observed on the 14th day. Our results confirmed the complete sterilizing effect of the doses of 70Gy and above. The autocide effect of 50 and 70Gy doses were demonstrated when irradiated specimens were mixed into groups of fertile specimens. Consequently, these doses might be successfully applied to put sterile insect technique (SIT) into practice. 3. The results revealed that both studied essential oils (Callendula officinalis, Hippophae rhamnoides) exerted strong toxic effect on S. granarius, but C. officinalis triggered higher mortality. The efficacy (94.62 ± 2.63%) was reached after a 48 hours exposure to H. rhamnoides oil at 2ml/kg while the application of 2ml/kg of C. officinalis oil for 24 hours produced 98.94 ± 1.00% mortality rate. Mortality was 100% at 5 ml/kg of H. rhamnoides after 24 hours duration of its application, while with C. officinalis the same value could be reached after a 12 hour-exposure to the oil. Both essential oils applied were eliminated the progeny.

Keywords: Sitophilus granarius, stored product, protection, alternative solutions

Procedia PDF Downloads 167
2079 Enhancing Industrial Wastewater Treatment: Efficacy and Optimization of Ultrasound-Assisted Laccase Immobilized on Magnetic Fe₃O₄ Nanoparticles

Authors: K. Verma, v. S. Moholkar

Abstract:

In developed countries, water pollution caused by industrial discharge has emerged as a significant environmental concern over the past decades. However, despite ongoing efforts, a fully effective and sustainable remediation strategy has yet to be identified. This paper describes how enzymatic and sonochemical treatments have demonstrated great promise in degrading bio-refractory pollutants. Mainly, a compelling area of interest lies in the combined technique of sono-enzymatic treatment, which has exhibited a synergistic enhancement effect surpassing that of the individual techniques. This study employed the covalent attachment method to immobilize Laccase from Trametes versicolor onto amino-functionalized magnetic Fe₃O₄ nanoparticles. To comprehensively characterize the synthesized free nanoparticles and the laccase-immobilized nanoparticles, various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), and surface area through Brunauer-Emmett-Teller (BET) were employed. The size of immobilized Fe₃O₄@Laccase was found to be 60 nm, and the maximum loading of laccase was found to be 24 mg/g of nanoparticle. An investigation was conducted to study the effect of various process parameters, such as immobilized Fe₃O₄ Laccase dose, temperature, and pH, on the % Chemical oxygen demand (COD) removal as a response. The statistical design pinpointed the optimum conditions (immobilized Fe₃O₄ Laccase dose = 1.46 g/L, pH = 4.5, and temperature = 66 oC), resulting in a remarkable 65.58% COD removal within 60 minutes. An even more significant improvement (90.31% COD removal) was achieved with ultrasound-assisted enzymatic reaction utilizing a 10% duty cycle. The investigation of various kinetic models for free and immobilized laccase, such as the Haldane, Yano, and Koga, and Michaelis-Menten, showed that ultrasound application impacted the kinetic parameters Vmax and Km. Specifically, Vmax values for free and immobilized laccase were found to be 0.021 mg/L min and 0.045 mg/L min, respectively, while Km values were 147.2 mg/L for free laccase and 136.46 mg/L for immobilized laccase. The lower Km and higher Vmax for immobilized laccase indicate its enhanced affinity towards the substrate, likely due to ultrasound-induced alterations in the enzyme's confirmation and increased exposure of active sites, leading to more efficient degradation. Furthermore, the toxicity and Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that after the treatment process, the wastewater exhibited 70% less toxicity than before treatment, with over 25 compounds degrading by more than 75%. At last, the prepared immobilized laccase had excellent recyclability retaining 70% activity up to 6 consecutive cycles. A straightforward manufacturing strategy and outstanding performance make the recyclable magnetic immobilized Laccase (Fe₃O₄ Laccase) an up-and-coming option for various environmental applications, particularly in water pollution control and treatment.

Keywords: kinetic, laccase enzyme, sonoenzymatic, ultrasound irradiation

Procedia PDF Downloads 59
2078 The Impact of Steel Connections on the Fire Resistance of Composite Buildings

Authors: Shuyuan Lin, Zhaohui Huang, Mizi Fan

Abstract:

In the majority of previous research into modelling large scale composite floor subjected to fire, the beam-to-column and beam-to-beam connections were assumed to behave either as pinned or rigid for simplicity, and the vertical shear and axial tension failures of the connection were not taken into account. We have recently developed robust two-noded connection models for modeling endplate and partial endplate steel connections under fire conditions. The main objective of this research is to systematically investigate the impact of the connections of protected beams, on the tensile membrane actions of supported floor slabs in which the failures of the connections, such as, axial tension, vertical shear and bending are accounted for. The models developed have very good numerical stability under a static solver condition, and can be used for large scale modelling of composite buildings in fire.

Keywords: fire, steel structure, component-based model, beam-to-column connections

Procedia PDF Downloads 444
2077 Modeling Sediment Yield Using the SWAT Model: A Case Study of Upper Ankara River Basin, Turkey

Authors: Umit Duru

Abstract:

The Soil and Water Assessment Tool (SWAT) was tested for prediction of water balance and sediment yield in the Ankara gauged basin, Turkey. The overall objective of this study was to evaluate the performance and applicability of the SWAT in this region of Turkey. Thirteen years of monthly stream flow, and suspended sediment, data were used for calibration and validation. This research assessed model performance based on differences between observed and predicted suspended sediment yield during calibration (1987-1996) and validation (1982-1984) periods. Statistical comparisons of suspended sediment produced values for NSE (Nash Sutcliffe efficiency), RE (relative error), and R² (coefficient of determination), of 0.81, -1.55, and 0.93, respectively, during the calibration period, and NSE, RE (%), and R² of 0.77, -2.61, and 0.87, respectively, during the validation period. Based on the analyses, SWAT satisfactorily simulated observed hydrology and sediment yields and can be used as a tool in decision making for water resources planning and management in the basin.

Keywords: calibration, GIS, sediment yield, SWAT, validation

Procedia PDF Downloads 273
2076 Advanced Mechatronic Design of Robot Manipulator Using Hardware-In-The-Loop Simulation

Authors: Reza Karami, Ali Akbar Ebrahimi

Abstract:

This paper discusses concurrent engineering of robot manipulators, based on the Holistic Concurrent Design (HCD) methodology and by using a hardware-in-the-loop simulation platform. The methodology allows for considering numerous design variables with different natures concurrently. It redefines the ultimate goal of design based on the notion of satisfaction, resulting in the simplification of the multi-objective constrained optimization process. It also formalizes the effect of designer’s subjective attitude in the process. To enhance modeling efficiency for both computation and accuracy, a hardware-in-the-loop simulation platform is used, which involves physical joint modules and the control unit in addition to the software modules. This platform is implemented in the HCD design architecture to reliably evaluate the design attributes and performance super criterion during the design process. The resulting overall architecture is applied to redesigning kinematic, dynamic and control parameters of an industrial robot manipulator.

Keywords: concurrent engineering, hardware-in-the-loop simulation, robot manipulator, multidisciplinary systems, mechatronics

Procedia PDF Downloads 447
2075 Comparative Analysis of Different Land Use Land Cover (LULC) Maps in WRF Modelling Over Indian Region

Authors: Sen Tanmoy, Jain Sarika, Panda Jagabandhu

Abstract:

The studies regarding the impact of urbanization using the WRF-ARW model rely heavily on the static geographical information selected, including domain configuration and land use land cover (LULC) data. Accurate representation of LULC data provides essential information for understanding urban growth and simulating meteorological parameters such as temperature, precipitation etc. Researchers are using different LULC data as per availability and their requirements. As far as India is concerned, we have very limited resources and data availability. So, it is important to understand how we can optimize our results using limited LULC data. In this review article, we explored how a LULC map is generated from different sources in the Indian context and what its significance is in WRF-ARW modeling to study urbanization/Climate change or any other meteorological parameters. Bibliometric analyses were also performed in this review article based on countries of study and indexed keywords. Finally, some key points are marked out for selecting the most suitable LULC map for any urbanization-related study.

Keywords: LULC, LULC mapping, LANDSAT, WRF-ARW, ISRO, bibliometric Analysis.

Procedia PDF Downloads 21
2074 Fine Grained Action Recognition of Skateboarding Tricks

Authors: Frederik Calsius, Mirela Popa, Alexia Briassouli

Abstract:

In the field of machine learning, it is common practice to use benchmark datasets to prove the working of a method. The domain of action recognition in videos often uses datasets like Kinet-ics, Something-Something, UCF-101 and HMDB-51 to report results. Considering the properties of the datasets, there are no datasets that focus solely on very short clips (2 to 3 seconds), and on highly-similar fine-grained actions within one specific domain. This paper researches how current state-of-the-art action recognition methods perform on a dataset that consists of highly similar, fine-grained actions. To do so, a dataset of skateboarding tricks was created. The performed analysis highlights both benefits and limitations of state-of-the-art methods, while proposing future research directions in the activity recognition domain. The conducted research shows that the best results are obtained by fusing RGB data with OpenPose data for the Temporal Shift Module.

Keywords: activity recognition, fused deep representations, fine-grained dataset, temporal modeling

Procedia PDF Downloads 224
2073 Theoretical Modeling of Mechanical Properties of Eco-Friendly Composites Derived from Sugar Palm

Authors: J. Sahari, S. M. Sapuan

Abstract:

Eco-friendly composites have been successfully prepared by using sugar palm tree as a sources. The effect of fibre content on mechanical properties of (SPF/SPS) biocomposites have been done and the experimentally tensile properties (tensile strength and modulus) of biocomposites have been compared with the existing theories of reinforcement. The biocomposites were prepared with different amounts of fibres (i.e. 10%, 20% and 30% by weight percent). The mechanical properties of plasticized SPS improved with the incorporation of fibres. Both approaches (experimental and theoretical) show that the young’s modulus of the biocomposites is consistently increased when the sugar palm fibre (SPF) are placed into the sugar palm starch matrix (SPS). Surface morphological study through scanning electron microscopy showed homogeneous distribution of fibres and matrix with good adhesion which play an important role in improving the mechanical properties of biocomposites. The observed deviations between the experimental and theoretical values are explained by the simplifying model assumptions applied for the configuration of the composites, in particular the sugar palm starch composites.

Keywords: eco-friendly, biocomposite, mechanical, experimental, theoretical

Procedia PDF Downloads 438
2072 Effect of Doping on Band Gap of Zinc Oxide and Degradation of Methylene Blue and Industrial Effluent

Authors: V. P. Borker, K. S. Rane, A. J. Bhobe, R. S. Karmali

Abstract:

Effluent of dye industries contains chemicals and organic dyes. Sometimes they are thrown in the water bodies without any treatment. This leads to environmental pollution and is detrimental to flora and fauna. Semiconducting oxide zinc oxide with wide bandgap 3.37 eV is used as a photocatalyst in degrading organic dyes using UV radiations. It generates electron-hole pair on exposure to UV light. If degradation is aimed at solar radiations, bandgap of zinc oxide is to be reduced so as to utilize visible radiation. Thus, in present study, zinc oxide, ZnO is synthesized from zinc oxalate, N doped zinc oxide, ZnO₁₋ₓNₓ from hydrazinated zinc oxalate, cadmium doped zinc oxide Zn₀.₉Cd₀.₁₀ and magnesium-doped zinc oxide Zn₀.₉Mg₀.₁₀ from mixed metal oxalate and hydrazinated mixed metal oxalate. The precursors were characterized by FTIR. They were decomposed to form oxides and XRD were recorded. The compounds were monophasic. Bandgap was calculated using Diffuse Reflectance Spectrum. The bandgap of ZnO was reduced to 3.24 because of precursor method of synthesis leading large surface area. The bandgap of Zn₀.₉Cd₀.₁₀ was 3.11 eV and that of Zn₀.₉Mg₀.₁₀ 3.41 eV. The lowest value was of ZnO₁₋ₓNₓ 3.09 eV. These oxides were used to degrade methylene blue, a model dye in sunlight. ZnO₁₋ₓNₓ was also used to degrade effluent of industry manufacturing colours, crayons and markers. It was observed that ZnO₁₋ₓNₓ acts as a good photocatalyst for degradation of methylene blue. It can degrade the solution within 120 minutes. Similarly, diluted effluent was decolourised using this oxide. Some colours were degraded using ZnO. Thus, the use of these two oxides could mineralize effluent. Lesser bandgap leads to more electro hole pair thus helps in the formation of hydroxyl ion radicals. These radicals attack the dye molecule, fragmentation takes place and it is mineralised.

Keywords: cadmium doped zinc oxide, dye degradation, dye effluent degradation, N doped zinc oxide, zinc oxide

Procedia PDF Downloads 162
2071 Effects of Hydroxysafflor Yellow a (HSYA) on UVA-Induced Damage in HaCaT Keratinocytes

Authors: Szu-Chieh Yu, Pei-Chin Chiand, Chih-Yi Lin, Yi-Wen Chien

Abstract:

UV radiation from sunlight cause numbers of acute and chronic skin damage which can result in inflammation, immune changes, physical changes and DNA damage that facilitates skin aging and the development of skin carcinogenesis. Reactive oxygen species (ROS) are generated by excessive solar UV radiation, resulting in oxidative damage to cellar components, proteins, lipids, and nucleic acids. Thus, antioxidation plays an important role that protects skin against ROS-induced injury. Safflower (Carthamus tinctorius L.) is an important Chinese medicine contained abundance flavones and hydroxysafflor yellow A (HSYA) which is main active ingredient. HSYA is part of quinochalcone and has unique structures of hydroxy groups that provided the antioxidant effect. In this study, the aim was to investigate the protective role of HYSA in human keratinocytes (HaCaT) against UVA-induced oxidative damage and the possible mechanism. The HaCaT cells were UVA-irradiated and the effects of HYSA on cell viability, reactive oxygen species generation, DNA fragmentation and lipid peroxidation were measured. The mRNA expression of matrix metalloproteinase Ι (MMP Ι), cyclooxygenase-2 (COX-2) were determined by RT-PCR. In this study, UVA exposure lead to decrease in cell viability and increase in reactive oxygen species generation in HaCaT cells. HYSA could effectively increase the viability of HaCaT cells after UVA exposure and protect them from UVA-induced oxidative stress. Moreover, HYSA can reduce inflammation through inhibition the mRNA expression of MMP Ι and COX-2. Our results suggest that HSYA can act as a free radical scavenger while keratinocytes were photodamaged. HYSA could be a useful natural medicine for the protection of epidermal cells from UVA-induced damage and will be developed into products for skin care.

Keywords: HaCaT keratinocytes, hydroxysafflor yellow A (HSYA), MMP Ι, oxidative stress

Procedia PDF Downloads 374
2070 Modeling the Demand for the Healthcare Services Using Data Analysis Techniques

Authors: Elizaveta S. Prokofyeva, Svetlana V. Maltseva, Roman D. Zaitsev

Abstract:

Rapidly evolving modern data analysis technologies in healthcare play a large role in understanding the operation of the system and its characteristics. Nowadays, one of the key tasks in urban healthcare is to optimize the resource allocation. Thus, the application of data analysis in medical institutions to solve optimization problems determines the significance of this study. The purpose of this research was to establish the dependence between the indicators of the effectiveness of the medical institution and its resources. Hospital discharges by diagnosis; hospital days of in-patients and in-patient average length of stay were selected as the performance indicators and the demand of the medical facility. The hospital beds by type of care, medical technology (magnetic resonance tomography, gamma cameras, angiographic complexes and lithotripters) and physicians characterized the resource provision of medical institutions for the developed models. The data source for the research was an open database of the statistical service Eurostat. The choice of the source is due to the fact that the databases contain complete and open information necessary for research tasks in the field of public health. In addition, the statistical database has a user-friendly interface that allows you to quickly build analytical reports. The study provides information on 28 European for the period from 2007 to 2016. For all countries included in the study, with the most accurate and complete data for the period under review, predictive models were developed based on historical panel data. An attempt to improve the quality and the interpretation of the models was made by cluster analysis of the investigated set of countries. The main idea was to assess the similarity of the joint behavior of the variables throughout the time period under consideration to identify groups of similar countries and to construct the separate regression models for them. Therefore, the original time series were used as the objects of clustering. The hierarchical agglomerate algorithm k-medoids was used. The sampled objects were used as the centers of the clusters obtained, since determining the centroid when working with time series involves additional difficulties. The number of clusters used the silhouette coefficient. After the cluster analysis it was possible to significantly improve the predictive power of the models: for example, in the one of the clusters, MAPE error was only 0,82%, which makes it possible to conclude that this forecast is highly reliable in the short term. The obtained predicted values of the developed models have a relatively low level of error and can be used to make decisions on the resource provision of the hospital by medical personnel. The research displays the strong dependencies between the demand for the medical services and the modern medical equipment variable, which highlights the importance of the technological component for the successful development of the medical facility. Currently, data analysis has a huge potential, which allows to significantly improving health services. Medical institutions that are the first to introduce these technologies will certainly have a competitive advantage.

Keywords: data analysis, demand modeling, healthcare, medical facilities

Procedia PDF Downloads 138
2069 Numerical Investigations on Group Piles’ Lateral Bearing Capacity Considering Interaction of Soil and Structure

Authors: Mahdi Sadeghian, Mahmoud Hassanlourad, Alireza Ardakani, Reza Dinarvand

Abstract:

In this research, the behavior of monopiles, under lateral loads, was investigated with vertical and oblique piles by Finite Element Method. In engineering practice when soil-pile interaction comes to the picture some simplifications are applied to reduce the design time. As a simplified replacement of soil and pile interaction analysis, pile could be replaced by a column. The height of the column would be equal to the free length of the pile plus a portion of the embedded length of it. One of the important factors studied in this study was that columns with an equivalent length (free length plus a part of buried depth) could be used instead of soil and pile modeling. The results of the analysis show that the more internal friction angle of the soil increases, the more the bearing capacity of the soil is achieved. This additional length is 6 to 11 times of the pile diameter in dense soil although in loose sandy soil this range might increase.

Keywords: Depth of fixity, Lateral bearing capacity, Oblique pile, Pile group, Soil-structure interaction

Procedia PDF Downloads 224
2068 Diesel Engine Performance Optimization to Reduce Fuel Consumption and Emissions Issues

Authors: hadi kargar, bahador shabani

Abstract:

In this article, 16 cylinder motor combustion CFD modeling with a diameter of 165 mm and 195 mm along the way to help the FIRE software to optimize its function to work. A three-dimensional model of the processes that formed inside the cylinder made that involves mixing the fuel and air, ignition and spraying. In this three-dimensional model, all chemical species, density of air fuel spraying and spray with full profile intended to detailed results from mixing the fuel and air, igniting the ignition advance, spray, and mixed media in different times and get fit by moving the piston. Optimal selection of the model for the shape of the piston and spraying fuel specifications (including the management of spraying, the number of azhneh hole, start time of spraying and spraying angle) to achieve the best fuel consumption and minimal pollution. The spray hole 6 and 7 in three different configurations with five spraying and gives the best geometry and various performances in the simulation. 6 hole spray angle, finally spraying 72.5 degrees and two forms of spraying a better performance in comparison with other items of their own.

Keywords: spray, FIRE, CFD, optimize, diesel engine

Procedia PDF Downloads 410
2067 Modeling the Impact of Time Pressure on Activity-Travel Rescheduling Heuristics

Authors: Jingsi Li, Neil S. Ferguson

Abstract:

Time pressure could have an influence on the productivity, quality of decision making, and the efficiency of problem-solving. This has been mostly stemmed from cognitive research or psychological literature. However, a salient scarce discussion has been held for transport adjacent fields. It is conceivable that in many activity-travel contexts, time pressure is a potentially important factor since an excessive amount of decision time may incur the risk of late arrival to the next activity. The activity-travel rescheduling behavior is commonly explained by costs and benefits of factors such as activity engagements, personal intentions, social requirements, etc. This paper hypothesizes that an additional factor of perceived time pressure could affect travelers’ rescheduling behavior, thus leading to an impact on travel demand management. Time pressure may arise from different ways and is assumed here to be essentially incurred due to travelers planning their schedules without an expectation of unforeseen elements, e.g., transport disruption. In addition to a linear-additive utility-maximization model, the less computationally compensatory heuristic models are considered as an alternative to simulate travelers’ responses. The paper will contribute to travel behavior modeling research by investigating the following questions: how to measure the time pressure properly in an activity-travel day plan context? How do travelers reschedule their plans to cope with the time pressure? How would the importance of the activity affect travelers’ rescheduling behavior? What will the behavioral model be identified to describe the process of making activity-travel rescheduling decisions? How do these identified coping strategies affect the transport network? In this paper, a Mixed Heuristic Model (MHM) is employed to identify the presence of different choice heuristics through a latent class approach. The data about travelers’ activity-travel rescheduling behavior is collected via a web-based interactive survey where a fictitious scenario is created comprising multiple uncertain events on the activity or travel. The experiments are conducted in order to gain a real picture of activity-travel reschedule, considering the factor of time pressure. The identified behavioral models are then integrated into a multi-agent transport simulation model to investigate the effect of the rescheduling strategy on the transport network. The results show that an increased proportion of travelers use simpler, non-compensatory choice strategies instead of compensatory methods to cope with time pressure. Specifically, satisfying - one of the heuristic decision-making strategies - is adopted commonly since travelers tend to abandon the less important activities and keep the important ones. Furthermore, the importance of the activity is found to increase the weight of negative information when making trip-related decisions, especially route choices. When incorporating the identified non-compensatory decision-making heuristic models into the agent-based transport model, the simulation results imply that neglecting the effect of perceived time pressure may result in an inaccurate forecast of choice probability and overestimate the affectability to the policy changes.

Keywords: activity-travel rescheduling, decision making under uncertainty, mixed heuristic model, perceived time pressure, travel demand management

Procedia PDF Downloads 108
2066 Proposing a Failure Criterion for Cohesionless Media Considering Cyclic Fabric Anisotropy

Authors: Ali Noorzad, Ehsan Badakhshan, Shima Zameni

Abstract:

The present paper is focused on a generalized failure criterion for geomaterials with cross-anisotropy. The cyclic behavior of granular material primarily depends on the nature and arrangement of constituent particles, particle size, and shape that affect fabric anisotropy. To account for the influence of loading directions on strength variations, an anisotropic variable in terms of the invariants of the stress tensor and fabric into the failure criterion is proposed. In an extension to original CANAsand constitutive model two concepts namely critical state and compact state play paramount roles as all of the moduli and coefficients are related to these states. The applicability of the present model is evaluated through comparisons between the predicted and the measured results. All simulations have demonstrated that the proposed constitutive model is capable of modeling the cyclic behavior of sand with inherent anisotropy.

Keywords: fabric, cohesionless media, cyclic loading, critical state, compact state, CANAsand constitutive model

Procedia PDF Downloads 213
2065 Statistical Optimization of Adsorption of a Harmful Dye from Aqueous Solution

Authors: M. Arun, A. Kannan

Abstract:

Textile industries cater to varied customer preferences and contribute substantially to the economy. However, these textile industries also produce a considerable amount of effluents. Prominent among these are the azo dyes which impart considerable color and toxicity even at low concentrations. Azo dyes are also used as coloring agents in food and pharmaceutical industry. Despite their applications, azo dyes are also notorious pollutants and carcinogens. Popular techniques like photo-degradation, biodegradation and the use of oxidizing agents are not applicable for all kinds of dyes, as most of them are stable to these techniques. Chemical coagulation produces a large amount of toxic sludge which is undesirable and is also ineffective towards a number of dyes. Most of the azo dyes are stable to UV-visible light irradiation and may even resist aerobic degradation. Adsorption has been the most preferred technique owing to its less cost, high capacity and process efficiency and the possibility of regenerating and recycling the adsorbent. Adsorption is also most preferred because it may produce high quality of the treated effluent and it is able to remove different kinds of dyes. However, the adsorption process is influenced by many variables whose inter-dependence makes it difficult to identify optimum conditions. The variables include stirring speed, temperature, initial concentration and adsorbent dosage. Further, the internal diffusional resistance inside the adsorbent particle leads to slow uptake of the solute within the adsorbent. Hence, it is necessary to identify optimum conditions that lead to high capacity and uptake rate of these pollutants. In this work, commercially available activated carbon was chosen as the adsorbent owing to its high surface area. A typical azo dye found in textile effluent waters, viz. the monoazo Acid Orange 10 dye (CAS: 1936-15-8) has been chosen as the representative pollutant. Adsorption studies were mainly focused at obtaining equilibrium and kinetic data for the batch adsorption process at different process conditions. Studies were conducted at different stirring speed, temperature, adsorbent dosage and initial dye concentration settings. The Full Factorial Design was the chosen statistical design framework for carrying out the experiments and identifying the important factors and their interactions. The optimum conditions identified from the experimental model were validated with actual experiments at the recommended settings. The equilibrium and kinetic data obtained were fitted to different models and the model parameters were estimated. This gives more details about the nature of adsorption taking place. Critical data required to design batch adsorption systems for removal of Acid Orange 10 dye and identification of factors that critically influence the separation efficiency are the key outcomes from this research.

Keywords: acid orange 10, activated carbon, optimum adsorption conditions, statistical design

Procedia PDF Downloads 166
2064 Suggestion of Reasonable Analysis Model for T-Girder Modular Bridge

Authors: Soonwon Kang, Jinwoong Choi, Sungnam Hong, Seung-Kyung Kye, Sun-Kyu Park

Abstract:

The modular bridge is to be constructed by assembling standardized precast segments. This bridge is classified as a slab type and T-girder type. The T-girder bridge has transverse joint. However, it did not perform the verification on the transverse joint, but the slab type was done on the analytic study on the joint. Therefore, it is necessary for precast modular T-girder bridge that has a transverse joint to propose an appropriated model. In this study, specimens and analysis models compared integrated type with segmented type. Results of the integrated and segmented specimens, each of the deflection was 98.40mm and 74.66mm when the maximum load was 269.71kN and 248.29kN, in case of the modeling the specimens, each of the deflection was 84.04mm, 69.39mm when the maximum load was 269.71kN, 248.29kN, therefore, the precast T-girder modular bridges form the analytic model proposed appropriate.

Keywords: precast, T-girder modular bridge, finite element analysis, joint

Procedia PDF Downloads 410
2063 Modeling and Analyzing Controversy in Large-Scale Cyber-Argumentation

Authors: Najla Althuniyan

Abstract:

Online discussions take place across different platforms. These discussions have the potential to extract crowd wisdom and capture the collective intelligence from a different perspective. However, certain phenomena, such as controversy, often appear in online argumentation that makes the discussion between participants heated. Heated discussions can be used to extract new knowledge. Therefore, detecting the presence of controversy is an essential task to determine if collective intelligence can be extracted from online discussions. This paper uses existing measures for estimating controversy quantitatively in cyber-argumentation. First, it defines controversy in different fields, and then it identifies the attributes of controversy in online discussions. The distributions of user opinions and the distance between opinions are used to calculate the controversial degree of a discussion. Finally, the results from each controversy measure are discussed and analyzed using an empirical study generated by a cyber-argumentation tool. This is an improvement over the existing measurements because it does not require ground-truth data or specific settings and can be adapted to distribution-based or distance-based opinions.

Keywords: online argumentation, controversy, collective intelligence, agreement analysis, collaborative decision-making, fuzzy logic

Procedia PDF Downloads 113
2062 Smart Production Planning: The Case of Aluminium Foundry

Authors: Samira Alvandi

Abstract:

In the context of the circular economy, production planning aims to eliminate waste and emissions and maximize resource efficiency. Historically production planning is challenged through arrays of uncertainty and complexity arising from the interdependence and variability of products, processes, and systems. Manufacturers worldwide are facing new challenges in tackling various environmental issues such as climate change, resource depletion, and land degradation. In managing the inherited complexity and uncertainty and yet maintaining profitability, the manufacturing sector is in need of a holistic framework that supports energy efficiency and carbon emission reduction schemes. The proposed framework addresses the current challenges and integrates simulation modeling with optimization for finding optimal machine-job allocation to maximize throughput and total energy consumption while minimizing lead time. The aluminium refinery facility in western Sydney, Australia, is used as an exemplar to validate the proposed framework.

Keywords: smart production planning, simulation-optimisation, energy aware capacity planning, energy intensive industries

Procedia PDF Downloads 66
2061 Implementation of MPPT Algorithm for Grid Connected PV Module with IC and P&O Method

Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati

Abstract:

In recent years, the use of renewable energy resources instead of pollutant fossil fuels and other forms has increased. Photovoltaic generation is becoming increasingly important as a renewable resource since it does not cause in fuel costs, pollution, maintenance, and emitting noise compared with other alternatives used in power applications. In this paper, Perturb and Observe and Incremental Conductance methods are used to improve energy conversion efficiency under different environmental conditions. PI controllers are used to control easily DC-link voltage, active and reactive currents. The whole system is simulated under standard climatic conditions (1000 W/m2, 250C) in MATLAB and the irradiance is varied from 1000 W/m2 to 300 W/m2. The use of PI controller makes it easy to directly control the power of the grid connected PV system. Finally the validity of the system will be verified through the simulations in MATLAB/Simulink environment.

Keywords: incremental conductance algorithm, modeling of PV panel, perturb and observe algorithm, photovoltaic system and simulation results

Procedia PDF Downloads 502
2060 Improved Elastoplastic Bounding Surface Model for the Mathematical Modeling of Geomaterials

Authors: Andres Nieto-Leal, Victor N. Kaliakin, Tania P. Molina

Abstract:

The nature of most engineering materials is quite complex. It is, therefore, difficult to devise a general mathematical model that will cover all possible ranges and types of excitation and behavior of a given material. As a result, the development of mathematical models is based upon simplifying assumptions regarding material behavior. Such simplifications result in some material idealization; for example, one of the simplest material idealization is to assume that the material behavior obeys the elasticity. However, soils are nonhomogeneous, anisotropic, path-dependent materials that exhibit nonlinear stress-strain relationships, changes in volume under shear, dilatancy, as well as time-, rate- and temperature-dependent behavior. Over the years, many constitutive models, possessing different levels of sophistication, have been developed to simulate the behavior geomaterials, particularly cohesive soils. Early in the development of constitutive models, it became evident that elastic or standard elastoplastic formulations, employing purely isotropic hardening and predicated in the existence of a yield surface surrounding a purely elastic domain, were incapable of realistically simulating the behavior of geomaterials. Accordingly, more sophisticated constitutive models have been developed; for example, the bounding surface elastoplasticity. The essence of the bounding surface concept is the hypothesis that plastic deformations can occur for stress states either within or on the bounding surface. Thus, unlike classical yield surface elastoplasticity, the plastic states are not restricted only to those lying on a surface. Elastoplastic bounding surface models have been improved; however, there is still need to improve their capabilities in simulating the response of anisotropically consolidated cohesive soils, especially the response in extension tests. Thus, in this work an improved constitutive model that can more accurately predict diverse stress-strain phenomena exhibited by cohesive soils was developed. Particularly, an improved rotational hardening rule that better simulate the response of cohesive soils in extension. The generalized definition of the bounding surface model provides a convenient and elegant framework for unifying various previous versions of the model for anisotropically consolidated cohesive soils. The Generalized Bounding Surface Model for cohesive soils is a fully three-dimensional, time-dependent model that accounts for both inherent and stress induced anisotropy employing a non-associative flow rule. The model numerical implementation in a computer code followed an adaptive multistep integration scheme in conjunction with local iteration and radial return. The one-step trapezoidal rule was used to get the stiffness matrix that defines the relationship between the stress increment and the strain increment. After testing the model in simulating the response of cohesive soils through extensive comparisons of model simulations to experimental data, it has been shown to give quite good simulations. The new model successfully simulates the response of different cohesive soils; for example, Cardiff Kaolin, Spestone Kaolin, and Lower Cromer Till. The simulated undrained stress paths, stress-strain response, and excess pore pressures are in very good agreement with the experimental values, especially in extension.

Keywords: bounding surface elastoplasticity, cohesive soils, constitutive model, modeling of geomaterials

Procedia PDF Downloads 310