Search results for: uncertainty and decision making
7416 Intelligent Building as a Pragmatic Approach towards Achieving a Sustainable Environment
Authors: Zahra Hamedani
Abstract:
Many wonderful technological developments in recent years has opened up the possibility of using intelligent buildings for a number of important applications, ranging from minimizing resource usage as well as increasing building efficiency to maximizing comfort, adaption to inhabitants and responsiveness to environmental changes. The concept of an intelligent building refers to the highly embedded, interactive environment within which by exploiting the use of artificial intelligence provides the ability to know its configuration, anticipate the optimum dynamic response to prevailing environmental stimuli, and actuate the appropriate physical reaction to provide comfort and efficiency. This paper contains a general identification of the intelligence paradigm and its impacts on the architecture arena, that with examining the performance of artificial intelligence, a mechanism to analyze and finally for decision-making to control the environment will be described. This mechanism would be a hierarchy of the rational agents which includes decision-making, information, communication and physical layers. This multi-agent system relies upon machine learning techniques for automated discovery, prediction and decision-making. Then, the application of this mechanism regarding adaptation and responsiveness of intelligent building will be provided in two scales of environmental and user. Finally, we review the identifications of sustainability and evaluate the potentials of intelligent building systems in the creation of sustainable architecture and environment.Keywords: artificial intelligence, intelligent building, responsiveness, adaption, sustainability
Procedia PDF Downloads 4107415 A Multi-Objective Decision Making Model for Biodiversity Conservation and Planning: Exploring the Concept of Interdependency
Authors: M. Mohan, J. P. Roise, G. P. Catts
Abstract:
Despite living in an era where conservation zones are de-facto the central element in any sustainable wildlife management strategy, we still find ourselves grappling with several pareto-optimal situations regarding resource allocation and area distribution for the same. In this paper, a multi-objective decision making (MODM) model is presented to answer the question of whether or not we can establish mutual relationships between these contradicting objectives. For our study, we considered a Red-cockaded woodpecker (Picoides borealis) habitat conservation scenario in the coastal plain of North Carolina, USA. Red-cockaded woodpecker (RCW) is a non-migratory territorial bird that excavates cavities in living pine trees for roosting and nesting. The RCW groups nest in an aggregation of cavity trees called ‘cluster’ and for our model we use the number of clusters to be established as a measure of evaluating the size of conservation zone required. The case study is formulated as a linear programming problem and the objective function optimises the Red-cockaded woodpecker clusters, carbon retention rate, biofuel, public safety and Net Present Value (NPV) of the forest. We studied the variation of individual objectives with respect to the amount of area available and plotted a two dimensional dynamic graph after establishing interrelations between the objectives. We further explore the concept of interdependency by integrating the MODM model with GIS, and derive a raster file representing carbon distribution from the existing forest dataset. Model results demonstrate the applicability of interdependency from both linear and spatial perspectives, and suggest that this approach holds immense potential for enhancing environmental investment decision making in future.Keywords: conservation, interdependency, multi-objective decision making, red-cockaded woodpecker
Procedia PDF Downloads 3377414 Equipment Donation: A Perspective from a Teaching Tertiary Care Hospital in North India
Authors: Jitender Sodhi, Shweta Talati, A. K. Gupta, Pankaj Arora
Abstract:
Background:Equipment donation to hospitals in resource-limited settings can significantly benefit services in these settings albeit requires important ethical, practical and financial issues to be considered before accepting donations. Objective: To understand the decision making process leading to acceptance/ rejection/ deferment of equipment donation from the perspective of a public sector teaching tertiary care hospital. Design: Retrospective, record based study. Setting: 2000-bedded public sector teaching tertiary care hospital in North India. Methods: A total of 30 cases of equipment donation from March 2010-October 2013, were analysed for their decision process leading to acceptance/rejection/deferment.Each case was studied retrospectively and data pertaining to the agenda and decision taken was collected. Results: A total of 30 cases of equipment donation received from March 2010- October 2013 were screened, out of which 17 (56.6%) were for diagnostic purpose and 13 (43.3%) for therapeutic purpose. Out of 30 cases, 16 (53.3%) were accepted and 8 (26.6%) were rejected. The remaining 6 cases included 3 (10%) which required further clarification and other 3 (10%) which were out of the domain of committee. Conclusion: This study highlights the importance of equipment donation in resource limited settings and considerations involved while making decisions for acceptance/rejections/defermentof such donations.Keywords: equipment donation, teaching hospital, decision-making, North India
Procedia PDF Downloads 2957413 A New Intelligent, Dynamic and Real Time Management System of Sewerage
Authors: R. Tlili Yaakoubi, H.Nakouri, O. Blanpain, S. Lallahem
Abstract:
The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of this project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 19 to 100 %. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 40 % of total volume rejected to the natural environment and of 65 % in the number of discharges.Keywords: automation, optimization, paradigm, RTC
Procedia PDF Downloads 2997412 Proposal of a Model Supporting Decision-Making on Information Security Risk Treatment
Authors: Ritsuko Kawasaki, Takeshi Hiromatsu
Abstract:
Management is required to understand all information security risks within an organization, and to make decisions on which information security risks should be treated in what level by allocating how much amount of cost. However, such decision-making is not usually easy, because various measures for risk treatment must be selected with the suitable application levels. In addition, some measures may have objectives conflicting with each other. It also makes the selection difficult. Therefore, this paper provides a model which supports the selection of measures by applying multi-objective analysis to find an optimal solution. Additionally, a list of measures is also provided to make the selection easier and more effective without any leakage of measures.Keywords: information security risk treatment, selection of risk measures, risk acceptance, multi-objective optimization
Procedia PDF Downloads 3797411 Web-Based Decision Support Systems and Intelligent Decision-Making: A Systematic Analysis
Authors: Serhat Tüzün, Tufan Demirel
Abstract:
Decision Support Systems (DSS) have been investigated by researchers and technologists for more than 35 years. This paper analyses the developments in the architecture and software of these systems, provides a systematic analysis for different Web-based DSS approaches and Intelligent Decision-making Technologies (IDT), with the suggestion for future studies. Decision Support Systems literature begins with building model-oriented DSS in the late 1960s, theory developments in the 1970s, and the implementation of financial planning systems and Group DSS in the early and mid-80s. Then it documents the origins of Executive Information Systems, online analytic processing (OLAP) and Business Intelligence. The implementation of Web-based DSS occurred in the mid-1990s. With the beginning of the new millennia, intelligence is the main focus on DSS studies. Web-based technologies are having a major impact on design, development and implementation processes for all types of DSS. Web technologies are being utilized for the development of DSS tools by leading developers of decision support technologies. Major companies are encouraging its customers to port their DSS applications, such as data mining, customer relationship management (CRM) and OLAP systems, to a web-based environment. Similarly, real-time data fed from manufacturing plants are now helping floor managers make decisions regarding production adjustment to ensure that high-quality products are produced and delivered. Web-based DSS are being employed by organizations as decision aids for employees as well as customers. A common usage of Web-based DSS has been to assist customers configure product and service according to their needs. These systems allow individual customers to design their own products by choosing from a menu of attributes, components, prices and delivery options. The Intelligent Decision-making Technologies (IDT) domain is a fast growing area of research that integrates various aspects of computer science and information systems. This includes intelligent systems, intelligent technology, intelligent agents, artificial intelligence, fuzzy logic, neural networks, machine learning, knowledge discovery, computational intelligence, data science, big data analytics, inference engines, recommender systems or engines, and a variety of related disciplines. Innovative applications that emerge using IDT often have a significant impact on decision-making processes in government, industry, business, and academia in general. This is particularly pronounced in finance, accounting, healthcare, computer networks, real-time safety monitoring and crisis response systems. Similarly, IDT is commonly used in military decision-making systems, security, marketing, stock market prediction, and robotics. Even though lots of research studies have been conducted on Decision Support Systems, a systematic analysis on the subject is still missing. Because of this necessity, this paper has been prepared to search recent articles about the DSS. The literature has been deeply reviewed and by classifying previous studies according to their preferences, taxonomy for DSS has been prepared. With the aid of the taxonomic review and the recent developments over the subject, this study aims to analyze the future trends in decision support systems.Keywords: decision support systems, intelligent decision-making, systematic analysis, taxonomic review
Procedia PDF Downloads 2797410 Uncertainty Analysis of a Hardware in Loop Setup for Testing Products Related to Building Technology
Authors: Balasundaram Prasaant, Ploix Stephane, Delinchant Benoit, Muresan Cristian
Abstract:
Hardware in Loop (HIL) testing is done to test and validate a particular product especially in building technology. When it comes to building technology, it is more important to test the products for their efficiency. The test rig in the HIL simulator may contribute to some uncertainties on measured efficiency. The uncertainties include physical uncertainties and scenario-based uncertainties. In this paper, a simple uncertainty analysis framework for an HIL setup is shown considering only the physical uncertainties. The entire modeling of the HIL setup is done in Dymola. The uncertain sources are considered based on available knowledge of the components and also on expert knowledge. For the propagation of uncertainty, Monte Carlo Simulation is used since it is the most reliable and easy to use. In this article it is shown how an HIL setup can be modeled and how uncertainty propagation can be performed on it. Such an approach is not common in building energy analysis.Keywords: energy in buildings, hardware in loop testing, modelica modelling, Monte Carlo simulation, uncertainty propagation
Procedia PDF Downloads 1377409 Multidirectional Product Support System for Decision Making in Textile Industry Using Collaborative Filtering Methods
Authors: A. Senthil Kumar, V. Murali Bhaskaran
Abstract:
In the information technology ground, people are using various tools and software for their official use and personal reasons. Nowadays, people are worrying to choose data accessing and extraction tools at the time of buying and selling their products. In addition, worry about various quality factors such as price, durability, color, size, and availability of the product. The main purpose of the research study is to find solutions to these unsolved existing problems. The proposed algorithm is a Multidirectional Rank Prediction (MDRP) decision making algorithm in order to take an effective strategic decision at all the levels of data extraction, uses a real time textile dataset and analyzes the results. Finally, the results are obtained and compared with the existing measurement methods such as PCC, SLCF, and VSS. The result accuracy is higher than the existing rank prediction methods.Keywords: Knowledge Discovery in Database (KDD), Multidirectional Rank Prediction (MDRP), Pearson’s Correlation Coefficient (PCC), VSS (Vector Space Similarity)
Procedia PDF Downloads 2867408 The Effect of Law on Politics
Authors: Boukrida Rafiq
Abstract:
Democracy is based on the notion that all citizens have the right to participate in the managing of political affairs and that every citizens input is of equal importance. This basic assumption clearly places emphasis on public participation in maintaining a stable democracy. The level of public participation, however is highly contested with many theorists arguing that too much public participation would overwhelm and ultimately cripple democratic systems. On the other hand, others who favor high levels of participation argue that more citizen involvement leads to greater representation. Regardless of these disagreements over the utopian level of participation, there is widespread agreement amongst scholars that, at the very least, some participation is necessary to maintain democratic systems. The ways in which citizens participate vary greatly and depending on the method used, influence political decision making at varying levels. The method of political participation is a key in controlling public influence over political affairs and therefore is also an integral part of maintaining democracy, whether it be "thin" (low levels of participation) or "Robust" (high levels of participation). High levels of participation or "robust" democracy are argued by some theorists to enhance democracy through providing the opportunity for more issues to be represented during decision making. The notion of widespread participation was first advanced by classical theorists.Keywords: assumption clearly places emphasis, ultimately cripple, influence political decision making at varying, classical theorists
Procedia PDF Downloads 4607407 An Assessment of Airport Collaborative Decision-Making System Using Predictive Maintenance
Authors: Faruk Aras, Melih Inal, Tansel Cinar
Abstract:
The coordination of airport staff especially in the operations and maintenance departments is important for the airport operation. As a result, this coordination will increase the efficiency in all operation. Therefore, a Collaborative Decision-Making (CDM) system targets on improving the overall productivity of all operations by optimizing the use of resources and improving the predictability of actions. Enlarged productivity can be of major benefit for all airport operations. It also increases cost-efficiency. This study explains how predictive maintenance using IoT (Internet of Things), predictive operations and the statistical data such as Mean Time To Failure (MTTF) improves airport terminal operations and utilize airport terminal equipment in collaboration with collaborative decision making system/Airport Operation Control Center (AOCC). Data generated by the predictive maintenance methods is retrieved and analyzed by maintenance managers to predict when a problem is about to occur. With that information, maintenance can be scheduled when needed. As an example, AOCC operator would have chance to assign a new gate that towards to this gate all the equipment such as travellator, elevator, escalator etc. are operational if the maintenance team is in collaboration with AOCC since maintenance team is aware of the health of the equipment because of predictive maintenance methods. Applying predictive maintenance methods based on analyzing the health of airport terminal equipment dramatically reduces the risk of downtime by on time repairs. We can classify the categories as high priority calls for urgent repair action, as medium priority requires repair at the earliest opportunity, and low priority allows maintenance to be scheduled when convenient. In all cases, identifying potential problems early resulted in better allocation airport terminal resources by AOCC.Keywords: airport, predictive maintenance, collaborative decision-making system, Airport Operation Control Center (AOCC)
Procedia PDF Downloads 3657406 The Nexus of Decentralized Policy, social Heterogeneity and Poverty in Equitable Forest Benefit Sharing in the Lowland Community Forestry Program of Nepal
Authors: Dhiraj Neupane
Abstract:
Decentralized policy and practices have largely concentrated on the transformation of decision-making authorities from central to local institutions (or people) in the developing world. Such policy and practices always aimed for the equitable and efficient management of resources in the line of poverty reduction. The transformation of forest decision-making autonomy has also glorified as the best forest management alternatives to maximize the forest benefits and improve the livelihood of local people living nearby the forests. However, social heterogeneity and poor decision-making capacity of local institutions (or people) pose a nexus while managing the resources and sharing the forest benefits among the user households despite the policy objectives. The situation is severe in the lowland of Nepal, where forest resources have higher economic potential and user households have heterogeneous socio-economic conditions. The study discovered that utilizing the power of decision-making autonomy, user households were putting low values of timber considering the equitable access of timber to all user households as it is the most valuable product of community forest. Being the society is heterogeneous by socio-economic conditions, households of better economic conditions were always taking higher amount of forest benefits. The low valuation of timber has negative consequences on equitable benefit sharing and poor support to livelihood improvement of user households. Moreover, low valuation has possibility to increase the local demands of timber and increase the human pressure on forests.Keywords: decentralized forest policy, Nepal, poverty, social heterogeneity, Terai
Procedia PDF Downloads 2877405 Conception of a Regulated, Dynamic and Intelligent Sewerage in Ostrevent
Authors: Rabaa Tlili Yaakoubi, Hind Nakouri, Olivier Blanpain
Abstract:
The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of the CARDIO project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 40 to 100%. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 60% of total volume rejected to the natural environment and of 80 % in the number of discharges.Keywords: RTC, paradigm, optimization, automation
Procedia PDF Downloads 2847404 Towards a Framework for Embedded Weight Comparison Algorithm with Business Intelligence in the Plantation Domain
Authors: M. Pushparani, A. Sagaya
Abstract:
Embedded systems have emerged as important elements in various domains with extensive applications in automotive, commercial, consumer, healthcare and transportation markets, as there is emphasis on intelligent devices. On the other hand, Business Intelligence (BI) has also been extensively used in a range of applications, especially in the agriculture domain which is the area of this research. The aim of this research is to create a framework for Embedded Weight Comparison Algorithm with Business Intelligence (EWCA-BI). The weight comparison algorithm will be embedded within the plantation management system and the weighbridge system. This algorithm will be used to estimate the weight at the site and will be compared with the actual weight at the plantation. The algorithm will be used to build the necessary alerts when there is a discrepancy in the weight, thus enabling better decision making. In the current practice, data are collected from various locations in various forms. It is a challenge to consolidate data to obtain timely and accurate information for effective decision making. Adding to this, the unstable network connection leads to difficulty in getting timely accurate information. To overcome the challenges embedding is done on a portable device that will have the embedded weight comparison algorithm to also assist in data capture and synchronize data at various locations overcoming the network short comings at collection points. The EWCA-BI will provide real-time information at any given point of time, thus enabling non-latent BI reports that will provide crucial information to enable efficient operational decision making. This research has a high potential in bringing embedded system into the agriculture industry. EWCA-BI will provide BI reports with accurate information with uncompromised data using an embedded system and provide alerts, therefore, enabling effective operation management decision-making at the site.Keywords: embedded business intelligence, weight comparison algorithm, oil palm plantation, embedded systems
Procedia PDF Downloads 2857403 Factor Associated with Uncertainty Undergoing Hematopoietic Stem Cell Transplantation
Authors: Sandra Adarve, Jhon Osorio
Abstract:
Uncertainty has been studied in patients with different types of cancer, except in patients with hematologic cancer and undergoing transplantation. The purpose of this study was to identify factors associated with uncertainty in adults patients with malignant hemato-oncology diseases who are scheduled to undergo hematopoietic stem cell transplantation based on Merle Mishel´s Uncertainty theory. This was a cross-sectional study with an analytical purpose. The study sample included 50 patients with leukemia, myeloma, and lymphoma selected by non-probability sampling by convenience and intention. Sociodemographic and clinical variables were measured. Mishel´s Scale of Uncertainty in Illness was used for the measurement of uncertainty. A bivariate and multivariate analyses were performed to explore the relationships and associations between the different variables and uncertainty level. For this analysis, the distribution of the uncertainty scale values was evaluated through the Shapiro-Wilk normality test to identify statistical tests to be used. A multivariate analysis was conducted through a logistic regression using step-by-step technique. Patients were 18-74 years old, with a mean age of 44.8. Over time, the disease course had a median of 9.5 months, an opportunity was found in the performance of the transplantation of < 20 days for 50% of the patients. Regarding the uncertainty scale, a mean score of 95.46 was identified. When the dimensions of the scale were analyzed, the mean score of the framework of stimuli was 25.6, of cognitive ability was 47.4 and structure providers was 22.8. Age was identified to correlate with the total uncertainty score (p=0.012). Additionally, a statistically significant difference was evidenced between different religious creeds and uncertainty score (p=0.023), education level (p=0.012), family history of cancer (p=0.001), the presence of comorbidities (p=0.023) and previous radiotherapy treatment (p=0.022). After performing logistic regression, previous radiotherapy treatment (OR=0.04 IC95% (0.004-0.48)) and family history of cancer (OR=30.7 IC95% (2.7-349)) were found to be factors associated with the high level of uncertainty. Uncertainty is present in high levels in patients who are going to be subjected to bone marrow transplantation, and it is the responsibility of the nurse to assess the levels of uncertainty and the presence of factors that may contribute to their presence. Once it has been valued, the uncertainty must be intervened from the identified associated factors, especially all those that have to do with the cognitive capacity. This implies the implementation and design of intervention strategies to improve the knowledge related to the disease and the therapeutic procedures to which the patients will be subjected. All interventions should favor the adaptation of these patients to their current experience and contribute to seeing uncertainty as an opportunity for growth and transcendence.Keywords: hematopoietic stem cell transplantation, hematologic diseases, nursing, uncertainty
Procedia PDF Downloads 1667402 'Explainable Artificial Intelligence' and Reasons for Judicial Decisions: Why Justifications and Not Just Explanations May Be Required
Authors: Jacquelyn Burkell, Jane Bailey
Abstract:
Artificial intelligence (AI) solutions deployed within the justice system face the critical task of providing acceptable explanations for decisions or actions. These explanations must satisfy the joint criteria of public and professional accountability, taking into account the perspectives and requirements of multiple stakeholders, including judges, lawyers, parties, witnesses, and the general public. This research project analyzes and integrates two existing literature on explanations in order to propose guidelines for explainable AI in the justice system. Specifically, we review three bodies of literature: (i) explanations of the purpose and function of 'explainable AI'; (ii) the relevant case law, judicial commentary and legal literature focused on the form and function of reasons for judicial decisions; and (iii) the literature focused on the psychological and sociological functions of these reasons for judicial decisions from the perspective of the public. Our research suggests that while judicial ‘reasons’ (arguably accurate descriptions of the decision-making process and factors) do serve similar explanatory functions as those identified in the literature on 'explainable AI', they also serve an important ‘justification’ function (post hoc constructions that justify the decision that was reached). Further, members of the public are also looking for both justification and explanation in reasons for judicial decisions, and that the absence of either feature is likely to contribute to diminished public confidence in the legal system. Therefore, artificially automated judicial decision-making systems that simply attempt to document the process of decision-making are unlikely in many cases to be useful to and accepted within the justice system. Instead, these systems should focus on the post-hoc articulation of principles and precedents that support the decision or action, especially in cases where legal subjects’ fundamental rights and liberties are at stake.Keywords: explainable AI, judicial reasons, public accountability, explanation, justification
Procedia PDF Downloads 1267401 Transparency of Algorithmic Decision-Making: Limits Posed by Intellectual Property Rights
Authors: Olga Kokoulina
Abstract:
Today, algorithms are assuming a leading role in various areas of decision-making. Prompted by a promise to provide increased economic efficiency and fuel solutions for pressing societal challenges, algorithmic decision-making is often celebrated as an impartial and constructive substitute for human adjudication. But in the face of this implied objectivity and efficiency, the application of algorithms is also marred with mounting concerns about embedded biases, discrimination, and exclusion. In Europe, vigorous debates on risks and adverse implications of algorithmic decision-making largely revolve around the potential of data protection laws to tackle some of the related issues. For example, one of the often-cited venues to mitigate the impact of potentially unfair decision-making practice is a so-called 'right to explanation'. In essence, the overall right is derived from the provisions of the General Data Protection Regulation (‘GDPR’) ensuring the right of data subjects to access and mandating the obligation of data controllers to provide the relevant information about the existence of automated decision-making and meaningful information about the logic involved. Taking corresponding rights and obligations in the context of the specific provision on automated decision-making in the GDPR, the debates mainly focus on efficacy and the exact scope of the 'right to explanation'. In essence, the underlying logic of the argued remedy lies in a transparency imperative. Allowing data subjects to acquire as much knowledge as possible about the decision-making process means empowering individuals to take control of their data and take action. In other words, forewarned is forearmed. The related discussions and debates are ongoing, comprehensive, and, often, heated. However, they are also frequently misguided and isolated: embracing the data protection law as ultimate and sole lenses are often not sufficient. Mandating the disclosure of technical specifications of employed algorithms in the name of transparency for and empowerment of data subjects potentially encroach on the interests and rights of IPR holders, i.e., business entities behind the algorithms. The study aims at pushing the boundaries of the transparency debate beyond the data protection regime. By systematically analysing legal requirements and current judicial practice, it assesses the limits of the transparency requirement and right to access posed by intellectual property law, namely by copyrights and trade secrets. It is asserted that trade secrets, in particular, present an often-insurmountable obstacle for realising the potential of the transparency requirement. In reaching that conclusion, the study explores the limits of protection afforded by the European Trade Secrets Directive and contrasts them with the scope of respective rights and obligations related to data access and portability enshrined in the GDPR. As shown, the far-reaching scope of the protection under trade secrecy is evidenced both through the assessment of its subject matter as well as through the exceptions from such protection. As a way forward, the study scrutinises several possible legislative solutions, such as flexible interpretation of the public interest exception in trade secrets as well as the introduction of the strict liability regime in case of non-transparent decision-making.Keywords: algorithms, public interest, trade secrets, transparency
Procedia PDF Downloads 1247400 An Influence of Marketing Mix on Hotel Booking Decision: Japanese Senior Traveler Case
Authors: Kingkan Pongsiri
Abstract:
The study of marketing mix influencing on hotel booking decision making: Japanese senior traveler case aims to study the individual factors that are involved in the decision-making reservation for Japanese elderly travelers. Then, it aims to study other factors that influence the decision of tourists booking elderly Japanese people. This is a quantitative research methods, total of 420 completed questionnaires were collect via a Non-Probability sampling techniques. The study found that the majority of samples were female, 53.3 percent of 224 people aged between 66-70 years were 197, representing a 46.9 percent majority, the marital status of marriage is 212 per cent.50.5. Majority of samples have a bachelor degree of education with number of 326 persons (77.6 percentages) 50 percentages of samples (210 people) have monthly income in between 1,501-2,000 USD. The Samples mostly have a length of stay in a short period between 1-14 days counted as 299 people which representing 71.2 percentages of samples. The senior Japanese tourists apparently sensitive to the factors of products/services the most. Then they seem to be sensitive to the price, the marketing promotion and people, respectively. There are two factors identified as moderately influence to the Japanese senior tourists are places or distribution channels and physical evidences.Keywords: Japanese senior traveler, marketing mix, senior tourist, hotel booking
Procedia PDF Downloads 2977399 Lobbying Regulation in the EU: Transparency’s Achilles’ Heel
Authors: Krambia-Kapardis Maria, Neophytidou Christina
Abstract:
Lobbying is an inherent aspect within the democratic regimes across the globe. Although it can provide decision-makers with valuable knowledge and grant access to stakeholders in the decision-making process, it can also lead to undue influence and unfair competition at the expense of the public interest if it not transparent. Given the multi-level governance structure of the EU, it is no surprise that the EU policy-making arena has become a place-to-be for lobbyists. However, in order to ensure that influence is legitimate and not biased of any business interests, lobbying must be effectively regulated. A comparison with the US and Canadian lobbying regulatory framework and utilising some good practices from EU countries it is apparent that lobbying is the Achilles’ heel to transparency in the EU. It is evident that EU institutions suffer from ineffective regulations and could in fact benefit from a more robust, mandatory and better implemented system of lobbying regulation.Keywords: EU, lobbying regulation, transparency, democratic regimes
Procedia PDF Downloads 4227398 Decision-Making in Higher Education: Case Studies Demonstrating the Value of Institutional Effectiveness Tools
Authors: Carolinda Douglass
Abstract:
Institutional Effectiveness (IE) is the purposeful integration of functions that foster student success and support institutional performance. IE is growing rapidly within higher education as it is increasingly viewed by higher education administrators as a beneficial approach for promoting data-informed decision-making in campus-wide strategic planning and execution of strategic initiatives. Specific IE tools, including, but not limited to, project management; impactful collaboration and communication; commitment to continuous quality improvement; and accountability through rigorous evaluation; are gaining momentum under the auspices of IE. This research utilizes a case study approach to examine the use of these IE tools, highlight successes of this use, and identify areas for improvement in the implementation of IE tools within higher education. The research includes three case studies: (1) improving upon academic program review processes including the assessment of student learning outcomes as a core component of program quality; (2) revising an institutional vision, mission, and core values; and (3) successfully navigating an institution-wide re-accreditation process. Several methods of data collection are embedded within the case studies, including surveys, focus groups, interviews, and document analyses. Subjects of these methods include higher education administrators, faculty, and staff. Key findings from the research include areas of success and areas for improvement in the use of IE tools associated with specific case studies as well as aggregated results across case studies. For example, the use of case management proved useful in all of the case studies, while rigorous evaluation did not uniformly provide the value-added that was expected by higher education decision-makers. The use of multiple IE tools was shown to be consistently useful in decision-making when applied with appropriate awareness of and sensitivity to core institutional culture (for example, institutional mission, local environments and communities, disciplinary distinctions, and labor relations). As IE gains a stronger foothold in higher education, leaders in higher education can make judicious use of IE tools to promote better decision-making and secure improved outcomes of strategic planning and the execution of strategic initiatives.Keywords: accreditation, data-informed decision-making, higher education management, institutional effectiveness tools, institutional mission, program review, strategic planning
Procedia PDF Downloads 1167397 Improving Decision Support for Organ Transplant
Authors: Ian McCulloh, Andrew Placona, Darren Stewart, Daniel Gause, Kevin Kiernan, Morgan Stuart, Christopher Zinner, Laura Cartwright
Abstract:
An estimated 22-25% of viable deceased donor kidneys are discarded every year in the US, while waitlisted candidates are dying every day. As many as 85% of transplanted organs are refused at least once for a patient that scored higher on the match list. There are hundreds of clinical variables involved in making a clinical transplant decision and there is rarely an ideal match. Decision makers exhibit an optimism bias where they may refuse an organ offer assuming a better match is imminent. We propose a semi-parametric Cox proportional hazard model, augmented by an accelerated failure time model based on patient specific suitable organ supply and demand to estimate a time-to-next-offer. Performance is assessed with Cox-Snell residuals and decision curve analysis, demonstrating improved decision support for up to a 5-year outlook. Providing clinical decision makers with quantitative evidence of likely patient outcomes (e.g., time to next offer and the mortality associated with waiting) may improve decisions and reduce optimism bias, thus reducing discarded organs and matching more patients on the waitlist.Keywords: decision science, KDPI, optimism bias, organ transplant
Procedia PDF Downloads 1057396 Digital Platform of Crops for Smart Agriculture
Authors: Pascal François Faye, Baye Mor Sall, Bineta Dembele, Jeanne Ana Awa Faye
Abstract:
In agriculture, estimating crop yields is key to improving productivity and decision-making processes such as financial market forecasting and addressing food security issues. The main objective of this paper is to have tools to predict and improve the accuracy of crop yield forecasts using machine learning (ML) algorithms such as CART , KNN and SVM . We developed a mobile app and a web app that uses these algorithms for practical use by farmers. The tests show that our system (collection and deployment architecture, web application and mobile application) is operational and validates empirical knowledge on agro-climatic parameters in addition to proactive decision-making support. The experimental results obtained on the agricultural data, the performance of the ML algorithms are compared using cross-validation in order to identify the most effective ones following the agricultural data. The proposed applications demonstrate that the proposed approach is effective in predicting crop yields and provides timely and accurate responses to farmers for decision support.Keywords: prediction, machine learning, artificial intelligence, digital agriculture
Procedia PDF Downloads 807395 Multi-Period Portfolio Optimization Using Predictive Machine Learning Models
Authors: Peng Liu, Chyng Wen Tee, Xiaofei Xu
Abstract:
This paper integrates machine learning forecasting techniques into the multi-period portfolio optimization framework, enabling dynamic asset allocation based on multiple future periods. We explore both theoretical foundations and practical applications, employing diverse machine learning models for return forecasting. This comprehensive guide demonstrates the superiority of multi-period optimization over single-period approaches, particularly in risk mitigation through strategic rebalancing and enhanced market trend forecasting. Our goal is to promote wider adoption of multi-period optimization, providing insights that can significantly enhance the decision-making capabilities of practitioners and researchers alike.Keywords: multi-period portfolio optimization, look-ahead constrained optimization, machine learning, sequential decision making
Procedia PDF Downloads 487394 Transforming Data into Knowledge: Mathematical and Statistical Innovations in Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid growth of data in various domains has created a pressing need for effective methods to transform this data into meaningful knowledge. In this era of big data, mathematical and statistical innovations play a crucial role in unlocking insights and facilitating informed decision-making in data analytics. This abstract aims to explore the transformative potential of these innovations and their impact on converting raw data into actionable knowledge. Drawing upon a comprehensive review of existing literature, this research investigates the cutting-edge mathematical and statistical techniques that enable the conversion of data into knowledge. By evaluating their underlying principles, strengths, and limitations, we aim to identify the most promising innovations in data analytics. To demonstrate the practical applications of these innovations, real-world datasets will be utilized through case studies or simulations. This empirical approach will showcase how mathematical and statistical innovations can extract patterns, trends, and insights from complex data, enabling evidence-based decision-making across diverse domains. Furthermore, a comparative analysis will be conducted to assess the performance, scalability, interpretability, and adaptability of different innovations. By benchmarking against established techniques, we aim to validate the effectiveness and superiority of the proposed mathematical and statistical innovations in data analytics. Ethical considerations surrounding data analytics, such as privacy, security, bias, and fairness, will be addressed throughout the research. Guidelines and best practices will be developed to ensure the responsible and ethical use of mathematical and statistical innovations in data analytics. The expected contributions of this research include advancements in mathematical and statistical sciences, improved data analysis techniques, enhanced decision-making processes, and practical implications for industries and policymakers. The outcomes will guide the adoption and implementation of mathematical and statistical innovations, empowering stakeholders to transform data into actionable knowledge and drive meaningful outcomes.Keywords: data analytics, mathematical innovations, knowledge extraction, decision-making
Procedia PDF Downloads 757393 A Robust Optimization for Multi-Period Lost-Sales Inventory Control Problem
Authors: Shunichi Ohmori, Sirawadee Arunyanart, Kazuho Yoshimoto
Abstract:
We consider a periodic review inventory control problem of minimizing production cost, inventory cost, and lost-sales under demand uncertainty, in which product demands are not specified exactly and it is only known to belong to a given uncertainty set, yet the constraints must hold for possible values of the data from the uncertainty set. We propose a robust optimization formulation for obtaining lowest cost possible and guaranteeing the feasibility with respect to range of order quantity and inventory level under demand uncertainty. Our formulation is based on the adaptive robust counterpart, which suppose order quantity is affine function of past demands. We derive certainty equivalent problem via second-order cone programming, which gives 'not too pessimistic' worst-case.Keywords: robust optimization, inventory control, supply chain managment, second-order programming
Procedia PDF Downloads 4097392 The Sustainable Cultural Tourism of Nakhon Si Thammarat Province in Thailand
Authors: Narong Anurak
Abstract:
The objectives of the study were to determine the factors influencing tourists’ destination decision making for cultural tourism in the southern provinces, to examine the potential for developing cultural tourism and to guideline for marketing strategy for cultural tourism in Nakhon Si Thammarat. Both quantitative and qualitative data were applied in this study. The samples of 400 cases for quantitative analysis were tourists who were interested in cultural tourism in the southern provinces, and traveled to cultural sites in Nakhon Si Thammarat, Surat Thani, and Phuket, and 14 representatives from provincial tourism committee of Nakhon Si Thammarat. The study found that Thai and foreign tourists are influenced by different important marketing mix factors (7Ps) when making decisions for cultural tourism in southern provinces. The important factors for Thai respondents were physical evidence, price, people, and place at high importance level, whereas, product, process, and promotion were moderate importance level as well.Keywords: marketing mix factors, Nakhon Si Thammarat province, sustainable cultural tourism, tourists decision making
Procedia PDF Downloads 2747391 The Effect of Perceived Environmental Uncertainty on Corporate Entrepreneurship Performance: A Field Study in a Large Industrial Zone in Turkey
Authors: Adem Öğüt, M. Tahir Demirsel
Abstract:
Rapid changes and developments today, besides the opportunities and facilities they offer to the organization, may also be a source of danger and difficulties due to the uncertainty. In order to take advantage of opportunities and to take the necessary measures against possible uncertainties, organizations must always follow the changes and developments that occur in the business environment and develop flexible structures and strategies for the alternative cases. Perceived environmental uncertainty is an outcome of managers’ perceptions of the combined complexity, instability and unpredictability in the organizational environment. An environment that is perceived to be complex, changing rapidly, and difficult to predict creates high levels of uncertainty about the appropriate organizational responses to external circumstances. In an uncertain and complex environment, organizations experiencing cutthroat competition may be successful by developing their corporate entrepreneurial ability. Corporate entrepreneurship is a process that includes many elements such as innovation, creating new business, renewal, risk-taking and being predictive. Successful corporate entrepreneurship is a critical factor which has a significant contribution to gain a sustainable competitive advantage, to renew the organization and to adapt the environment. In this context, the objective of this study is to investigate the effect of perceived environmental uncertainty of managers on corporate entrepreneurship performance. The research was conducted on 222 business executives in one of the major industrial zones of Turkey, Konya Organized Industrial Zone (KOS). According to the results, it has been observed that there is a positive statistically significant relationship between perceived environmental uncertainty and corporate entrepreneurial activities.Keywords: corporate entrepreneurship, entrepreneurship, industrial zone, perceived environmental uncertainty, uncertainty
Procedia PDF Downloads 3147390 Business Strategy, Crisis and Digitalization
Authors: Flora Xu, Marta Fernandez Olmos
Abstract:
This article is mainly about critical assessment and comprehensive understanding of the business strategy in the post COVID-19 scenario. This study aims to elucidate how companies are responding to the unique challenges posed by the pandemic and how these measures are shaping the future of the business environment. The pandemic has exposed the fragility and flexibility of the global supply chain, and procurement and production strategies should be reconsidered. It should increase the diversity of suppliers and the flexibility of the supply chain, and some companies are considering transferring their survival to the local market. This can increase local employment and reduce international transportation disruptions and customs issues. By shortening the distance between production and market, companies can respond more quickly to changes in demand and unforeseen events. The demand for remote work and online solutions will increase the adoption of digital technology and accelerate the digital transformation of many organizations. Marketing and communication strategies need to adapt to a constantly changing environment. The business resilience strategy was emphasized as a key component of the response to the COVID-19. The company is seeking to strengthen its risk management capabilities and develop a business continuity plan to cope with future unexpected disruptions. The pandemic has reconfigured human resource practices and changed the way companies manage their employees. Remote work has become the norm, and companies focus on managing workers' health and well-being, as well as flexible work policies to ensure operations and support for employees during crises. This change in human resources practice has a lasting impact on how companies apply talent and labor management in the post COVID-19 world. The pandemic has prompted a significant review of business strategies as companies adapt to constantly changing environments and seek to ensure their sustainability and profitability in times of crisis. This strategic reassessment has led to product diversification, exploring international markets and adapting to the changing market. Companies have responded to the unprecedented challenges brought by the COVID-19. The COVID-19 has promoted innovation effort in key areas and focused on the responsibility in today's business strategy for sustainability and the importance of corporate society. The important challenge of formulating and implementing business strategies in uncertain times. These challenges include making quick and agile decisions in turbulent environments, risk management, and adaptability to constantly changing market conditions. The COVID-19 highlights the importance of strategic planning and informed decision-making - making in a business environment characterized by uncertainty and complexity. In short, the pandemic has reconfigured the way companies handle business strategies and emphasized the necessity of preparing for future challenges in a business world marked by uncertainty and complexity.Keywords: business strategy, crisis, digitalization, uncertainty
Procedia PDF Downloads 187389 An Application of Fuzzy Analytical Network Process to Select a New Production Base: An AEC Perspective
Authors: Walailak Atthirawong
Abstract:
By the end of 2015, the Association of Southeast Asian Nations (ASEAN) countries proclaim to transform into the next stage of an economic era by having a single market and production base called ASEAN Economic Community (AEC). One objective of the AEC is to establish ASEAN as a single market and one production base making ASEAN highly competitive economic region and competitive with new mechanisms. As a result, it will open more opportunities to enterprises in both trade and investment, which offering a competitive market of US$ 2.6 trillion and over 622 million people. Location decision plays a key role in achieving corporate competitiveness. Hence, it may be necessary for enterprises to redesign their supply chains via enlarging a new production base which has low labor cost, high labor skill and numerous of labor available. This strategy will help companies especially for apparel industry in order to maintain a competitive position in the global market. Therefore, in this paper a generic model for location selection decision for Thai apparel industry using Fuzzy Analytical Network Process (FANP) is proposed. Myanmar, Vietnam and Cambodia are referred for alternative location decision from interviewing expert persons in this industry who have planned to enlarge their businesses in AEC countries. The contribution of this paper lies in proposing an approach model that is more practical and trustworthy to top management in making a decision on location selection.Keywords: apparel industry, ASEAN Economic Community (AEC), Fuzzy Analytical Network Process (FANP), location decision
Procedia PDF Downloads 2367388 Augmented Reality for Maintenance Operator for Problem Inspections
Authors: Chong-Yang Qiao, Teeravarunyou Sakol
Abstract:
Current production-oriented factories need maintenance operators to work in shifts monitoring and inspecting complex systems and different equipment in the situation of mechanical breakdown. Augmented reality (AR) is an emerging technology that embeds data into the environment for situation awareness to help maintenance operators make decisions and solve problems. An application was designed to identify the problem of steam generators and inspection centrifugal pumps. The objective of this research was to find the best medium of AR and type of problem solving strategies among analogy, focal object method and mean-ends analysis. Two scenarios of inspecting leakage were temperature and vibration. Two experiments were used in usability evaluation and future innovation, which included decision-making process and problem-solving strategy. This study found that maintenance operators prefer build-in magnifier to zoom the components (55.6%), 3D exploded view to track the problem parts (50%), and line chart to find the alter data or information (61.1%). There is a significant difference in the use of analogy (44.4%), focal objects (38.9%) and mean-ends strategy (16.7%). The marked differences between maintainers and operators are of the application of a problem solving strategy. However, future work should explore multimedia information retrieval which supports maintenance operators for decision-making.Keywords: augmented reality, situation awareness, decision-making, problem-solving
Procedia PDF Downloads 2307387 Analyzing Middle Actors' Influence on Land Use Policy: A Case Study in Central Kalimantan, Indonesia
Authors: Kevin Soubly, Kaysara Khatun
Abstract:
This study applies the existing Middle-Out Perspective (MOP) as a complementing analytical alternative to the customary dichotomous options of top-down vs. bottom-up strategies of international development and commons governance. It expands the framework by applying it to a new context of land management and environmental change, enabling fresh understandings of decision making around land use. Using a case study approach in Central Kalimantan, Indonesia among a village of indigenous Dayak, this study explores influences from both internal and external middle actors, utilizing qualitative empirical evidence and incorporating responses across 25 village households and 11 key stakeholders. Applying the factors of 'agency' and 'capacity' specific to the MOP, this study demonstrates middle actors’ unique capabilities and criticality to change due to their influence across various levels of decision-making. Study results indicate that middle actors play a large role, both passively and actively, both directly and indirectly, across various levels of decision-making, perception-shaping, and commons governance. In addition, the prominence of novel 'passive' middle actors, such as the internet, can provide communities themselves with a level of agency beyond that provided by other middle actors such as NGOs and palm oil industry entities – which often operate at the behest of the 'top' or out of self-interest. Further, the study posits that existing development and decision-making frameworks may misidentify the 'bottom' as the 'middle,' raising questions about traditional development and livelihood discourse, strategies, and support, from agricultural production to forest management. In conclusion, this study provides recommendations including that current policy preconceptions be reevaluated to engage middle actors in locally-adapted, integrative manners in order to improve governance and rural development efforts more broadly.Keywords: environmental management, governance, Indonesia, land use, middle actors, middle-out perspective
Procedia PDF Downloads 115