Search results for: seasonal forecasting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 987

Search results for: seasonal forecasting

657 Effectiveness of Control Measures for Ambient Fine Particulate Matters Concentration Improvement in Taiwan

Authors: Jiun-Horng Tsai, Shi-Jie, Nieh

Abstract:

Fine particulate matter (PM₂.₅) has become an important issue all over the world over the last decade. Annual mean PM₂.₅ concentration has been over the ambient air quality standard of PM₂.₅ (annual average concentration as 15μg/m³) which adapted by Taiwan Environmental Protection Administration (TEPA). TEPA, therefore, has developed a number of air pollution control measures to improve the ambient concentration by reducing the emissions of primary fine particulate matter and the precursors of secondary PM₂.₅. This study investigated the potential improvement of ambient PM₂.₅ concentration by the TEPA program and the other scenario for further emission reduction on various sources. Four scenarios had been evaluated in this study, including a basic case and three reduction scenarios (A to C). The ambient PM₂.₅ concentration was evaluated by Community Multi-scale Air Quality modelling system (CMAQ) ver. 4.7.1 along with the Weather Research and Forecasting Model (WRF) ver. 3.4.1. The grid resolutions in the modelling work are 81 km × 81 km for domain 1 (covers East Asia), 27 km × 27 km for domain 2 (covers Southeast China and Taiwan), and 9 km × 9 km for domain 3 (covers Taiwan). The result of PM₂.₅ concentration simulation in different regions of Taiwan shows that the annual average concentration of basic case is 24.9 μg/m³, and are 22.6, 18.8, and 11.3 μg/m³, respectively, for scenarios A to C. The annual average concentration of PM₂.₅ would be reduced by 9-55 % for those control scenarios. The result of scenario C (the emissions of precursors reduce to allowance levels) could improve effectively the airborne PM₂.₅ concentration to attain the air quality standard. According to the results of unit precursor reduction contribution, the allowance emissions of PM₂.₅, SOₓ, and NOₓ are 16.8, 39, and 62 thousand tons per year, respectively. In the Kao-Ping air basin, the priority for reducing precursor emissions is PM₂.₅ > NOₓ > SOₓ, whereas the priority for reducing precursor emissions is PM₂.₅ > SOₓ > NOₓ in others area. The result indicates that the target pollutants that need to be reduced in different air basin are different, and the control measures need to be adapted to local conditions.

Keywords: airborne PM₂.₅, community multi-scale air quality modelling system, control measures, weather research and forecasting model

Procedia PDF Downloads 139
656 Biological Hotspots in the Galápagos Islands: Exploring Seasonal Trends of Ocean Climate Drivers to Monitor Algal Blooms

Authors: Emily Kislik, Gabriel Mantilla Saltos, Gladys Torres, Mercy Borbor-Córdova

Abstract:

The Galápagos Marine Reserve (GMR) is an internationally-recognized region of consistent upwelling events, high productivity, and rich biodiversity. Despite its high-nutrient, low-chlorophyll condition, the archipelago has experienced phytoplankton blooms, especially in the western section between Isabela and Fernandina Islands. However, little is known about how climate variability will affect future phytoplankton standing stock in the Galápagos, and no consistent protocols currently exist to quantify phytoplankton biomass, identify species, or monitor for potential harmful algal blooms (HABs) within the archipelago. This analysis investigates physical, chemical, and biological oceanic variables that contribute to algal blooms within the GMR, using 4 km Aqua MODIS satellite imagery and 0.125-degree wind stress data from January 2003 to December 2016. Furthermore, this study analyzes chlorophyll-a concentrations at varying spatial scales— within the greater archipelago, as well as within five smaller bioregions based on species biodiversity in the GMR. Seasonal and interannual trend analyses, correlations, and hotspot identification were performed. Results demonstrate that chlorophyll-a is expressed in two seasons throughout the year in the GMR, most frequently in September and March, with a notable hotspot in the Elizabeth Bay bioregion. Interannual chlorophyll-a trend analyses revealed highest peaks in 2003, 2007, 2013, and 2016, and variables that correlate highly with chlorophyll-a include surface temperature and particulate organic carbon. This study recommends future in situ sampling locations for phytoplankton monitoring, including the Elizabeth Bay bioregion. Conclusions from this study contribute to the knowledge of oceanic drivers that catalyze primary productivity and consequently affect species biodiversity within the GMR. Additionally, this research can inform policy and decision-making strategies for species conservation and management within bioregions of the Galápagos.

Keywords: bioregions, ecological monitoring, phytoplankton, remote sensing

Procedia PDF Downloads 265
655 Benefits of Environmental Aids to Chronobiology Management and Its Impact on Depressive Mood in an Operational Setting

Authors: M. Trousselard, D. Steiler, C. Drogou, P. van-Beers, G. Lamour, S. N. Crosnier, O. Bouilland, P. Dubost, M. Chennaoui, D. Léger

Abstract:

According to published data, undersea navigation for long periods (nuclear-powered ballistic missile submarine, SSBN) constitutes an extreme environment in which crews are subjected to multiple stresses, including the absence of natural light, illuminance below 1,000 lux, and watch schedules that do not respect natural chronobiological rhythms, for a period of 60-80 days. These stresses seem clearly detrimental to the submariners’ sleep, with consequences for their affective (seasonal affective disorder-like) and cognitive functioning. In the long term, there are abundant publications regarding the consequences of sleep disruption for the occurrence of organic cardiovascular, metabolic, immunological or malignant diseases. It seems essential to propose countermeasures for the duration of the patrol in order to reduce the negative physiological effects on the sleep and mood of submariners. Light therapy, the preferred treatment for dysfunctions of the internal biological clock and the resulting seasonal depression, cannot be used without data to assist knowledge of submariners’ chronobiology (melatonin secretion curve) during patrols, given the unusual characteristics of their working environment. These data are not available in the literature. The aim of this project was to assess, in the course of two studies, the benefits of two environmental techniques for managing chronobiological stress: techniques for optimizing potential (TOP; study 1)3, an existing programme to help in the psychophysiological regulation of stress and sleep in the armed forces, and dawn and dusk simulators (DDS, study 2). For each experiment, psychological, physiological (sleep) or biological (melatonin secretion) data were collected on D20 and D50 of patrol. In the first experiment, we studied sleep and depressive distress in 19 submariners in an operational setting on board an SSBM during a first patrol, and assessed the impact of TOP on the quality of sleep and depressive distress in these same submariners over the course of a second patrol. The submariners were trained in TOP between the two patrols for a 2-month period, at a rate of 1 h of training per week, and assigned daily informal exercises. Results show moderate disruptions in sleep pattern and duration associated with the intensity of depressive distress. The use of TOP during the following patrol improved sleep and depressive mood only in submariners who regularly practiced the techniques. In light of these limited benefits, we assessed, in a second experiment, the benefits of DDS on chronobiology (daily secretion of melatonin) and depressive distress. Ninety submariners were randomly allocated to two groups, group 1 using DDS daily, and group 2 constituting the control group. Although the placebo effect was not controlled, results showed a beneficial effect on chronobiology and depressive mood for submariners with a morning chronotype. Conclusions: These findings demonstrate the difficulty of practicing the tools of psychophysiological management in real life. They raise the question of the subjects’ autonomy with respect to using aids that involve regular practice. It seems important to study autonomy in future studies, as a cognitive resource resulting from the interaction between internal positive resources and “coping” resources, to gain a better understanding of compliance problems.

Keywords: chronobiology, light therapy, seasonal affective disorder, sleep, stress, stress management, submarine

Procedia PDF Downloads 456
654 Large-scale Foraging Behaviour of Free-ranging Goats: Influence of Herd Size, Landscape Quality and Season

Authors: Manqhai Kraai, Adrian M. Shrader, Peter F. Scogings

Abstract:

For animals living in herds, competition between group members increases as herd size increases. The intensity of this competition is likely greater across poor quality landscapes and during the dry season. In contrast to wild herbivores, herd size in domestic livestock is determined by their owners. This then raises the question, how do domestic livestock, like goats, reduce competition for food within these defined herds? To explore this question, large-scale foraging behaviour of both small (12 to 28 individuals) and large (42 to 83 individuals) herds of free-ranging goats were recorded in Tugela Ferry, KwaZulu-Natal, South Africa. The study was conducted on three different landscapes that varied in both food quality and availability, during the wet and dry seasons of 2013-2014. The goats were housed in kraals overnight and let out in the mornings to forage unattended. Thus, foraging decisions were made by the goats and not by herders. The large-scale foraging behaviours focussed on included, (i) total distance travelled by goats while foraging, (ii) distance travelled before starting to feed, (iii) travel speed, and (iv) feeding duration. This was done using Garmin Foretrex 401 GPS devices harnessed to two goats per herd. Irrespective of season, there was no difference in the total distance travelled by the different sized herds across the different quality landscapes. However, both small and large herds started feeding farther from the kraal in the dry compared to the wet season. Despite this, there was no significant seasonal difference in total amount of time the herds spent feeding across the different landscapes. Finally, both small and large herds increased their travel speed across all the landscapes in the dry season, but large herds travelled faster than small herds. This increase was likely to maximise the time that large herds could spend feeding in good areas. Ultimately, these results indicate that both small and large herds were affected by declines in food quality and quantity during the dry season. However, as large herds made greater behavioural adjustments compared to smaller herds (i.e., feeding farther away from the kraal and travelling faster), it appeared that they were more affected by the seasonal increases in intra-herd competition.

Keywords: distance, feeding duration, food availability, food quality, travel speed

Procedia PDF Downloads 125
653 A Data-Driven Compartmental Model for Dengue Forecasting and Covariate Inference

Authors: Yichao Liu, Peter Fransson, Julian Heidecke, Jonas Wallin, Joacim Rockloev

Abstract:

Dengue, a mosquito-borne viral disease, poses a significant public health challenge in endemic tropical or subtropical countries, including Sri Lanka. To reveal insights into the complexity of the dynamics of this disease and study the drivers, a comprehensive model capable of both robust forecasting and insightful inference of drivers while capturing the co-circulating of several virus strains is essential. However, existing studies mostly focus on only one aspect at a time and do not integrate and carry insights across the siloed approach. While mechanistic models are developed to capture immunity dynamics, they are often oversimplified and lack integration of all the diverse drivers of disease transmission. On the other hand, purely data-driven methods lack constraints imposed by immuno-epidemiological processes, making them prone to overfitting and inference bias. This research presents a hybrid model that combines machine learning techniques with mechanistic modelling to overcome the limitations of existing approaches. Leveraging eight years of newly reported dengue case data, along with socioeconomic factors, such as human mobility, weekly climate data from 2011 to 2018, genetic data detecting the introduction and presence of new strains, and estimates of seropositivity for different districts in Sri Lanka, we derive a data-driven vector (SEI) to human (SEIR) model across 16 regions in Sri Lanka at the weekly time scale. By conducting ablation studies, the lag effects allowing delays up to 12 weeks of time-varying climate factors were determined. The model demonstrates superior predictive performance over a pure machine learning approach when considering lead times of 5 and 10 weeks on data withheld from model fitting. It further reveals several interesting interpretable findings of drivers while adjusting for the dynamics and influences of immunity and introduction of a new strain. The study uncovers strong influences of socioeconomic variables: population density, mobility, household income and rural vs. urban population. The study reveals substantial sensitivity to the diurnal temperature range and precipitation, while mean temperature and humidity appear less important in the study location. Additionally, the model indicated sensitivity to vegetation index, both max and average. Predictions on testing data reveal high model accuracy. Overall, this study advances the knowledge of dengue transmission in Sri Lanka and demonstrates the importance of incorporating hybrid modelling techniques to use biologically informed model structures with flexible data-driven estimates of model parameters. The findings show the potential to both inference of drivers in situations of complex disease dynamics and robust forecasting models.

Keywords: compartmental model, climate, dengue, machine learning, social-economic

Procedia PDF Downloads 84
652 Seasonal Variations, Environmental Parameters, and Standing Crop Assessment of Benthic Foraminifera in Western Bahrain, Arabian Gulf

Authors: Muhammad Arslan, Michael A. Kaminski, Bassam S. Tawabini, Fabrizio Frontalini

Abstract:

We conducted a survey of living benthic foraminifera in a relatively unpolluted site of Bahrain in the Arabian Gulf, with the aim of determining the seasonal variability in their populations, as well as various environmental parameters that affect their distribution. The maximum standing crop was observed during winter, with highest population of rotaliids, followed by a peak in miliolids. The highest population is attributed to an increasing number juveniles observed along the depth transect. A strong correlation between sediment grain size and the foraminiferal population indicates that juveniles were most abundant on coarser sandy substrate and less abundant on fine substrate. In spring, the total living population decreased, and lowest values are observed in the summer. The population started to increase again in the autumn with highest juveniles/adult ratios. Moreover, results of relative abundance and species consistency show that Ammonia is found to be consistent from the shallowest to the deepest station, whereas miliolids start appearing in the deeper stations. The average numbers of Peneroplis and Elphidium also increases along the depth transect. Environmental characterization reveals that although the site is subjected to eutrophication caused by nitrates and sulfates, pollution caused by hydrocarbons and heavy metals is not significant. The assessment of 63 heavy metals showed that none of the metals had concentrations that exceed internationally accepted norms [the devised level of Effect Range-Low], with the exception of strontium. The lack of a significant environmental effect of heavy metals is confirmed by a Foraminiferal Deformities Index value of less than 2%. Likewise, no hydrocarbon contamination was detected in the water or sediment samples. Lastly, observations of cytoplasmic streaming and pseudopodial activity in Petri dishes suggest that the foraminiferal population is not stressed. We conclude that the site in Bahrain is not yet adversely affected by human development, and therefore can provide baseline information for future comparison and assessment of foraminiferal assemblages in contaminated zones of the Arabian Gulf.

Keywords: Arabian Gulf, benthic foraminifera, standing crop, Western Bahrain

Procedia PDF Downloads 643
651 Forecasting Future Society to Explore Promising Security Technologies

Authors: Jeonghwan Jeon, Mintak Han, Youngjun Kim

Abstract:

Due to the rapid development of information and communication technology (ICT), a substantial transformation is currently happening in the society. As the range of intelligent technologies and services is continuously expanding, ‘things’ are becoming capable of communicating one another and even with people. However, such “Internet of Things” has the technical weakness so that a great amount of such information transferred in real-time may be widely exposed to the threat of security. User’s personal data are a typical example which is faced with a serious security threat. The threats of security will be diversified and arose more frequently because next generation of unfamiliar technology develops. Moreover, as the society is becoming increasingly complex, security vulnerability will be increased as well. In the existing literature, a considerable number of private and public reports that forecast future society have been published as a precedent step of the selection of future technology and the establishment of strategies for competitiveness. Although there are previous studies that forecast security technology, they have focused only on technical issues and overlooked the interrelationships between security technology and social factors are. Therefore, investigations of security threats in the future and security technology that is able to protect people from various threats are required. In response, this study aims to derive potential security threats associated with the development of technology and to explore the security technology that can protect against them. To do this, first of all, private and public reports that forecast future and online documents from technology-related communities are collected. By analyzing the data, future issues are extracted and categorized in terms of STEEP (Society, Technology, Economy, Environment, and Politics), as well as security. Second, the components of potential security threats are developed based on classified future issues. Then, points that the security threats may occur –for example, mobile payment system based on a finger scan technology– are identified. Lastly, alternatives that prevent potential security threats are proposed by matching security threats with points and investigating related security technologies from patent data. Proposed approach can identify the ICT-related latent security menaces and provide the guidelines in the ‘problem – alternative’ form by linking the threat point with security technologies.

Keywords: future society, information and communication technology, security technology, technology forecasting

Procedia PDF Downloads 468
650 Modelling Volatility of Cryptocurrencies: Evidence from GARCH Family of Models with Skewed Error Innovation Distributions

Authors: Timothy Kayode Samson, Adedoyin Isola Lawal

Abstract:

The past five years have shown a sharp increase in public interest in the crypto market, with its market capitalization growing from $100 billion in June 2017 to $2158.42 billion on April 5, 2022. Despite the outrageous nature of the volatility of cryptocurrencies, the use of skewed error innovation distributions in modelling the volatility behaviour of these digital currencies has not been given much research attention. Hence, this study models the volatility of 5 largest cryptocurrencies by market capitalization (Bitcoin, Ethereum, Tether, Binance coin, and USD Coin) using four variants of GARCH models (GJR-GARCH, sGARCH, EGARCH, and APARCH) estimated using three skewed error innovation distributions (skewed normal, skewed student- t and skewed generalized error innovation distributions). Daily closing prices of these currencies were obtained from Yahoo Finance website. Finding reveals that the Binance coin reported higher mean returns compared to other digital currencies, while the skewness indicates that the Binance coin, Tether, and USD coin increased more than they decreased in values within the period of study. For both Bitcoin and Ethereum, negative skewness was obtained, meaning that within the period of study, the returns of these currencies decreased more than they increased in value. Returns from these cryptocurrencies were found to be stationary but not normality distributed with evidence of the ARCH effect. The skewness parameters in all best forecasting models were all significant (p<.05), justifying of use of skewed error innovation distributions with a fatter tail than normal, Student-t, and generalized error innovation distributions. For Binance coin, EGARCH-sstd outperformed other volatility models, while for Bitcoin, Ethereum, Tether, and USD coin, the best forecasting models were EGARCH-sstd, APARCH-sstd, EGARCH-sged, and GJR-GARCH-sstd, respectively. This suggests the superiority of skewed Student t- distribution and skewed generalized error distribution over the skewed normal distribution.

Keywords: skewed generalized error distribution, skewed normal distribution, skewed student t- distribution, APARCH, EGARCH, sGARCH, GJR-GARCH

Procedia PDF Downloads 119
649 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea

Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro

Abstract:

Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.

Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting

Procedia PDF Downloads 135
648 Environmental /Occupational Factors and Seasonality of Birth- Male Infertility

Authors: C. Lalitha, R. Sayee, D. Apoorva

Abstract:

Reproductive failure or infertility may be due to several factors that are not limited to one sex. It remains a common problem causing significant psychological distress to those affected individuals and who are increasingly seeking medical advice. Male infertility means inability to induce conception in normal woman within a year. The etiological factors associated with male infertility are anatomical, developmental, seminal, hormonal, immunological and environmental factors. The paper was aimed to highlight the environmental factors and its association to male infertility and seasonality of birth and its influence. The data was collected from the 75 male patients referred with infertility for karyotyping and counseling. Their age ranged from 21 to 45 years. It is opined that certain occupations are preferentially associated with male infertility.

Keywords: environmental, occupational, seasonal, male infertility

Procedia PDF Downloads 267
647 Assessments of Internal Erosion in a Landfill Due to Changes in the Groundwater Level

Authors: Siamak Feizi, Gunvor Baardvik

Abstract:

Soil erosion has special consequences for landfills that are more serious than those found at conventional construction sites. Different potential heads between two sides of a landfill and the subsequent movement of water through pores within the soil body could trigger the soil erosion and construction instability. Such a condition was encountered in a landfill project in the southern part of Norway. To check the risk of internal erosion due to changes in the groundwater level (because of seasonal flooding in the river), a series of numerical simulations by means of Geo-Seep software was conducted. Output of this study provides a total picture of the landfill stability, possibilities of erosions, and necessary measures to prevent or reduce the risk for the landfill operator.

Keywords: erosion, seepage, landfill, stability

Procedia PDF Downloads 135
646 Scheduled Maintenance and Downtime Cost in Aircraft Maintenance Management

Authors: Remzi Saltoglu, Nazmia Humaira, Gokhan Inalhan

Abstract:

During aircraft maintenance scheduling, operator calculates the budget of the maintenance. Usually, this calculation includes only the costs that are directly related to the maintenance process such as cost of labor, material, and equipment. In some cases, overhead cost is also included. However, in some of those, downtime cost is neglected claiming that grounding is a natural fact of maintenance; therefore, it is not considered as part of the analytical decision-making process. Based on the normalized data, we introduce downtime cost with its monetary value and add its seasonal character. We envision that the rest of the model, which works together with the downtime cost, could be checked with the real life cases, through the review of MRO cost and airline spending in the particular and scheduled maintenance events.

Keywords: aircraft maintenance, downtime, downtime cost, maintenance cost

Procedia PDF Downloads 353
645 Seasonal Lambing in Crossbred of Katahdin Ewes in Tropical Regions of Chiapas, Mexico

Authors: Juan C. Martínez-Alfaro, Aracely Zúñiga, Fernando Ruíz-Zarate

Abstract:

In recent years, the Katahdin sheep breeds have been one of the breeds with greater acceptance by sheep farmers in southwestern Mexico. The Hair Sheep breeds from tropical latitudes (16° to 21° North Latitude) show low estrus activity from January to May. By contrast, these breeds of sheep exhibit high estrus activity from August to December. However, the reproductive management of Hair Sheep crossbred is very limited, independently of the socioeconomic levels of sheep farmers. Thus, in crossbred of Hair Sheep, occurrence of lambing is greater in autumn (84%) than spring (16%). In this sense, the aim of this study was to determine the lambing in Crossbred of Katahdin sheep during different seasons of the year. The Hypothesis was that in crossbred of Katahdin sheep, the lambing period has a behavior seasonal in the Southwestern Mexico. The study design consisted in evaluating the lambing proportion in one herds of Katahdin ewes crossbred during one year (October 1st, 2015 to October 1st, 2016). The study was realized in a farm located in the municipality of Jiquipilas, in the State of Chiapas, Mexico (16° North Latitude). A total of 40 female sheep homogeneous in terms of physical condition, age and physiological state were selected; and they were fed in grazing continuous, mainly with Africa star grass (Cynodon lemfuensis) and they are provided with water and mineral salts ad libitum; during the dry season, the ewes were supplemented with a diet of maize and sorghum, and the reproductive management was continuous mating. The lambing proportion was analyzed by chi-squared test, using SAS statistical software. The proportion of Katahdin ewes crossbred that lambed during the study period was high (100%; 40/40), the prolificacy was 1.42 (lamb/lambing). The proportion of lambing was higher (P<0.05) in autumn (67.5%; 27/40), than winter, spring and summer (32.5%; 13/40; 0%; 0/40; 0%; 0/40; respectively). The proportion of lambing was greater (P<0.05) in November (50%; 20/40), compared to October, December and January (2.5%; 1/40; 27.5%; 11/40; 20%; 8/40, respectively). The results are consistent with the fact that in the Hair Sheep Breeds, the lambing appears behave seasonally. The most important finding is that the lambing period in the crossbred of Katahdin Sheep is similar to the crossbred of Hair Sheep in tropical regions of Mexico. Therefore, the period of greater sexual activity occurs in the spring season. In conclusion, the period of lambing in crossbred of Katahdin ewes appears behave seasonally. Further researches to assess the ovarian activity in different breeds of Hair Ewes are under assessment.

Keywords: Katahdin ewes, lambing, prolificacy, seasonality

Procedia PDF Downloads 263
644 Characterisation of Meteorological Drought at Sub-Catchment Scale in Afghanistan Using Time-Series Climate Data

Authors: Yun Chen, David Penton, Fazlul Karim, Santosh Aryal, Shahriar Wahid, Peter Taylor, Susan M. Cuddy

Abstract:

Droughts have severely affected Afghanistan over the last four decades, leading to critical food shortages where two-thirds of the country’s population are in a food crisis. Long years of conflict have lowered the country’s ability to deal with hazards such as drought, which can rapidly escalate into disasters. Understanding the spatial and temporal distribution of droughts is needed to be able to respond effectively to disasters and plan for future occurrences. This study used Standardized Precipitation Evapotranspiration Index (SPEI) at monthly, seasonal, and annual temporal scales to map the spatiotemporal change dynamics of drought characteristics (distribution, frequency, duration, and severity) in Afghanistan. SPEI indices were mapped for river basins, disaggregated into 189 sub-catchments, using monthly precipitation and potential evapotranspiration derived from temperature station observations from 1980 to 2017. The results show these multi-dimensional drought characteristics vary along different years, change among sub-catchments, and differ across temporal scales. During the 38 years, the driest decade and period are the 2000s and 1999–2022, respectively. The 2000–01 water year is the driest, with the whole country experiencing ‘severe’ to ‘extreme’ drought, more than 53% (87 sub-catchments) suffering the worst drought in history, and about 58% (94 sub-catchments) having ‘very frequent’ drought (7 to 8 months) or ‘extremely frequent’ drought (9 to 10 months). The estimated seasonal duration and severity present significant variations across the study area and throughout the study period. The nation also suffered from recurring droughts with varying length and intensity in 2004, 2006, 2008, and, most recently, 2011. There is a trend towards increasing drought with longer duration and higher severity extending all over sub-catchments from southeast to north and central regions. These datasets and maps help to fill the knowledge gap on detailed sub-catchment scale meteorological drought characteristics in Afghanistan. The study findings improve our understanding of the influences of climate change on drought dynamics and can guide catchment planning for reliable adaptation to and mitigation against future droughts.

Keywords: SPEI, precipitation, evapotranspiration, climate extremes

Procedia PDF Downloads 92
643 Understanding Stock-Out of Pharmaceuticals in Timor-Leste: A Case Study in Identifying Factors Impacting on Pharmaceutical Quantification in Timor-Leste

Authors: Lourenco Camnahas, Eileen Willis, Greg Fisher, Jessie Gunson, Pascale Dettwiller, Charlene Thornton

Abstract:

Stock-out of pharmaceuticals is a common issue at all level of health services in Timor-Leste, a small post-conflict country. This lead to the research questions: what are the current methods used to quantify pharmaceutical supplies; what factors contribute to the on-going pharmaceutical stock-out? The study examined factors that influence the pharmaceutical supply chain system. Methodology: Privett and Goncalvez dependency model has been adopted for the design of the qualitative interviews. The model examines pharmaceutical supply chain management at three management levels: management of individual pharmaceutical items, health facilities, and health systems. The interviews were conducted in order to collect information on inventory management, logistics management information system (LMIS) and the provision of pharmaceuticals. Andersen' behavioural model for healthcare utilization also informed the interview schedule, specifically factors linked to environment (healthcare system and external environment) and the population (enabling factors). Forty health professionals (bureaucrats, clinicians) and six senior officers from a United Nations Agency, a global multilateral agency and a local non-governmental organization were interviewed on their perceptions of factors (healthcare system/supply chain and wider environment) impacting on stock out. Additionally, policy documents for the entire healthcare system, along with population data were collected. Findings: An analysis using Pozzebon’s critical interpretation identified a range of difficulties within the system from poor coordination to failure to adhere to policy guidelines along with major difficulties with inventory management, quantification, forecasting, and budgetary constraints. Weak logistics management information system, lack of capacity in inventory management, monitoring and supervision are additional organizational factors that also contributed to the issue. There were various methods of quantification of pharmaceuticals applied in the government sector, and non-governmental organizations. Lack of reliable data is one of the major problems in the pharmaceutical provision. Global Fund has the best quantification methods fed by consumption data and malaria cases. There are other issues that worsen stock-out: political intervention, work ethic and basic infrastructure such as unreliable internet connectivity. Major issues impacting on pharmaceutical quantification have been identified. However, current data collection identified limitations within the Andersen model; specifically, a failure to take account of predictors in the healthcare system and the environment (culture/politics/social. The next step is to (a) compare models used by three non-governmental agencies with the government model; (b) to run the Andersen explanatory model for pharmaceutical expenditure for 2 to 5 drug items used by these three development partners in order to see how it correlates with the present model in terms of quantification and forecasting the needs; (c) to repeat objectives (a) and (b) using the government model; (d) to draw a conclusion about the strength.

Keywords: inventory management, pharmaceutical forecasting and quantification, pharmaceutical stock-out, pharmaceutical supply chain management

Procedia PDF Downloads 244
642 Optimizing Protection of Medieval Glass Mosaic

Authors: J. Valach, S. Pospisil, S. Kuznecov

Abstract:

The paper deals with experimental estimation of future environmental load on medieval mosaic of Last Judgement on entrance to St. Vitus cathedral on Prague castle. The mosaic suffers from seasonal changes of weather pattern, as well as rains, their acidity, deposition of dust and sooth particles from polluted air and also from freeze-thaw cycles. These phenomena influence state of the mosaic. The mosaic elements, tesserae are mostly made from glass prone to weathering. To estimate future procedure of the best maintenance, relation between various weather scenarios and their effect on the mosaic was investigated. At the same time local method for evaluation of protective coating was developed. Together both methods will contribute to better care for the mosaic and also visitors aesthetical experience.

Keywords: environmental load, cultural heritage, glass mosaic, protection

Procedia PDF Downloads 280
641 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks

Authors: Mehrdad Shafiei Dizaji, Hoda Azari

Abstract:

The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.

Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven

Procedia PDF Downloads 40
640 Effects of Nutrients Supply on Milk Yield, Composition and Enteric Methane Gas Emissions from Smallholder Dairy Farms in Rwanda

Authors: Jean De Dieu Ayabagabo, Paul A.Onjoro, Karubiu P. Migwi, Marie C. Dusingize

Abstract:

This study investigated the effects of feed on milk yield and quality through feed monitoring and quality assessment, and the consequent enteric methane gas emissions from smallholder dairy farms in drier areas of Rwanda, using the Tier II approach for four seasons in three zones, namely; Mayaga and peripheral Bugesera (MPB), Eastern Savanna and Central Bugesera (ESCB), and Eastern plateau (EP). The study was carried out using 186 dairy cows with a mean live weight of 292 Kg in three communal cowsheds. The milk quality analysis was carried out on 418 samples. Methane emission was estimated using prediction equations. Data collected were subjected to ANOVA. The dry matter intake was lower (p<0.05) in the long dry season (7.24 Kg), with the ESCB zone having the highest value of 9.10 Kg, explained by the practice of crop-livestock integration agriculture in that zone. The Dry matter digestibility varied between seasons and zones, ranging from 52.5 to 56.4% for seasons and from 51.9 to 57.5% for zones. The daily protein supply was higher (p<0.05) in the long rain season with 969 g. The mean daily milk production of lactating cows was 5.6 L with a lower value (p<0.05) during the long dry season (4.76 L), and the MPB zone having the lowest value of 4.65 L. The yearly milk production per cow was 1179 L. The milk fat varied from 3.79 to 5.49% with a seasonal and zone variation. No variation was observed with milk protein. The seasonal daily methane emission varied from 150 g for the long dry season to 174 g for the long rain season (p<0.05). The rain season had the highest methane emission as it is associated with high forage intake. The mean emission factor was 59.4 Kg of methane/year. The present EFs were higher than the default IPPC value of 41 Kg from developing countries in African, the Middle East, and other tropical regions livestock EFs using Tier I approach due to the higher live weight in the current study. The methane emission per unit of milk production was lower in the EP zone (46.8 g/L) due to the feed efficiency observed in that zone. Farmers should use high-quality feeds to increase the milk yield and reduce the methane gas produced per unit of milk. For an accurate assessment of the methane produced from dairy farms, there is a need for the use of the Life Cycle Assessment approach that considers all the sources of emissions.

Keywords: footprint, forage, girinka, tier

Procedia PDF Downloads 205
639 The Role of Strategic Metals in Cr-Al-Pt-V Composition of Protective Bond Coats

Authors: A. M. Pashayev, A. S. Samedov, T. B. Usubaliyev, N. Sh. Yusifov

Abstract:

Different types of coating technologies are widely used for gas turbine blades. Thermal barrier coatings, consisting of ceramic top coat, thermally grown oxide and a metallic bond coat are used in applications for thermal protection of hot section components in gas turbine engines. Operational characteristics and longevity of high-temperature turbine blades substantially depend on a right choice of composition of the protective thermal barrier coatings. At a choice of composition of a coating and content of the basic elements it is necessary to consider following factors, as minimum distinctions of coefficients of thermal expansions of elements, level of working temperatures and composition of the oxidizing environment, defining the conditions for the formation of protective layers, intensity of diffusive processes and degradation speed of protective properties of elements, extent of influence on the fatigue durability of details during operation, using of elements with high characteristics of thermal stability and satisfactory resilience of gas corrosion, density, hardness, thermal conduction and other physical characteristics. Forecasting and a choice of a thermal barrier coating composition, all above factors at the same time cannot be considered, as some of these characteristics are defined by experimental studies. The implemented studies and investigations show that one of the main failures of coatings used on gas turbine blades is related to not fully taking the physical-chemical features of elements into consideration during the determination of the composition of alloys. It leads to the formation of more difficult spatial structure, composition which also changes chaotically in some interval of concentration that doesn't promote thermal and structural firmness of a coating. For the purpose of increasing the thermal and structural resistant of gas turbine blade coatings is offered a new approach to forecasting of composition on the basis of analysis of physical-chemical characteristics of alloys taking into account the size factor, electron configuration, type of crystal lattices and Darken-Gurry method. As a result, of calculations and experimental investigations is offered the new four-component metallic bond coat on the basis of chrome for the gas turbine blades.

Keywords: gas turbine blades, thermal barrier coating, metallic bond coat, strategic metals, physical-chemical features

Procedia PDF Downloads 315
638 Seasonal Short-Term Effect of Air Pollution on Cardiovascular Mortality in Belgium

Authors: Natalia Bustos Sierra, Katrien Tersago

Abstract:

It is currently proven that both extremes of temperature are associated with increased mortality and that air pollution is associated with temperature. This relationship is complex, and in countries with important seasonal variations in weather such as Belgium, some effects can appear as non-significant when the analysis is done over the entire year. We, therefore, analyzed the effect of short-term outdoor air pollution exposure on cardiovascular mortality during the warmer and colder months separately. We used daily cardiovascular deaths from acute cardiovascular diagnostics according to the International Classification of Diseases, 10th Revision (ICD-10: I20-I24, I44-I49, I50, I60-I66) during the period 2008-2013. The environmental data were population-weighted concentrations of particulates with an aerodynamic diameter less than 10 µm (PM₁₀) and less than 2.5 µm (PM₂.₅) (daily average), nitrogen dioxide (NO₂) (daily maximum of the hourly average) and ozone (O₃) (daily maximum of the 8-hour running mean). A Generalized linear model was applied adjusting for the confounding effect of season, temperature, dew point temperature, the day of the week, public holidays and the incidence of influenza-like illness (ILI) per 100,000 inhabitants. The relative risks (RR) were calculated for an increase of one interquartile range (IQR) of the air pollutant (μg/m³). These were presented for the four hottest months (June, July, August, September) and coldest months (November, December, January, February) in Belgium. We applied both individual lag model and unconstrained distributed lag model methods. The cumulative effect of a four-day exposure (day of exposure and three consecutive days) was calculated from the unconstrained distributed lag model. The IQR for PM₁₀, PM₂.₅, NO₂, and O₃ were respectively 8.2, 6.9, 12.9 and 25.5 µg/m³ during warm months and 18.8, 17.6, 18.4 and 27.8 µg/m³ during cold months. The association with CV mortality was statistically significant for the four pollutants during warm months and only for NO₂ during cold months. During the warm months, the cumulative effect of an IQR increase of ozone for the age groups 25-64, 65-84 and 85+ was 1.066 (95%CI: 1.002-1.135), 1.041 (1.008-1.075) and 1.036 (1.013-1.058) respectively. The cumulative effect of an IQR increase of NO₂ for the age group 65-84 was 1.066 (1.020-1.114) during warm months and 1.096 (1.030-1.166) during cold months. The cumulative effect of an IQR increase of PM₁₀ during warm months reached 1.046 (1.011-1.082) and 1.038 (1.015-1.063) for the age groups 65-84 and 85+ respectively. Similar results were observed for PM₂.₅. The short-term effect of air pollution on cardiovascular mortality is greater during warm months for lower pollutant concentrations compared to cold months. Spending more time outside during warm months increases population exposure to air pollution and can, therefore, be a confounding factor for this association. Age can also affect the length of time spent outdoors and the type of physical activity exercised. This study supports the deleterious effect of air pollution on cardiovascular mortality (CV) which varies according to season and age groups in Belgium. Public health measures should, therefore, be adapted to seasonality.

Keywords: air pollution, cardiovascular, mortality, season

Procedia PDF Downloads 165
637 Performance Analysis of Hybrid Solar Photovoltaic-Thermal Collector with TRANSYS Simulator

Authors: Ashish Lochan, Anil K. Dahiya, Amit Verma

Abstract:

The idea of combining photovoltaic and solar thermal collector to provide electrical and heat energy is not new, however, it is an area of limited attention. Hybrid photovoltaic-thermals have become a focus point of interest in the field of solar energy. Integration of both (photovoltaic and thermal collector) provide greater opportunity for the use of renewable solar energy. This system converts solar energy into electricity and heat energy simultaneously. Theoretical performance analyses of hybrid PV/Ts have been carried out. Also, the temperature of water (as a heat carrier) have been calculated for different seasons with the help of TRANSYS.

Keywords: photovoltaic-thermal, solar energy, seasonal performance analysis, TRANSYS

Procedia PDF Downloads 657
636 Characterization of Aerosol Particles in Ilorin, Nigeria: Ground-Based Measurement Approach

Authors: Razaq A. Olaitan, Ayansina Ayanlade

Abstract:

Understanding aerosol properties is the main goal of global research in order to lower the uncertainty associated with climate change in the trends and magnitude of aerosol particles. In order to identify aerosol particle types, optical properties, and the relationship between aerosol properties and particle concentration between 2019 and 2021, a study conducted in Ilorin, Nigeria, examined the aerosol robotic network's ground-based sun/sky scanning radiometer. The AERONET algorithm version 2 was utilized to retrieve monthly data on aerosol optical depth and angstrom exponent. The version 3 algorithm, which is an almucantar level 2 inversion, was employed to retrieve daily data on single scattering albedo and aerosol size distribution. Excel 2016 was used to analyze the data's monthly, seasonal, and annual mean averages. The distribution of different types of aerosols was analyzed using scatterplots, and the optical properties of the aerosol were investigated using pertinent mathematical theorems. To comprehend the relationships between particle concentration and properties, correlation statistics were employed. Based on the premise that aerosol characteristics must remain constant in both magnitude and trend across time and space, the study's findings indicate that the types of aerosols identified between 2019 and 2021 are as follows: 29.22% urban industrial (UI) aerosol type, 37.08% desert (D) aerosol type, 10.67% biomass burning (BB), and 23.03% urban mix (Um) aerosol type. Convective wind systems, which frequently carry particles as they blow over long distances in the atmosphere, have been responsible for the peak-of-the-columnar aerosol loadings, which were observed during August of the study period. The study has shown that while coarse mode particles dominate, fine particles are increasing in seasonal and annual trends. Burning biomass and human activities in the city are linked to these trends. The study found that the majority of particles are highly absorbing black carbon, with the fine mode having a volume median radius of 0.08 to 0.12 meters. The investigation also revealed that there is a positive coefficient of correlation (r = 0.57) between changes in aerosol particle concentration and changes in aerosol properties. Human activity is rapidly increasing in Ilorin, causing changes in aerosol properties, indicating potential health risks from climate change and human influence on geological and environmental systems.

Keywords: aerosol loading, aerosol types, health risks, optical properties

Procedia PDF Downloads 63
635 [Keynote Talk]: Monitoring of Ultrafine Particle Number and Size Distribution at One Urban Background Site in Leicester

Authors: Sarkawt M. Hama, Paul S. Monks, Rebecca L. Cordell

Abstract:

Within the Joaquin project, ultrafine particles (UFP) are continuously measured at one urban background site in Leicester. The main aims are to examine the temporal and seasonal variations in UFP number concentration and size distribution in an urban environment, and to try to assess the added value of continuous UFP measurements. In addition, relations of UFP with more commonly monitored pollutants such as black carbon (BC), nitrogen oxides (NOX), particulate matter (PM2.5), and the lung deposited surface area(LDSA) were evaluated. The effects of meteorological conditions, particularly wind speed and direction, and also temperature on the observed distribution of ultrafine particles will be detailed. The study presents the results from an experimental investigation into the particle number concentration size distribution of UFP, BC, and NOX with measurements taken at the Automatic Urban and Rural Network (AURN) monitoring site in Leicester. The monitoring was performed as part of the EU project JOAQUIN (Joint Air Quality Initiative) supported by the INTERREG IVB NWE program. The total number concentrations (TNC) were measured by a water-based condensation particle counter (W-CPC) (TSI model 3783), the particle number concentrations (PNC) and size distributions were measured by an ultrafine particle monitor (UFP TSI model 3031), the BC by MAAP (Thermo-5012), the NOX by NO-NO2-NOx monitor (Thermos Scientific 42i), and a Nanoparticle Surface Area Monitor (NSAM, TSI 3550) was used to measure the LDSA (reported as μm2 cm−3) corresponding to the alveolar region of the lung between November 2013 and November 2015. The average concentrations of particle number concentrations were observed in summer with lower absolute values of PNC than in winter might be related mainly to particles directly emitted by traffic and to the more favorable conditions of atmospheric dispersion. Results showed a traffic-related diurnal variation of UFP, BC, NOX and LDSA with clear morning and evening rush hour peaks on weekdays, only an evening peak at the weekends. Correlation coefficients were calculated between UFP and other pollutants (BC and NOX). The highest correlation between them was found in winter months. Overall, the results support the notion that local traffic emissions were a major contributor of the atmospheric particles pollution and a clear seasonal pattern was found, with higher values during the cold season.

Keywords: size distribution, traffic emissions, UFP, urban area

Procedia PDF Downloads 330
634 The Dynamics of Planktonic Crustacean Populations in an Open Access Lagoon, Bordered by Heavy Industry, Southwest, Nigeria

Authors: E. O. Clarke, O. J. Aderinola, O. A. Adeboyejo, M. A. Anetekhai

Abstract:

Aims: The study is aimed at establishing the influence of some physical and chemical parameters on the abundance, distribution pattern and seasonal variations of the planktonic crustacean populations. Place and Duration of Study: A premier investigation into the dynamics of planktonic crustacean populations in Ologe lagoon was carried out from January 2011 to December 2012. Study Design: The study covered identification, temporal abundance, spatial distribution and diversity of the planktonic crustacea. Methodology: Standard techniques were used to collect samples from eleven stations covering five proximal satellite towns (Idoluwo, Oto, Ibiye, Obele, and Gbanko) bordering the lagoon. Data obtained were statistically analyzed using linear regression and hierarchical clustering. Results:Thirteen (13) planktonic crustacean populations were identified. Total percentage abundance was highest for Bosmina species (20%) and lowest for Polyphemus species (0.8%). The Pearson’s correlation coefficient (“r” values) between total planktonic crustacean population and some physical and chemical parameters showed that positive correlations having low level of significance occurred with salinity (r = 0.042) (sig = 0.184) and with surface water dissolved oxygen (r = 0.299) (sig = 0.155). Linear regression plots indicated that, the total population of planktonic crustacea were mainly influenced and only increased with an increase in value of surface water temperature (Rsq = 0.791) and conductivity (Rsq = 0.589). The total population of planktonic crustacea had a near neutral (zero correlation) with the surface water dissolved oxygen and thus, does not significantly change with the level of the surface water dissolved oxygen. The correlations were positive with NO3-N (midstream) at Ibiye (Rsq =0.022) and (downstream) Gbanko (Rsq =0.013), PO4-P at Ibiye (Rsq =0.258), K at Idoluwo (Rsq =0.295) and SO4-S at Oto (Rsq = 0.094) and Gbanko (Rsq = 0.457). The Berger-Parker Dominance Index (BPDI) showed that the most dominant species was Bosmina species (BPDI = 1.000), followed by Calanus species (BPDI = 1.254). Clusters by squared Euclidan distances using average linkage between groups showed proximities, transcending the borders of genera. Conclusion: The results revealed that planktonic crustacean population in Ologe lagoon undergo seasonal perturbations, were highly influenced by nutrient, metal and organic matter inputs from river Owoh, Agbara industrial estate and surrounding farmlands and were patchy in spatial distribution.

Keywords: diversity, dominance, perturbations, richness, crustacea, lagoon

Procedia PDF Downloads 721
633 Directional Dust Deposition Measurements: The Influence of Seasonal Changes and the Meteorological Conditions Influencing in Witbank Area and Carletonville Area

Authors: Maphuti Georgina Kwata

Abstract:

Coal mining in Mpumalanga Province is known of contributing to the atmospheric pollution from various activities. Gold mining in North-West Province is known of also contributing to the atmospheric pollution especially with the production of radon gas. In this research directional dust deposition gauge was used to measure source of direction and meteorological data was used to determine the wind rose blowing and the influence of the seasonal changes. Fourteen months of dust collection was undertaken in Witbank Area and Carletonville Area. The results shows that the sources of direction for Ericson Dam its East in February 2010 and Tip Area shows that the source of direction its West in October 2010. In the East direction there were mining operations, power stations which contributed to the East to be the sources of direction. In the West direction there were smelters, power stations and agricultural activities which contributed for the source of direction to be the West direction for Driefontein Mine: East Recreational Village Club. The East of Leslie Williams hospital is the source of direction which also indicated that there dust generating activities such as mining operation, agricultural activities. The meteorological results for Emalahleni Area in summer and winter the wind rose blow with wind speed of 5-10 ms-1 from the East sector. Annual average for the wind rose blow its East South eastern sector with 20 ms-1 and day time the wind rose from northwestern sector with excess of 20 ms-1. The night time wind direction East-eastern direction with a maximum wind speed of 20 ms-1. The meteorogical results for Driefontein Mine show that North-western sector and north-eastern sector wind rose is blowing with 5-10 ms-1 win speed. Day time wind blows from the West sector and night time wind blows from the north sector. In summer the wind blows North-east sector with 5-10 ms-1 and winter wind blows from North-west and it’s also predominant. In spring wind blows from north-east. The conclusion is that not only mining operation where the directional dust deposit gauge were installed contributed to the source of direction also the power stations, smelters, and other activities nearby the mining operation contributed. The recommendations are the dust suppressant for unpaved roads should be used on a regular basis and there should be monitoring of the weather conditions (the wind speed and direction prior to blasting to ensure minimal emissions).

Keywords: directional dust deposition gauge, BS part 5 1747 dust deposit gauge, wind rose, wind blowing

Procedia PDF Downloads 505
632 Superiority of High Frequency Based Volatility Models: Empirical Evidence from an Emerging Market

Authors: Sibel Celik, Hüseyin Ergin

Abstract:

The paper aims to find the best volatility forecasting model for stock markets in Turkey. For this purpose, we compare performance of different volatility models-both traditional GARCH model and high frequency based volatility models- and conclude that both in pre-crisis and crisis period, the performance of high frequency based volatility models are better than traditional GARCH model. The findings of paper are important for policy makers, financial institutions and investors.

Keywords: volatility, GARCH model, realized volatility, high frequency data

Procedia PDF Downloads 486
631 Pre- and Post-Brexit Experiences of the Bulgarian Working Class Migrants: Qualitative and Quantitative Approaches

Authors: Mariyan Tomov

Abstract:

Bulgarian working class immigrants are increasingly concerned with UK’s recent immigration policies in the context of Brexit. The new ID system would exclude many people currently working in Britain and would break the usual immigrant travel patterns. Post-Brexit Britain would aim to repeal seasonal immigrants. Measures for keeping long-term and life-long immigrants have been implemented and migrants that aim to remain in Britain and establish a household there would be more privileged than temporary or seasonal workers. The results of such regulating mechanisms come at the expense of migrants’ longings for a ‘normal’ existence, especially for those coming from Central and Eastern Europe. Based on in-depth interviews with Bulgarian working class immigrants, the study found out that their major concerns following the decision of the UK to leave the EU are related with the freedom to travel, reside and work in the UK. Furthermore, many of the interviewed women are concerned that they could lose some of the EU's fundamental rights, such as maternity and protection of pregnant women from unlawful dismissal. The soar of commodity prices and university fees and the limited access to public services, healthcare and social benefits in the UK, are also subject to discussion in the paper. The most serious problem, according to the interview, is that the attitude towards Bulgarians and other immigrants in the UK is deteriorating. Both traditional and social media in the UK often portray the migrants negatively by claiming that they take British job positions while simultaneously abuse the welfare system. As a result, the Bulgarian migrants often face social exclusion, which might have negative influence on their health and welfare. In this sense, some of the interviewed stress on the fact that the most important changes after Brexit must take place in British society itself. The aim of the proposed study is to provide a better understanding of the Bulgarian migrants’ economic, health and sociocultural experience in the context of Brexit. Methodologically, the proposed paper leans on: 1. Analysing ethnographic materials dedicated to the pre- and post-migratory experiences of Bulgarian working class migrants, using SPSS. 2. Semi-structured interviews are conducted with more than 50 Bulgarian working class migrants [N > 50] in the UK, between 18 and 65 years. The communication with the interviewees was possible via Viber/Skype or face-to-face interaction. 3. The analysis is guided by theoretical frameworks. The paper has been developed within the framework of the research projects of the National Scientific Fund of Bulgaria: DCOST 01/25-20.02.2017 supporting COST Action CA16111 ‘International Ethnic and Immigrant Minorities Survey Data Network’.

Keywords: Bulgarian migrants in UK, economic experiences, sociocultural experiences, Brexit

Procedia PDF Downloads 127
630 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever

Authors: Sudha T., Naveen C.

Abstract:

Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.

Keywords: deep learning model, dengue fever, prediction, optimization

Procedia PDF Downloads 65
629 A Development of a Simulation Tool for Production Planning with Capacity-Booking at Specialty Store Retailer of Private Label Apparel Firms

Authors: Erika Yamaguchi, Sirawadee Arunyanrt, Shunichi Ohmori, Kazuho Yoshimoto

Abstract:

In this paper, we suggest a simulation tool to make a decision of monthly production planning for maximizing a profit of Specialty store retailer of Private label Apparel (SPA) firms. Most of SPA firms are fabless and make outsourcing deals for productions with factories of their subcontractors. Every month, SPA firms make a booking for production lines and manpower in the factories. The booking is conducted a few months in advance based on a demand prediction and a monthly production planning at that time. However, the demand prediction is updated month by month, and the monthly production planning would change to meet the latest demand prediction. Then, SPA firms have to change the capacities initially booked within a certain range to suit to the monthly production planning. The booking system is called “capacity-booking”. These days, though it is an issue for SPA firms to make precise monthly production planning, many firms are still conducting the production planning by empirical rules. In addition, it is also a challenge for SPA firms to match their products and factories with considering their demand predictabilities and regulation abilities. In this paper, we suggest a model for considering these two issues. An objective is to maximize a total profit of certain periods, which is sales minus costs of production, inventory, and capacity-booking penalty. To make a better monthly production planning at SPA firms, these points should be considered: demand predictabilities by random trends, previous and next month’s production planning of the target month, and regulation abilities of the capacity-booking. To decide matching products and factories for outsourcing, it is important to consider seasonality, volume, and predictability of each product, production possibility, size, and regulation ability of each factory. SPA firms have to consider these constructions and decide orders with several factories per one product. We modeled these issues as a linear programming. To validate the model, an example of several computational experiments with a SPA firm is presented. We suppose four typical product groups: basic, seasonal (Spring / Summer), seasonal (Fall / Winter), and spot product. As a result of the experiments, a monthly production planning was provided. In the planning, demand predictabilities from random trend are reduced by producing products which are different product types. Moreover, priorities to produce are given to high-margin products. In conclusion, we developed a simulation tool to make a decision of monthly production planning which is useful when the production planning is set every month. We considered the features of capacity-booking, and matching of products and factories which have different features and conditions.

Keywords: capacity-booking, SPA, monthly production planning, linear programming

Procedia PDF Downloads 519
628 Nonstationarity Modeling of Economic and Financial Time Series

Authors: C. Slim

Abstract:

Traditional techniques for analyzing time series are based on the notion of stationarity of phenomena under study, but in reality most economic and financial series do not verify this hypothesis, which implies the implementation of specific tools for the detection of such behavior. In this paper, we study nonstationary non-seasonal time series tests in a non-exhaustive manner. We formalize the problem of nonstationary processes with numerical simulations and take stock of their statistical characteristics. The theoretical aspects of some of the most common unit root tests will be discussed. We detail the specification of the tests, showing the advantages and disadvantages of each. The empirical study focuses on the application of these tests to the exchange rate (USD/TND) and the Consumer Price Index (CPI) in Tunisia, in order to compare the Power of these tests with the characteristics of the series.

Keywords: stationarity, unit root tests, economic time series, ADF tests

Procedia PDF Downloads 422