Search results for: neural tube defect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2802

Search results for: neural tube defect

2472 Classification of Myoelectric Signals Using Multilayer Perceptron Neural Network with Back-Propagation Algorithm in a Wireless Surface Myoelectric Prosthesis of the Upper-Limb

Authors: Kevin D. Manalo, Jumelyn L. Torres, Noel B. Linsangan

Abstract:

This paper focuses on a wireless myoelectric prosthesis of the upper-limb that uses a Multilayer Perceptron Neural network with back propagation. The algorithm is widely used in pattern recognition. The network can be used to train signals and be able to use it in performing a function on their own based on sample inputs. The paper makes use of the Neural Network in classifying the electromyography signal that is produced by the muscle in the amputee’s skin surface. The gathered data will be passed on through the Classification Stage wirelessly through Zigbee Technology. The signal will be classified and trained to be used in performing the arm positions in the prosthesis. Through programming using Verilog and using a Field Programmable Gate Array (FPGA) with Zigbee, the EMG signals will be acquired and will be used for classification. The classified signal is used to produce the corresponding Hand Movements (Open, Pick, Hold, and Grip) through the Zigbee controller. The data will then be processed through the MLP Neural Network using MATLAB which then be used for the surface myoelectric prosthesis. Z-test will be used to display the output acquired from using the neural network.

Keywords: field programmable gate array, multilayer perceptron neural network, verilog, zigbee

Procedia PDF Downloads 391
2471 Early and Mid-Term Results of Anesthetic Management of Minimal Invasive Coronary Artery Bypass Grafting Using One Lung Ventilation

Authors: Devendra Gupta, S. P. Ambesh, P. K Singh

Abstract:

Introduction: Minimally invasive coronary artery bypass grafting (MICABG) is a less invasive method of performing surgical revascularization. Minimally invasive direct coronary artery bypass (MIDCAB) provides many anesthetic challenges including one lung ventilation (OLV), managing myocardial ischemia, and pain. We present an early and midterm result of the use of this technique with OLV. Method: We enrolled 62 patients for analysis operated between 2008 and 2012. Patients were anesthetized and left endobronchial tube was placed. During the procedure left lung was isolated and one lung ventilation was maintained through right lung. Operation was performed utilizing off pump technique of coronary artery bypass grafting through a minimal invasive incision. Left internal mammary artery graft was done for single vessel disease and radial artery was utilized for other grafts if required. Postoperative ventilation was done with single lumen endotracheal tube. Median follow-up is 2.5 years (6 months to 4 years). Results: Median age was 58.5 years (41-77) and all were male. Single vessel disease was present in 36, double vessel in 24 and triple vessel disease in 2 patients. All the patients had normal left ventricular size and function. In 2 cases difficulty were encounter in placement of endobronchial tube. In 1 case cuff of endobronchial tube was ruptured during intubation. High airway pressure was developed on OLV in 1 case and surgery was accomplished with two lung anesthesia with low tidal volume. Mean postoperative ventilation time was 14.4 hour (11-22). There was no perioperative and 30 day mortality. Conversion to median sternotomy to complete the operation was done in 3.23% (2 out of 62 patients). One patient had acute myocardial infarction postoperatively and there were no deaths during follow-up. Conclusion: MICABG is a safe and effective method of revascularization with OLV in low risk candidates for coronary artery bypass grafting.

Keywords: MIDCABG, one lung ventilation, coronary artery bypass grafting, endobronchial tube

Procedia PDF Downloads 425
2470 Model and Neural Control of the Depth of Anesthesia during Surgery

Authors: Javier Fernandez, Mayte Medina, Rafael Fernandez de Canete, Nuria Alcain, Juan Carlos Ramos-Diaz

Abstract:

At present, the experimentation of anesthetic drugs on patients requires a regulation protocol, and the response of each patient to several doses of entry drug must be well known. Therefore, the development of pharmacological dose control systems is a promising field of research in anesthesiology. In this paper, it has been developed a non-linear compartmental the pharmacokinetic-pharmacodynamical model which describes the anesthesia depth effect in a sufficiently reliable way over a set of patients with the depth effect quantified by the Bi-Spectral Index. Afterwards, an Artificial Neural Network (ANN) predictive controller has been designed based on the depth of anesthesia model so as to keep the patient in the optimum condition while he undergoes surgical treatment. For the purpose of quantifying the efficiency of the neural predictive controller, a classical proportional-integral-derivative controller has also been developed to compare both strategies. Results show the superior performance of predictive neural controller during BiSpectral Index reference tracking.

Keywords: anesthesia, bi-spectral index, neural network control, pharmacokinetic-pharmacodynamical model

Procedia PDF Downloads 338
2469 Plasma Properties Effect on Fluorescent Tube Plasma Antenna Performance

Authors: A. N. Dagang, E. I. Ismail, Z. Zakaria

Abstract:

This paper presents the analysis on the performance of monopole antenna with fluorescent tubes. In this research, the simulation and experimental approach is conducted. The fluorescent tube with different length and size is designed using Computer Simulation Technology (CST) software and the characteristics of antenna parameter are simulated throughout the software. CST was used to simulate antenna parameters such as return loss, resonant frequency, gain and directivity. Vector Network Analyzer (VNA) was used to measure the return loss of plasma antenna in order to validate the simulation results. In the simulation and experiment, the supply frequency is set starting from 1 GHz to 10 GHz. The results show that the return loss of plasma antenna changes when size of fluorescent tubes is varied, correspond to the different plasma properties. It shows that different values of plasma properties such as plasma frequency and collision frequency gives difference result of return loss, gain and directivity. For the gain, the values range from 2.14 dB to 2.36 dB. The return loss of plasma antenna offers higher value range from -22.187 dB to -32.903 dB. The higher the values of plasma frequency and collision frequency, the higher return loss can be obtained. The values obtained are comparative to the conventional type of metal antenna.

Keywords: plasma antenna, fluorescent tube, CST, plasma parameters

Procedia PDF Downloads 388
2468 A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes

Authors: Frank Kuebler, Rolf Steinhilper

Abstract:

Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process.

Keywords: artificial neural network, design of experiments, regression analysis, resource efficiency, manufacturing process

Procedia PDF Downloads 526
2467 Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network

Authors: Nasrin Bakhshizadeh, Ashkan Forootan

Abstract:

A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors' bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties.

Keywords: polyethylene, polymerization, density, melt index, neural network

Procedia PDF Downloads 144
2466 Investigation of Ignition Delay for Low Molecular Hydrocarbon Fuel and Oxygen Mixture behind the Reflected Shock

Authors: K. R. Guna, Aldin Justin Sundararaj, B. C. Pillai, A. N. Subash

Abstract:

A systematic study has been made for ignition delay times measurement behind a reflected shock wave for the low molecular weight hydrocarbon fuel in argon simulated gas mixtures. The low molecular hydrocarbon fuel–oxygen was diluted with argon for desired concentration is taken for the study. The suitability of the shock tube for measuring the ignition delay time is demonstrated by measuring the ignition delay for the liquefied petroleum gas for equivalence ratios (ф=0.5 & 1) in the temperature range 1150-1650 K. The pressure range was fixed from 5-15 bar. The ignition delay was measured by recording the ignition-induced pressure jump and emission from CH radical simultaneously. From conducting experiments, it was found that the ignition delay time for liquefied petroleum gas reduces with increase in temperature. The shock tube was calibrated for ethane-oxygen gas mixture and the results obtained from this study is compared with the earlier reported values and found to be comparably well suited for the measurement of ignition delay times. The above work was carried out using the shock tube facility at propulsion and high enthalpy laboratory, Karunya University.

Keywords: ignition delay, LPG, reflected shock, shock wave

Procedia PDF Downloads 252
2465 Effect of Interference and Form Defect on the Cohesion of the Shrink-Fit Assembly

Authors: Allal Bedlaoui, Hamid Boutoutaou

Abstract:

Due to its superior economics, shrink-fit assembly is one of the best mechanical assembly methods. There are simply two components, the axis and hub. It is used in many different industries, including the production of trains, cars, and airplanes. The outer radius of the inner cylinder must be greater than the inner radius of the outer cylinder for this operation; this difference is referred to as the "interference" between the two cylinders. There are three ways to accomplish this: heating the outer cylinder to cause it to expand; cooling the cylinder's inside to cause it to contract; and third, finishing the fitting under a press. At the intersection of the two matched parts, a contact pressure and friction force are generated. We consider interference and form defects in this article because they prevent the connection between the axis and the hub from having a perfect form surface and because we will be looking at how they affect the assembly. Numerical simulation is used to ascertain if interference and form defects have a beneficial or negative influence in the distribution of stresses, assembly resistance, and plasticity.

Keywords: shrink-fit, interference, form defect, plasticity, extraction force

Procedia PDF Downloads 78
2464 Neglected Omphalocele Presented as Ventral Hernia in 56-Year-Old Ugandan Female: Case Report and Review of Literature

Authors: Ssembatya Joseph Mary

Abstract:

Introduction: Omphalocele, an abdominal wall defect, occurs in 1 out of 4,000 to 6,000 live births. It is characterized by visceral herniation of small and large intestines, liver, and sometimes spleen and gonads are involved. The viscera is always covered by a three-layered sac. The defect in the mesoderm is mainly due to the failure of lateral abdominal wall folds to unite. About 350,000 ventral hernia repairs are done annually in the united states of America. Surgical repair with a mesh is the gold standard surgical method. With conservative management of Omphalocele, children are eventually closed between the age of 1 and 5 years. Herein, we present a late manifestation of ventral hernia following Omphalocele in a female Ugandan. Case presentation: A 56-year-old female with no known chronic illnesses and normal perinatal history presented with an umbilical swelling since birth with no associated symptoms. She is a married woman to one husband and has five children, and all of them are in good general condition with no such symptoms. She had normal vitals with an umbilical defect measuring about 20cm from the xiphoid process and 10 cm from the symphysis pubis. Surgery was done (component separation) on the second inpatient day, and it was uneventful. The patient was discharged on the 4th postoperative day in good general condition with a dry and clean surgical site. Conclusion: Despite adequate literature about Omphalocele and clear management guidelines, there have been reported cases of adult presentation of ventral hernias secondary to Omphalocele.

Keywords: omphalocele, ventral hernia, uganda, late presentation

Procedia PDF Downloads 70
2463 Signal Restoration Using Neural Network Based Equalizer for Nonlinear channels

Authors: Z. Zerdoumi, D. Benatia, , D. Chicouche

Abstract:

This paper investigates the application of artificial neural network to the problem of nonlinear channel equalization. The difficulties caused by channel distortions such as inter symbol interference (ISI) and nonlinearity can overcome by nonlinear equalizers employing neural networks. It has been shown that multilayer perceptron based equalizer outperform significantly linear equalizers. We present a multilayer perceptron based equalizer with decision feedback (MLP-DFE) trained with the back propagation algorithm. The capacity of the MLP-DFE to deal with nonlinear channels is evaluated. From simulation results it can be noted that the MLP based DFE improves significantly the restored signal quality, the steady state mean square error (MSE), and minimum Bit Error Rate (BER), when comparing with its conventional counterpart.

Keywords: Artificial Neural Network, signal restoration, Nonlinear Channel equalization, equalization

Procedia PDF Downloads 498
2462 Person Re-Identification using Siamese Convolutional Neural Network

Authors: Sello Mokwena, Monyepao Thabang

Abstract:

In this study, we propose a comprehensive approach to address the challenges in person re-identification models. By combining a centroid tracking algorithm with a Siamese convolutional neural network model, our method excels in detecting, tracking, and capturing robust person features across non-overlapping camera views. The algorithm efficiently identifies individuals in the camera network, while the neural network extracts fine-grained global features for precise cross-image comparisons. The approach's effectiveness is further accentuated by leveraging the camera network topology for guidance. Our empirical analysis on benchmark datasets highlights its competitive performance, particularly evident when background subtraction techniques are selectively applied, underscoring its potential in advancing person re-identification techniques.

Keywords: camera network, convolutional neural network topology, person tracking, person re-identification, siamese

Procedia PDF Downloads 73
2461 High Piezoelectric and Magnetic Performance Achieved in the Lead-free BiFeO3-BaTiO3 Cceramics by Defect Engineering

Authors: Muhammad Habib, Xuefan Zhou, Lin Tang, Guoliang Xue, Fazli Akram, Dou Zhang

Abstract:

Defect engineering approach is a well-established approach for the customization of functional properties of perovskite ceramics. In modern technology, the high multiferroic properties for elevated temperature applications are greatly demanding. In this work, the Bi-nonstoichiometric lead-free 0.67Biy-xSmxFeO3-0.33BaTiO3 ceramics (Sm-doped BF-BT for Bi-excess; y = 1.03 and Bi-deficient; y = 0.975 with x = 0.00, 0.04 and 0.08) were design for the high-temperature multiferroic property. Enhanced piezoelectric (d33  250 pC/N and d33* 350 pm/V) and magnetic properties (Mr  0.25 emu/g) with a high Curie temperature (TC  465 ℃) were obtained in the Bi-deficient pure BF-BT ceramics. With Sm-doping (x = 0.04), the TC decrease to 350 ℃ a significant improvement occurred in the d33* to 504 pm/V and 450 pm/V for Bi-excess and Bi-deficient compositions, respectively. The structural origin of the enhanced piezoelectric strain performance is related to the soft ferroelectric effect by Sm-doping and reversible phase transition from the short-range relaxor ferroelectric state to the long-range order under the applied electric field. However, a slight change occurs in the Mr 0.28 emu/g value with Sm-doping for Bi-deficient ceramics, whereas the Bi-excess ceramics shows completely paramagnetic behavior. Hence, the origin of high magnetic properties in the Bi-deficient BF-BT ceramics is mainly attributed to the proposed double exchange mechanism. We believe that this strategy will provide a new perspective for the development of lead-free multiferroic ceramics for high-temperature applications.

Keywords: BiFeO3-BaTiO3, lead-free piezoceramics, magnetic properties, defect engineering

Procedia PDF Downloads 134
2460 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: load forecasting, artificial neural network, particle swarm optimization

Procedia PDF Downloads 172
2459 Finite Element Simulation of Deep Drawing Process to Minimize Earing

Authors: Pawan S. Nagda, Purnank S. Bhatt, Mit K. Shah

Abstract:

Earing defect in drawing process is highly undesirable not only because it adds on an additional trimming operation but also because the uneven material flow demands extra care. The objective of this work is to study the earing problem in the Deep Drawing of circular cup and to optimize the blank shape to reduce the earing. A finite element model is developed for 3-D numerical simulation of cup forming process in ABAQUS. Extra-deep-drawing (EDD) steel sheet has been used for simulation. Properties and tool design parameters were used as input for simulation. Earing was observed in the simulated cup and it was measured at various angles with respect to rolling direction. To reduce the earing defect initial blank shape was modified with the help of anisotropy coefficient. Modified blanks showed notable reduction in earing.

Keywords: anisotropy, deep drawing, earing, finite element simulation

Procedia PDF Downloads 377
2458 Preparation of POMA Nanofibers by Electrospinning and Its Applications in Tissue Engineering

Authors: Lu-Chen Yeh‚ Jui-Ming Yeh

Abstract:

In this manuscript, we produced neat electrospun poly(o-methoxyaniline) (POMA) fibers and utilized it for applying the growth of neural stem cells. The transparency and morphology of as-prepared POMA fibers were characterized by UV-visible spectroscopy and scanning electron microscopy, respectively. It was found to have no adverse effects on the long-term proliferation of the neural stem cells (NSCs), retained the ability to self-renew, and exhibit multi-potentiality. Results of immunofluorescence staining studies confirmed that POMA electrospun fibers could provide a great environment for NSCs and enhance its differentiation.

Keywords: electrospun, polyaniline, neural stem cell, differentiation

Procedia PDF Downloads 410
2457 Rule Insertion Technique for Dynamic Cell Structure Neural Network

Authors: Osama Elsarrar, Marjorie Darrah, Richard Devin

Abstract:

This paper discusses the idea of capturing an expert’s knowledge in the form of human understandable rules and then inserting these rules into a dynamic cell structure (DCS) neural network. The DCS is a form of self-organizing map that can be used for many purposes, including classification and prediction. This particular neural network is considered to be a topology preserving network that starts with no pre-structure, but assumes a structure once trained. The DCS has been used in mission and safety-critical applications, including adaptive flight control and health-monitoring in aerial vehicles. The approach is to insert expert knowledge into the DCS before training. Rules are translated into a pre-structure and then training data are presented. This idea has been demonstrated using the well-known Iris data set and it has been shown that inserting the pre-structure results in better accuracy with the same training.

Keywords: neural network, self-organizing map, rule extraction, rule insertion

Procedia PDF Downloads 173
2456 Application of Adaptive Neural Network Algorithms for Determination of Salt Composition of Waters Using Laser Spectroscopy

Authors: Tatiana A. Dolenko, Sergey A. Burikov, Alexander O. Efitorov, Sergey A. Dolenko

Abstract:

In this study, a comparative analysis of the approaches associated with the use of neural network algorithms for effective solution of a complex inverse problem – the problem of identifying and determining the individual concentrations of inorganic salts in multicomponent aqueous solutions by the spectra of Raman scattering of light – is performed. It is shown that application of artificial neural networks provides the average accuracy of determination of concentration of each salt no worse than 0.025 M. The results of comparative analysis of input data compression methods are presented. It is demonstrated that use of uniform aggregation of input features allows decreasing the error of determination of individual concentrations of components by 16-18% on the average.

Keywords: inverse problems, multi-component solutions, neural networks, Raman spectroscopy

Procedia PDF Downloads 529
2455 Failure and Stress Analysis of Super Heater Tubes of a 67 TPH Coke Dry Quenching Boiler

Authors: Subodh N. Patel, Abhijit Pusty, Manashi Adhikary, Sandip Bhattacharyya

Abstract:

The steam superheater (SH) is a coil type heat exchanger which is used to produce superheated steam or to convert the wet steam to dry steam (69.6 kg/cm² and 495°C), generated by a boiler. There were two superheaters in the system, SH I and SH II. SH II is a set of tubes that faces the initial interaction with flue gas at high temperature followed by SH I tubes. After a service life of 2100 hours, a tube in the SH II found to be punctured. Dye penetrant test revealed that out of 50 such tubes, 14 more tubes had severe cracks at a similar location. The failure was investigated in detail. The materials and scale were characterized by optical microscope and advance characterization technique. Scale, observed on fracture surface, was characterized under scanning electron microscope and Raman spectroscopy. Stresses acting on the tubes in working condition were analyzed by finite element method software, ANSYS. Cyclic stresses were observed in the simulation at the same prone location due to restriction in expansion of tubes. Based on scale characterization and stress analysis, it was concluded that the tube failed in thermo-mechanical fatigue. Finally, prevention and control measures were taken to avoid such failure in the future.

Keywords: finite element analysis, oxide scale, superheater tube, thermomechanical fatigue

Procedia PDF Downloads 118
2454 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System

Authors: O. Afshar

Abstract:

A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.

Keywords: receiver tube, heat convection, heat conduction, Nusselt number

Procedia PDF Downloads 356
2453 Scene Classification Using Hierarchy Neural Network, Directed Acyclic Graph Structure, and Label Relations

Authors: Po-Jen Chen, Jian-Jiun Ding, Hung-Wei Hsu, Chien-Yao Wang, Jia-Ching Wang

Abstract:

A more accurate scene classification algorithm using label relations and the hierarchy neural network was developed in this work. In many classification algorithms, it is assumed that the labels are mutually exclusive. This assumption is true in some specific problems, however, for scene classification, the assumption is not reasonable. Because there are a variety of objects with a photo image, it is more practical to assign multiple labels for an image. In this paper, two label relations, which are exclusive relation and hierarchical relation, were adopted in the classification process to achieve more accurate multiple label classification results. Moreover, the hierarchy neural network (hierarchy NN) is applied to classify the image and the directed acyclic graph structure is used for predicting a more reasonable result which obey exclusive and hierarchical relations. Simulations show that, with these techniques, a much more accurate scene classification result can be achieved.

Keywords: convolutional neural network, label relation, hierarchy neural network, scene classification

Procedia PDF Downloads 459
2452 Intelligent Earthquake Prediction System Based On Neural Network

Authors: Emad Amar, Tawfik Khattab, Fatma Zada

Abstract:

Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information of Earthquake Existed throughout history & Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.

Keywords: BP neural network, prediction, RBF neural network, earthquake

Procedia PDF Downloads 497
2451 Handwriting Velocity Modeling by Artificial Neural Networks

Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb

Abstract:

The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.

Keywords: Electro Myo Graphic (EMG) signals, experimental approach, handwriting process, Radial Basis Functions (RBF) neural networks, velocity modeling

Procedia PDF Downloads 441
2450 MarginDistillation: Distillation for Face Recognition Neural Networks with Margin-Based Softmax

Authors: Svitov David, Alyamkin Sergey

Abstract:

The usage of convolutional neural networks (CNNs) in conjunction with the margin-based softmax approach demonstrates the state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and face embeddings predicted by the teacher network.

Keywords: ArcFace, distillation, face recognition, margin-based softmax

Procedia PDF Downloads 148
2449 Modeling and Prediction of Zinc Extraction Efficiency from Concentrate by Operating Condition and Using Artificial Neural Networks

Authors: S. Mousavian, D. Ashouri, F. Mousavian, V. Nikkhah Rashidabad, N. Ghazinia

Abstract:

PH, temperature, and time of extraction of each stage, agitation speed, and delay time between stages effect on efficiency of zinc extraction from concentrate. In this research, efficiency of zinc extraction was predicted as a function of mentioned variable by artificial neural networks (ANN). ANN with different layer was employed and the result show that the networks with 8 neurons in hidden layer has good agreement with experimental data.

Keywords: zinc extraction, efficiency, neural networks, operating condition

Procedia PDF Downloads 547
2448 Modeling the Philippine Stock Exchange Index Closing Value Using Artificial Neural Network

Authors: Frankie Burgos, Emely Munar, Conrado Basa

Abstract:

This paper aimed at developing an artificial neural network (ANN) model specifically for the Philippine Stock Exchange index closing value. The inputs to the ANN are US Dollar and Philippine Peso(USD-PHP) exchange rate, GDP growth of the country, quarterly inflation rate, 10-year bond yield, credit rating of the country, previous open, high, low, close values and volume of trade of the Philippine Stock Exchange Index (PSEi), gold price of the previous day, National Association of Securities Dealers Automated Quotations (NASDAQ), Standard and Poor’s 500 (S & P 500) and the iShares MSCI Philippines ETF (EPHE) previous closing value. The target is composed of the closing value of the PSEi during the 627 trading days from November 3, 2011, to May 30, 2014. MATLAB’s Neural Network toolbox was employed to create, train and simulate the network using multi-layer feed forward neural network with back-propagation algorithm. The results satisfactorily show that the neural network developed has the ability to model the PSEi, which is affected by both internal and external economic factors. It was found out that the inputs used are the main factors that influence the movement of the PSEi closing value.

Keywords: artificial neural networks, artificial intelligence, philippine stocks exchange index, stocks trading

Procedia PDF Downloads 298
2447 Test Method Development for Evaluation of Process and Design Effect on Reinforced Tube

Authors: Cathal Merz, Gareth O’Donnell

Abstract:

Coil reinforced thin-walled (CRTW) tubes are used in medicine to treat problems affecting blood vessels within the body through minimally invasive procedures. The CRTW tube considered in this research makes up part of such a device and is inserted into the patient via their femoral or brachial arteries and manually navigated to the site in need of treatment. This procedure replaces the requirement to perform open surgery but is limited by reduction of blood vessel lumen diameter and increase in tortuosity of blood vessels deep in the brain. In order to maximize the capability of these procedures, CRTW tube devices are being manufactured with decreasing wall thicknesses in order to deliver treatment deeper into the body and to allow passage of other devices through its inner diameter. This introduces significant stresses to the device materials which have resulted in an observed increase in the breaking of the proximal segment of the device into two separate pieces after it has failed by buckling. As there is currently no international standard for measuring the mechanical properties of these CRTW tube devices, it is difficult to accurately analyze this problem. The aim of the current work is to address this discrepancy in the biomedical device industry by developing a measurement system that can be used to quantify the effect of process and design changes on CRTW tube performance, aiding in the development of better performing, next generation devices. Using materials testing frames, micro-computed tomography (micro-CT) imaging, experiment planning, analysis of variance (ANOVA), T-tests and regression analysis, test methods have been developed for assessing the impact of process and design changes on the device. The major findings of this study have been an insight into the suitability of buckle and three-point bend tests for the measurement of the effect of varying processing factors on the device’s performance, and guidelines for interpreting the output data from the test methods. The findings of this study are of significant interest with respect to verifying and validating key process and design changes associated with the device structure and material condition. Test method integrity evaluation is explored throughout.

Keywords: neurovascular catheter, coil reinforced tube, buckling, three-point bend, tensile

Procedia PDF Downloads 117
2446 Optimal Solutions for Real-Time Scheduling of Reconfigurable Embedded Systems Based on Neural Networks with Minimization of Power Consumption

Authors: Ghofrane Rehaiem, Hamza Gharsellaoui, Samir Benahmed

Abstract:

In this study, Artificial Neural Networks (ANNs) were used for modeling the parameters that allow the real-time scheduling of embedded systems under resources constraints designed for real-time applications running. The objective of this work is to implement a neural networks based approach for real-time scheduling of embedded systems in order to handle real-time constraints in execution scenarios. In our proposed approach, many techniques have been proposed for both the planning of tasks and reducing energy consumption. In fact, a combination of Dynamic Voltage Scaling (DVS) and time feedback can be used to scale the frequency dynamically adjusting the operating voltage. Indeed, we present in this paper a hybrid contribution that handles the real-time scheduling of embedded systems, low power consumption depending on the combination of DVS and Neural Feedback Scheduling (NFS) with the energy Priority Earlier Deadline First (PEDF) algorithm. Experimental results illustrate the efficiency of our original proposed approach.

Keywords: optimization, neural networks, real-time scheduling, low-power consumption

Procedia PDF Downloads 372
2445 Vibroacoustic Modulation with Chirp Signal

Authors: Dong Liu

Abstract:

By sending a high-frequency probe wave and a low-frequency pump wave to a specimen, the vibroacoustic method evaluates the defect’s severity according to the modulation index of the received signal. Many studies experimentally proved the significant sensitivity of the modulation index to the tiny contact type defect. However, it has also been found that the modulation index was highly affected by the frequency of probe or pump waves. Therefore, the chirp signal has been introduced to the VAM method since it can assess multiple frequencies in a relatively short time duration, so the robustness of the VAM method could be enhanced. Consequently, the signal processing method needs to be modified accordingly. Various studies utilized different algorithms or combinations of algorithms for processing the VAM signal method by chirp excitation. These signal process methods were compared and used for processing a VAM signal acquired from the steel samples.

Keywords: vibroacoustic modulation, nonlinear acoustic modulation, nonlinear acoustic NDT&E, signal processing, structural health monitoring

Procedia PDF Downloads 99
2444 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification

Authors: Abdelhadi Lotfi, Abdelkader Benyettou

Abstract:

In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.

Keywords: classification, probabilistic neural networks, network optimization, pattern recognition

Procedia PDF Downloads 265
2443 Analysis of Control by Flattening of the Welded Tubes

Authors: Hannachi Med Tahar, H. Djebaili, B. Daheche

Abstract:

In this approach, we have tried to describe the flattening of welded tubes, and its experimental application. The test is carried out at the (National product processing company dishes and tubes production). Usually, the final products (tubes) undergo a series of non-destructive inspection online and offline welding, and obviously destructive mechanical testing (bending, flattening, flaring, etc.). For this and for the purpose of implementing the flattening test, which applies to the processing of round tubes in other forms, it took four sections of welded tubes draft (before stretching hot) and welded tubes finished (after drawing hot and annealing), it was also noted the report 'health' flattened tubes must not show or crack or tear. The test is considered poor if it reveals a lack of ductility of the metal.

Keywords: flattening, destructive testing, tube drafts, finished tube, Castem 2001

Procedia PDF Downloads 446