Search results for: fuzzy aggregation operator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1389

Search results for: fuzzy aggregation operator

1059 Improvement of Direct Torque and Flux Control of Dual Stator Induction Motor Drive Using Intelligent Techniques

Authors: Kouzi Katia

Abstract:

This paper proposes a Direct Torque Control (DTC) algorithm of dual Stator Induction Motor (DSIM) drive using two approach intelligent techniques: Artificial Neural Network (ANN) approach replaces the switching table selector block of conventional DTC and Mamdani Fuzzy Logic controller (FLC) is used for stator resistance estimation. The fuzzy estimation method is based on an online stator resistance correction through the variations of stator current estimation error and its variation. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of suggested algorithm control is to reduce the hardware complexity of conventional selectors, to avoid the drive instability that may occur in certain situation and ensure the tracking of the actual of the stator resistance. The effectiveness of the technique and the improvement of the whole system performance are proved by results.

Keywords: artificial neural network, direct torque control, dual stator induction motor, fuzzy logic estimator, switching table

Procedia PDF Downloads 319
1058 Context-Aware Recommender System Using Collaborative Filtering, Content-Based Algorithm and Fuzzy Rules

Authors: Xochilt Ramirez-Garcia, Mario Garcia-Valdez

Abstract:

Contextual recommendations are implemented in Recommender Systems to improve user satisfaction, recommender system makes accurate and suitable recommendations for a particular situation reaching personalized recommendations. The context provides information relevant to the Recommender System and is used as a filter for selection of relevant items for the user. This paper presents a Context-aware Recommender System, which uses techniques based on Collaborative Filtering and Content-Based, as well as fuzzy rules, to recommend items inside the context. The dataset used to test the system is Trip Advisor. The accuracy in the recommendations was evaluated with the Mean Absolute Error.

Keywords: algorithms, collaborative filtering, intelligent systems, fuzzy logic, recommender systems

Procedia PDF Downloads 398
1057 A Fuzzy Control System for Reducing Urban Stormwater Runoff by a Stormwater Storage Tank

Authors: Pingping Zhang, Yanpeng Cai, Jianlong Wang

Abstract:

Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. At present, it is difficult to perform the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormwater runoff. Firstly, the design of SST was investigated. A catchment area and a return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff were analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.

Keywords: stormwater runoff, stormwater storage tank, real-time control, fuzzy control

Procedia PDF Downloads 174
1056 Dynamic Risk Identification Using Fuzzy Failure Mode Effect Analysis in Fabric Process Industries: A Research Article as Management Perspective

Authors: A. Sivakumar, S. S. Darun Prakash, P. Navaneethakrishnan

Abstract:

In and around Erode District, it is estimated that more than 1250 chemical and allied textile processing fabric industries are affected, partially closed and shut off for various reasons such as poor management, poor supplier performance, lack of planning for productivity, fluctuation of output, poor investment, waste analysis, labor problems, capital/labor ratio, accumulation of stocks, poor maintenance of resources, deficiencies in the quality of fabric, low capacity utilization, age of plant and equipment, high investment and input but low throughput, poor research and development, lack of energy, workers’ fear of loss of jobs, work force mix and work ethic. The main objective of this work is to analyze the existing conditions in textile fabric sector, validate the break even of Total Productivity (TP), analyze, design and implement fuzzy sets and mathematical programming for improvement of productivity and quality dimensions in the fabric processing industry. It needs to be compatible with the reality of textile and fabric processing industries. The highly risk events from productivity and quality dimension were found by fuzzy systems and results are wrapped up among the textile fabric processing industry.

Keywords: break even point, fuzzy crisp data, fuzzy sets, productivity, productivity cycle, total productive maintenance

Procedia PDF Downloads 311
1055 Aerobic Bioprocess Control Using Artificial Intelligence Techniques

Authors: M. Caramihai, Irina Severin

Abstract:

This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control.

Keywords: bioprocess, intelligent control, neural nets, fuzzy structure, hybrid techniques

Procedia PDF Downloads 388
1054 Potential of Polyphenols from Tamarix Gallica towards Common Pathological Features of Diabetes and Alzheimer’s Diseases

Authors: Asma Ben Hmidene, Mizuho Hanaki, Kazuma Murakami, Kazuhiro Irie, Hiroko Isoda, Hideyuki Shigemori

Abstract:

Type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) are characterized as a peripheral metabolic disorder and a degenerative disease of the central nervous system, respectively. It is now widely recognized that T2DM and AD share many pathophysiological features including glucose metabolism, increased oxidative stress and amyloid aggregation. Amyloid beta (Aβ) is the components of the amyloid deposits in the AD brain and while the component of the amyloidogenic peptide deposit in the pancreatic islets of Langerhans is identified as human islet amyloid polypeptide (hIAPP). These two proteins are originated from the amyloid precursor protein and have a high sequence similarity. Although the amino acid sequences of amyloidogenic proteins are diverse, they all adopt a similar structure in aggregates called cross-beta-spine. Add at that, extensive studies in the past years have found that like Aβ1-42, IAPP forms early intermediate assemblies as spherical oligomers, implicating that these oligomers possess a common folding pattern or conformation. These similarities can be used in the search for effective pharmacotherapy for DM, since potent therapeutic agents such as antioxidants with a catechol moiety, proved to inhibit Aβ aggregation, may play a key role in the inhibit the aggregation of hIAPP treatment of patients with DM. Tamarix gallica is one of the halophyte species having a powerful antioxidant system. Although it was traditionally used for the treatment of various liver metabolic disorders, there is no report about the use of this plant for the treatment or prevention of T2DM and AD. Therefore, the aim of this work is to investigate their protective effect towards T2DM and AD by isolation and identification of α-glucosidase inhibitors, with antioxidant potential, that play an important role in the glucose metabolism in diabetic patient, as well as, the polymerization of hIAPP and Aβ aggregation inhibitors. Structure-activity relationship study was conducted for both assays. And as for α-glucosidase inhibitors, their mechanism of action and their synergistic potential when applied with a very low concentration of acarbose were also suggesting that they can be used not only as α-glucosidase inhibitors but also be combined with established α-glucosidase inhibitors to reduce their adverse effect. The antioxidant potential of the purified substances was evaluated by DPPH and SOD assays. Th-T assay using 42-mer amyloid β-protein (Aβ42) for AD and hIAPP which is a 37-residue peptide secreted by the pancreatic β –cells for T2DM and Transmission electronic microscopy (TEM) were conducted to evaluate the amyloid aggragation of the actives substances. For α-glucosidase, p-NPG and glucose oxidase assays were performed for determining the inhibition potential and structure-activity relationship study. The Enzyme kinetic protocol was used to study the mechanism of action. From this research, it was concluded that polyphenols playing a role in the glucose metabolism and oxidative stress can also inhibit the amyloid aggregation, and that substances with a catechol and glucuronide moieties inhibiting amyloid-β aggregation, might be used to inhibit the aggregation of hIAPP.

Keywords: α-glucosidase inhibitors, amyloid aggregation inhibition, mechanism of action, polyphenols, structure activity relationship, synergistic potential, tamarix gallica

Procedia PDF Downloads 256
1053 Criterion-Referenced Test Reliability through Threshold Loss Agreement: Fuzzy Logic Analysis Approach

Authors: Mohammad Ali Alavidoost, Hossein Bozorgian

Abstract:

Criterion-referenced tests (CRTs) are designed to measure student performance against a fixed set of predetermined criteria or learning standards. The reliability of such tests cannot be based on internal reliability. Threshold loss agreement is one way to calculate the reliability of CRTs. However, the selection of master and non-master in such agreement is determined by the threshold point. The problem is if the threshold point witnesses a minute change, the selection of master and non-master may have a drastic change, leading to the change in reliability results. Therefore, in this study, the Fuzzy logic approach is employed as a remedial procedure for data analysis to obviate the threshold point problem. Forty-one Iranian students were selected; the participants were all between 20 and 30 years old. A quantitative approach was used to address the research questions. In doing so, a quasi-experimental design was utilized since the selection of the participants was not randomized. Based on the Fuzzy logic approach, the threshold point would be more stable during the analysis, resulting in rather constant reliability results and more precise assessment.

Keywords: criterion-referenced tests, threshold loss agreement, threshold point, fuzzy logic approach

Procedia PDF Downloads 343
1052 T-S Fuzzy Modeling Based on Power Coefficient Limit Nonlinearity Applied to an Isolated Single Machine Load Frequency Deviation Control

Authors: R. S. Sheu, H. Usman, M. S. Lawal

Abstract:

Takagi-Sugeno (T-S) fuzzy model based control of a load frequency deviation in a single machine with limit nonlinearity on power coefficient is presented in the paper. Two T-S fuzzy rules with only rotor angle variable as input in the premise part, and linear state space models in the consequent part involving characteristic matrices determined from limits set on the power coefficient constant are formulated, state feedback control gains for closed loop control was determined from the formulated Linear Matrix Inequality (LMI) with eigenvalue optimization scheme for asymptotic and exponential stability (speed of esponse). Numerical evaluation of the closed loop object was carried out in Matlab. Simulation results generated of both the open and closed loop system showed the effectiveness of the control scheme in maintaining load frequency stability.

Keywords: T-S fuzzy model, state feedback control, linear matrix inequality (LMI), frequency deviation control

Procedia PDF Downloads 372
1051 Efficient Neural and Fuzzy Models for the Identification of Dynamical Systems

Authors: Aouiche Abdelaziz, Soudani Mouhamed Salah, Aouiche El Moundhe

Abstract:

The present paper addresses the utilization of Artificial Neural Networks (ANNs) and Fuzzy Inference Systems (FISs) for the identification and control of dynamical systems with some degree of uncertainty. Because ANNs and FISs have an inherent ability to approximate functions and to adapt to changes in input and parameters, they can be used to control systems too complex for linear controllers. In this work, we show how ANNs and FISs can be put in order to form nets that can learn from external data. In sequence, it is presented structures of inputs that can be used along with ANNs and FISs to model non-linear systems. Four systems were used to test the identification and control of the structures proposed. The results show the ANNs and FISs (Back Propagation Algorithm) used were efficient in modeling and controlling the non-linear plants.

Keywords: non-linear systems, fuzzy set Models, neural network, control law

Procedia PDF Downloads 183
1050 Self-Tuning-Filter and Fuzzy Logic Control for Shunt Active Power Filter

Authors: Kaddari Faiza, Mazari Benyounes, Mihoub Youcef, Safa Ahmed

Abstract:

Active filtering of electric power has now become a mature technology for reactive power and harmonic compensation caused by the proliferation of power electronics devices used for industrial, commercial and residential purposes. The aim of this study is to enhance the power quality by improving the performances of shunt active power filter in harmonic mitigation to obtain sinusoidal source currents with very weak ripples. A power circuit configuration and control scheme for shunt active power filter are described with an improved method for harmonics compensation using self-tuning-filter for harmonics identification and fuzzy logic control to generate reference current. Simulation results (using MATLAB/SIMULINK) illustrates the compensation characteristics of the proposed control strategy. Analysis of these results proves the feasibility and effectiveness of this method to improve the power quality and also show the performances of fuzzy logic control which provides flexibility, high precision and fast response. The total harmonic distortion (THD %) for the simulations found to be within the recommended imposed IEEE 519-1992 harmonic standard.

Keywords: Active Powers Filter (APF), Self-Tuning-Filter (STF), fuzzy logic control, hysteresis-band control

Procedia PDF Downloads 706
1049 Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator

Authors: Wedad Albalawi

Abstract:

The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is defined as a closed subset contains real numbers. Then the inequalities of time scales version have received a lot of attention and has had a major field in both pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on double integrals to obtain new time-scale inequalities of Copson driven by Steklov operator. They will be applied in the solution of the Cauchy problem for the wave equation. The proof can be done by introducing restriction on the operator in several cases. In addition, the obtained inequalities done by using some concepts in time scale version such as time scales calculus, theorem of Fubini and the inequality of H¨older.

Keywords: time scales, inequality of Hardy, inequality of Coposon, Steklov operator

Procedia PDF Downloads 53
1048 Applying Sliding Autonomy for a Human-Robot Team on USARSim

Authors: Fang Tang, Jacob Longazo

Abstract:

This paper describes a sliding autonomy approach for coordinating a team of robots to assist the human operator to accomplish tasks while adapting to new or unexpected situations by requesting help from the human operator. While sliding autonomy has been well studied in the context of controlling a single robot. Much work needs to be done to apply sliding autonomy to a multi-robot team, especially human-robot team. Our approach aims at a hierarchical sliding control structure, with components that support human-robot collaboration. We validated our approach in the USARSim simulation and demonstrated that the human-robot team's overall performance can be improved under the sliding autonomy control.

Keywords: sliding autonomy, multi-robot team, human-robot collaboration, USARSim

Procedia PDF Downloads 517
1047 Mixed Number Algebra and Its Application

Authors: Md. Shah Alam

Abstract:

Mushfiq Ahmad has defined a Mixed Number, which is the sum of a scalar and a Cartesian vector. He has also defined the elementary group operations of Mixed numbers i.e. the norm of Mixed numbers, the product of two Mixed numbers, the identity element and the inverse. It has been observed that Mixed Number is consistent with Pauli matrix algebra and a handy tool to work with Dirac electron theory. Its use as a mathematical method in Physics has been studied. (1) We have applied Mixed number in Quantum Mechanics: Mixed Number version of Displacement operator, Vector differential operator, and Angular momentum operator has been developed. Mixed Number method has also been applied to Klein-Gordon equation. (2) We have applied Mixed number in Electrodynamics: Mixed Number version of Maxwell’s equation, the Electric and Magnetic field quantities and Lorentz Force has been found. (3) An associative transformation of Mixed Number numbers fulfilling Lorentz invariance requirement is developed. (4) We have applied Mixed number algebra as an extension of Complex number. Mixed numbers and the Quaternions have isomorphic correspondence, but they are different in algebraic details. The multiplication of unit Mixed number and the multiplication of unit Quaternions are different. Since Mixed Number has properties similar to those of Pauli matrix algebra, Mixed Number algebra is a more convenient tool to deal with Dirac equation.

Keywords: mixed number, special relativity, quantum mechanics, electrodynamics, pauli matrix

Procedia PDF Downloads 336
1046 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory

Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi

Abstract:

One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.

Keywords: rough set theory, attribute reduction, fuzzy logic, memetic algorithms, record to record algorithm, great deluge algorithm

Procedia PDF Downloads 429
1045 Optimization of the Control Scheme for Human Extremity Exoskeleton

Authors: Yang Li, Xiaorong Guan, Cheng Xu

Abstract:

In order to design a suitable control scheme for human extremity exoskeleton, the interaction force control scheme with traditional PI controller was presented, and the simulation study of the electromechanical system of the human extremity exoskeleton was carried out by using a MATLAB/Simulink module. By analyzing the simulation calculation results, it was shown that the traditional PI controller is not very suitable for every movement speed of human body. So, at last the fuzzy self-adaptive PI controller was presented to solve this problem. Eventually, the superiority and feasibility of the fuzzy self-adaptive PI controller was proved by the simulation results and experimental results.

Keywords: human extremity exoskeleton, interaction force control scheme, simulation study, fuzzy self-adaptive pi controller, man-machine coordinated walking, bear payload

Procedia PDF Downloads 343
1044 A Hybrid Based Algorithm to Solve the Multi-objective Minimum Spanning Tree Problem

Authors: Boumesbah Asma, Chergui Mohamed El-amine

Abstract:

Since it has been shown that the multi-objective minimum spanning tree problem (MOST) is NP-hard even with two criteria, we propose in this study a hybrid NSGA-II algorithm with an exact mutation operator, which is only used with low probability, to find an approximation to the Pareto front of the problem. In a connected graph G, a spanning tree T of G being a connected and cycle-free graph, if k edges of G\T are added to T, we obtain a partial graph H of G inducing a reduced size multi-objective spanning tree problem compared to the initial one. With a weak probability for the mutation operator, an exact method for solving the reduced MOST problem considering the graph H is then used to give birth to several mutated solutions from a spanning tree T. Then, the selection operator of NSGA-II is activated to obtain the Pareto front approximation. Finally, an adaptation of the VNS metaheuristic is called for further improvements on this front. It allows finding good individuals to counterbalance the diversification and the intensification during the optimization search process. Experimental comparison studies with an exact method show promising results and indicate that the proposed algorithm is efficient.

Keywords: minimum spanning tree, multiple objective linear optimization, combinatorial optimization, non-sorting genetic algorithm, variable neighborhood search

Procedia PDF Downloads 66
1043 Possibility Theory Based Multi-Attribute Decision-Making: Application in Facility Location-Selection Problem under Uncertain and Extreme Environment

Authors: Bezhan Ghvaberidze

Abstract:

A fuzzy multi-objective facility location-selection problem (FLSP) under uncertain and extreme environments based on possibility theory is developed. The model’s uncertain parameters in the q-rung orthopair fuzzy values are presented and transformed in the Dempster-Shaper’s belief structure environment. An objective function – distribution centers’ selection ranking index as an extension of Dempster’s extremal expectations under discrimination q-rung orthopair fuzzy information is constructed. Experts evaluate each humanitarian aid from distribution centers (HADC) against each of the uncertain factors. HADCs location problem is reduced to the bicriteria problem of partitioning the set of customers by the set of centers: (1) – Minimization of transportation costs; (2) – Maximization of centers’ selection ranking indexes. Partitioning type constraints are also constructed. For an illustration of the obtained results, a numerical example is created from the facility location-selection problem.

Keywords: FLSP, multi-objective combinatorial optimization problem, evidence theory, HADC, q-rung orthopair fuzzy set, possibility theory

Procedia PDF Downloads 87
1042 Design of Membership Ranges for Fuzzy Logic Control of Refrigeration Cycle Driven by a Variable Speed Compressor

Authors: Changho Han, Jaemin Lee, Li Hua, Seokkwon Jeong

Abstract:

Design of membership function ranges in fuzzy logic control (FLC) is presented for robust control of a variable speed refrigeration system (VSRS). The criterion values of the membership function ranges can be carried out from the static experimental data, and two different values are offered to compare control performance. Some simulations and real experiments for the VSRS were conducted to verify the validity of the designed membership functions. The experimental results showed good agreement with the simulation results, and the error change rate and its sampling time strongly affected the control performance at transient state of the VSRS.

Keywords: variable speed refrigeration system, fuzzy logic control, membership function range, control performance

Procedia PDF Downloads 243
1041 Sensorless Controller of Induction Motor Using Backstepping Approach and Fuzzy MRAS

Authors: Ahmed Abbou

Abstract:

This paper present a sensorless controller designed by the backstepping approach for the speed control of induction motor. In this strategy of control, we also combined the method Fuzzy MRAS to estimate the rotor speed and the observer type Luenburger to observe Rotor flux. The control model involves a division by the flux variable that may lead to unbounded solutions. Such a risk is avoided by basing the controller design on Lyapunov function that accounts for the model singularity. On the other hand, this mixed method gives better results in Sensorless operation and especially at low speed. The response time at 5% of the flux is 20ms while the error between the speed with sensor and the estimated speed remains in the range of ±0.8 rad/s for the rated functioning and ±1.5 rad/s for low speed.

Keywords: backstepping approach, fuzzy logic, induction motor, luenburger observer, sensorless MRAS

Procedia PDF Downloads 352
1040 Two-Protein Modified Gold Nanoparticles for Serological Diagnosis of Borreliosis

Authors: Mohammed Alasel, Michael Keusgen

Abstract:

Gold is a noble metal; in its nano-scale level (e.g. spherical nanoparticles), the conduction electrons are triggered to collectively oscillate with a resonant frequency when certain wavelengths of electromagnetic radiation interact with its surface; this phenomenon is known as surface plasmon resonance (SPR). SPR is responsible for giving the gold nanoparticles its intense red color depending mainly on its size, shape and distance between nanoparticles. A decreased distance between gold nanoparticles results in aggregation of them causing a change in color from red to blue. This aggregation enables gold nanoparticles to serve as a sensitive biosensoric indicator. In the proposed work, gold nanoparticles were modified with two proteins: i) Borrelia antigen, variable lipoprotein surface-exposed protein (VlsE), and ii) protein A. VlsE antigen induces a strong antibody response against Lyme disease and can be detected from early to late phase during the disease in humans infected with Borrelia. In addition, it shows low cross-reaction with the other non-pathogenic Borrelia strains. The high specificity of VlsE antigen to anti-Borrelia antibodies, combined simultaneously with the high specificity of protein A to the Fc region of all IgG human antibodies, was utilized to develop a rapid test for serological point of care diagnosis of borreliosis in human serum. Only in the presence of anti-Borrelia antibodies in the serum probe, an aggregation of gold nanoparticles can be observed, which is visible by a concentration-dependent colour shift from red (low IgG) to blue (high IgG). Experiments showed it is clearly possible to distinguish between positive and negative sera samples using a simple suspension of the two-protein modified gold nanoparticles in a very short time (30 minutes). The proposed work showed the potential of using such modified gold nanoparticles generally for serological diagnosis. Improved specificity and reduced assay time can be archived in applying increased salt concentrations combined with decreased pH values (pH 5).

Keywords: gold nanoparticles, gold aggregation, serological diagnosis, protein A, lyme borreliosis

Procedia PDF Downloads 369
1039 Power Energy Management For A Grid-Connected PV System Using Rule-Base Fuzzy Logic

Authors: Nousheen Hashmi, Shoab Ahmad Khan

Abstract:

Active collaboration among the green energy sources and the load demand leads to serious issues related to power quality and stability. The growing number of green energy resources and Distributed-Generators need newer strategies to be incorporated for their operations to keep the power energy stability among green energy resources and micro-grid/Utility Grid. This paper presents a novel technique for energy power management in Grid-Connected Photovoltaic with energy storage system under set of constraints including weather conditions, Load Shedding Hours, Peak pricing Hours by using rule-based fuzzy smart grid controller to schedule power coming from multiple Power sources (photovoltaic, grid, battery) under the above set of constraints. The technique fuzzifies all the inputs and establishes fuzzify rule set from fuzzy outputs before defuzzification. Simulations are run for 24 hours period and rule base power scheduler is developed. The proposed fuzzy controller control strategy is able to sense the continuous fluctuations in Photovoltaic power generation, Load Demands, Grid (load Shedding patterns) and Battery State of Charge in order to make correct and quick decisions.The suggested Fuzzy Rule-based scheduler can operate well with vague inputs thus doesn’t not require any exact numerical model and can handle nonlinearity. This technique provides a framework for the extension to handle multiple special cases for optimized working of the system.

Keywords: photovoltaic, power, fuzzy logic, distributed generators, state of charge, load shedding, membership functions

Procedia PDF Downloads 461
1038 Strap Tension Adjusting Device for Non-Invasive Positive Pressure Ventilation Mask Fitting

Authors: Yoshie Asahara, Hidekuni Takao

Abstract:

Non-invasive positive pressure ventilation (NPPV), a type of ventilation therapy, is a treatment in which a mask is attached to the patient's face and delivers gas into the mask to support breathing. The NPPV mask uses a strap, which is necessary to attach and secure the mask in the appropriate facial position, but the tensile strength of the strap is adjusted by the sensation of the hands. The strap uniformity and fine-tuning strap tension are judged by the skill of the operator and the amount felt by the finger. In the future, additional strap operation and adjustment methods will be required to meet the needs for reducing the burden on the patient’s face. In this study, we fabricated a mechanism that can measure, adjust and fix the tension of the straps. A small amount of strap tension can be adjusted by rotating the shaft. This makes it possible to control the slight strap tension that is difficult to grasp with the sense of the operator's hand. In addition, this mechanism allows the operator to control the strap while controlling the movement of the mask body. This leads to the establishment of a suitable mask fitting method for each patient. The developed mechanism enables the operation and fine reproducible adjustment of the strap tension and the mask balance, reducing the burden on the face.

Keywords: balance of the mask strap, fine adjustment, film sensor, mask fitting technique, mask strap tension

Procedia PDF Downloads 212
1037 Fuzzy Expert Systems Applied to Intelligent Design of Data Centers

Authors: Mario M. Figueroa de la Cruz, Claudia I. Solorzano, Raul Acosta, Ignacio Funes

Abstract:

This technological development project seeks to create a tool that allows companies, in need of implementing a Data Center, intelligently determining factors for allocating resources support cooling and power supply (UPS) in its conception. The results should show clearly the speed, robustness and reliability of a system designed for deployment in environments where they must manage and protect large volumes of data.

Keywords: telecommunications, data center, fuzzy logic, expert systems

Procedia PDF Downloads 324
1036 Intelligent System and Renewable Energy: A Farming Platform in Precision Agriculture

Authors: Ryan B. Escorial, Elmer A. Maravillas, Chris Jordan G. Aliac

Abstract:

This study presents a small-scale water pumping system utilizing a fuzzy logic inference system attached to a renewable energy source. The fuzzy logic controller was designed and simulated in MATLAB fuzzy logic toolbox to examine the properties and characteristics of the input and output variables. The result of the simulation was implemented in a microcontroller, together with sensors, modules, and photovoltaic cells. The study used a grand rapid variety of lettuce, organic substrates, and foliar for observation of the capability of the device to irrigate crops. Two plant boxes intended for manual and automated irrigation were prepared with each box having 48 heads of lettuce. The observation of the system took 22-31 days, which is one harvest period of the crop. Results showed a 22.55% increase in agricultural productivity compared to manual irrigation. Aside from reducing human effort, and time, the smart irrigation system could help lessen some of the shortcomings of manual irrigations. It could facilitate the economical utilization of water, reducing consumption by 25%. The use of renewable energy could also help farmers reduce the cost of production by minimizing the use of diesel and gasoline.

Keywords: fuzzy logic, intelligent system, precision agriculture, renewable energy

Procedia PDF Downloads 102
1035 A New Fuzzy Fractional Order Model of Transmission of Covid-19 With Quarantine Class

Authors: Asma Hanif, A. I. K. Butt, Shabir Ahmad, Rahim Ud Din, Mustafa Inc

Abstract:

This paper is devoted to a study of the fuzzy fractional mathematical model reviewing the transmission dynamics of the infectious disease Covid-19. The proposed dynamical model consists of susceptible, exposed, symptomatic, asymptomatic, quarantine, hospitalized and recovered compartments. In this study, we deal with the fuzzy fractional model defined in Caputo’s sense. We show the positivity of state variables that all the state variables that represent different compartments of the model are positive. Using Gronwall inequality, we show that the solution of the model is bounded. Using the notion of the next-generation matrix, we find the basic reproduction number of the model. We demonstrate the local and global stability of the equilibrium point by using the concept of Castillo-Chavez and Lyapunov theory with the Lasalle invariant principle, respectively. We present the results that reveal the existence and uniqueness of the solution of the considered model through the fixed point theorem of Schauder and Banach. Using the fuzzy hybrid Laplace method, we acquire the approximate solution of the proposed model. The results are graphically presented via MATLAB-17.

Keywords: Caputo fractional derivative, existence and uniqueness, gronwall inequality, Lyapunov theory

Procedia PDF Downloads 80
1034 Hand Gesture Recognition for Sign Language: A New Higher Order Fuzzy HMM Approach

Authors: Saad M. Darwish, Magda M. Madbouly, Murad B. Khorsheed

Abstract:

Sign Languages (SL) are the most accomplished forms of gestural communication. Therefore, their automatic analysis is a real challenge, which is interestingly implied to their lexical and syntactic organization levels. Hidden Markov models (HMM’s) have been used prominently and successfully in speech recognition and, more recently, in handwriting recognition. Consequently, they seem ideal for visual recognition of complex, structured hand gestures such as are found in sign language. In this paper, several results concerning static hand gesture recognition using an algorithm based on Type-2 Fuzzy HMM (T2FHMM) are presented. The features used as observables in the training as well as in the recognition phases are based on Singular Value Decomposition (SVD). SVD is an extension of Eigen decomposition to suit non-square matrices to reduce multi attribute hand gesture data to feature vectors. SVD optimally exposes the geometric structure of a matrix. In our approach, we replace the basic HMM arithmetic operators by some adequate Type-2 fuzzy operators that permits us to relax the additive constraint of probability measures. Therefore, T2FHMMs are able to handle both random and fuzzy uncertainties existing universally in the sequential data. Experimental results show that T2FHMMs can effectively handle noise and dialect uncertainties in hand signals besides a better classification performance than the classical HMMs. The recognition rate of the proposed system is 100% for uniform hand images and 86.21% for cluttered hand images.

Keywords: hand gesture recognition, hand detection, type-2 fuzzy logic, hidden Markov Model

Procedia PDF Downloads 438
1033 Parameters Estimation of Multidimensional Possibility Distributions

Authors: Sergey Sorokin, Irina Sorokina, Alexander Yazenin

Abstract:

We present a solution to the Maxmin u/E parameters estimation problem of possibility distributions in m-dimensional case. Our method is based on geometrical approach, where minimal area enclosing ellipsoid is constructed around the sample. Also we demonstrate that one can improve results of well-known algorithms in fuzzy model identification task using Maxmin u/E parameters estimation.

Keywords: possibility distribution, parameters estimation, Maxmin u\E estimator, fuzzy model identification

Procedia PDF Downloads 445
1032 Matrix Valued Difference Equations with Spectral Singularities

Authors: Serifenur Cebesoy, Yelda Aygar, Elgiz Bairamov

Abstract:

In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.

Keywords: asymptotics, continuous spectrum, difference equations, eigenvalues, jost functions, spectral singularities

Procedia PDF Downloads 426
1031 Use of Fuzzy Logic in the Corporate Reputation Assessment: Stock Market Investors’ Perspective

Authors: Tomasz L. Nawrocki, Danuta Szwajca

Abstract:

The growing importance of reputation in building enterprise value and achieving long-term competitive advantage creates the need for its measurement and evaluation for the management purposes (effective reputation and its risk management). The paper presents practical application of self-developed corporate reputation assessment model from the viewpoint of stock market investors. The model has a pioneer character and example analysis performed for selected industry is a form of specific test for this tool. In the proposed solution, three aspects - informational, financial and development, as well as social ones - were considered. It was also assumed that the individual sub-criteria will be based on public sources of information, and as the calculation apparatus, capable of obtaining synthetic final assessment, fuzzy logic will be used. The main reason for developing this model was to fulfill the gap in the scope of synthetic measure of corporate reputation that would provide higher degree of objectivity by relying on "hard" (not from surveys) and publicly available data. It should be also noted that results obtained on the basis of proposed corporate reputation assessment method give possibilities of various internal as well as inter-branch comparisons and analysis of corporate reputation impact.

Keywords: corporate reputation, fuzzy logic, fuzzy model, stock market investors

Procedia PDF Downloads 216
1030 Design of a Sliding Mode Control Using Nonlinear Sliding Surface and Nonlinear Observer Applied to the Trirotor Mini-Aircraft

Authors: Samir Zeghlache, Abderrahmen Bouguerra, Kamel Kara, Djamel Saigaa

Abstract:

The control of the trirotor helicopter includes nonlinearities, uncertainties and external perturbations that should be considered in the design of control laws. This paper presents a control strategy for an underactuated six degrees of freedom (6 DOF) trirotor helicopter, based on the coupling of the fuzzy logic control and sliding mode control (SMC). The main purpose of this work is to eliminate the chattering phenomenon. To achieve our purpose we have used a fuzzy logic control to generate the hitting control signal, also the non linear observer is then synthesized in order to estimate the unmeasured states. Finally simulation results are included to indicate the trirotor UAV with the proposed controller can greatly alleviate the chattering effect and remain robust to the external disturbances.

Keywords: fuzzy sliding mode control, trirotor helicopter, dynamic modelling, underactuated systems

Procedia PDF Downloads 500