Search results for: fuzzy MPPT
449 Chaos Fuzzy Genetic Algorithm
Authors: Mohammad Jalali Varnamkhasti
Abstract:
The genetic algorithms have been very successful in handling difficult optimization problems. The fundamental problem in genetic algorithms is premature convergence. This paper, present a new fuzzy genetic algorithm based on chaotic values instead of the random values in genetic algorithm processes. In this algorithm, for initial population is used chaotic sequences and then a new sexual selection proposed for selection mechanism. In this technique, the population is divided such that the male and female would be selected in an alternate way. The layout of the male and female chromosomes in each generation is different. A female chromosome is selected by tournament selection size from the female group. Then, the male chromosome is selected, in order of preference based on the maximum Hamming distance between the male chromosome and the female chromosome or The highest fitness value of male chromosome (if more than one male chromosome is having the maximum Hamming distance existed), or Random selection. The selections of crossover and mutation operators are achieved by running the fuzzy logic controllers, the crossover and mutation probabilities are varied on the basis of the phenotype and genotype characteristics of the chromosome population. Computational experiments are conducted on the proposed techniques and the results are compared with some other operators, heuristic and local search algorithms commonly used for solving p-median problems published in the literature.Keywords: genetic algorithm, fuzzy system, chaos, sexual selection
Procedia PDF Downloads 385448 Intelligent Control of Bioprocesses: A Software Application
Authors: Mihai Caramihai, Dan Vasilescu
Abstract:
The main research objective of the experimental bioprocess analyzed in this paper was to obtain large biomass quantities. The bioprocess is performed in 100 L Bioengineering bioreactor with 42 L cultivation medium made of peptone, meat extract and sodium chloride. The reactor was equipped with pH, temperature, dissolved oxygen, and agitation controllers. The operating parameters were 37 oC, 1.2 atm, 250 rpm and air flow rate of 15 L/min. The main objective of this paper is to present a case study to demonstrate that intelligent control, describing the complexity of the biological process in a qualitative and subjective manner as perceived by human operator, is an efficient control strategy for this kind of bioprocesses. In order to simulate the bioprocess evolution, an intelligent control structure, based on fuzzy logic has been designed. The specific objective is to present a fuzzy control approach, based on human expert’ rules vs. a modeling approach of the cells growth based on bioprocess experimental data. The kinetic modeling may represent only a small number of bioprocesses for overall biosystem behavior while fuzzy control system (FCS) can manipulate incomplete and uncertain information about the process assuring high control performance and provides an alternative solution to non-linear control as it is closer to the real world. Due to the high degree of non-linearity and time variance of bioprocesses, the need of control mechanism arises. BIOSIM, an original developed software package, implements such a control structure. The simulation study has showed that the fuzzy technique is quite appropriate for this non-linear, time-varying system vs. the classical control method based on a priori model.Keywords: intelligent, control, fuzzy model, bioprocess optimization
Procedia PDF Downloads 326447 Fuzzy Logic for Control and Automatic Operation of Natural Ventilation in Buildings
Authors: Ekpeti Bukola Grace, Mahmoudi Sabar Esmail, Chaer Issa
Abstract:
Global energy consumption has been increasing steadily over the last half - century, and this trend is projected to continue. As energy demand rises in many countries throughout the world due to population growth, natural ventilation in buildings has been identified as a viable option for lowering these demands, saving costs, and also lowering CO2 emissions. However, natural ventilation is driven by forces that are generally unpredictable in nature thus, it is important to manage the resulting airflow in order to maintain pleasant indoor conditions, making it a complex system that necessitates specific control approaches. The effective application of fuzzy logic technique amidst other intelligent systems is one of the best ways to bridge this gap, as its control dynamics relates more to human reasoning and linguistic descriptions. This article reviewed existing literature and presented practical solutions by applying fuzzy logic control with optimized techniques, selected input parameters, and expert rules to design a more effective control system. The control monitors used indoor temperature, outdoor temperature, carbon-dioxide levels, wind velocity, and rain as input variables to the system, while the output variable remains the control of window opening. This is achieved through the use of fuzzy logic control tool box in MATLAB and running simulations on SIMULINK to validate the effectiveness of the proposed system. Comparison analysis model via simulation is carried out, and with the data obtained, an improvement in control actions and energy savings was recorded.Keywords: fuzzy logic, intelligent control systems, natural ventilation, optimization
Procedia PDF Downloads 129446 Hybrid Fuzzy Weighted K-Nearest Neighbor to Predict Hospital Readmission for Diabetic Patients
Authors: Soha A. Bahanshal, Byung G. Kim
Abstract:
Identification of patients at high risk for hospital readmission is of crucial importance for quality health care and cost reduction. Predicting hospital readmissions among diabetic patients has been of great interest to many researchers and health decision makers. We build a prediction model to predict hospital readmission for diabetic patients within 30 days of discharge. The core of the prediction model is a modified k Nearest Neighbor called Hybrid Fuzzy Weighted k Nearest Neighbor algorithm. The prediction is performed on a patient dataset which consists of more than 70,000 patients with 50 attributes. We applied data preprocessing using different techniques in order to handle data imbalance and to fuzzify the data to suit the prediction algorithm. The model so far achieved classification accuracy of 80% compared to other models that only use k Nearest Neighbor.Keywords: machine learning, prediction, classification, hybrid fuzzy weighted k-nearest neighbor, diabetic hospital readmission
Procedia PDF Downloads 186445 Fuzzy Availability Analysis of a Battery Production System
Authors: Merve Uzuner Sahin, Kumru D. Atalay, Berna Dengiz
Abstract:
In today’s competitive market, there are many alternative products that can be used in similar manner and purpose. Therefore, the utility of the product is an important issue for the preferability of the brand. This utility could be measured in terms of its functionality, durability, reliability. These all are affected by the system capabilities. Reliability is an important system design criteria for the manufacturers to be able to have high availability. Availability is the probability that a system (or a component) is operating properly to its function at a specific point in time or a specific period of times. System availability provides valuable input to estimate the production rate for the company to realize the production plan. When considering only the corrective maintenance downtime of the system, mean time between failure (MTBF) and mean time to repair (MTTR) are used to obtain system availability. Also, the MTBF and MTTR values are important measures to improve system performance by adopting suitable maintenance strategies for reliability engineers and practitioners working in a system. Failure and repair time probability distributions of each component in the system should be known for the conventional availability analysis. However, generally, companies do not have statistics or quality control departments to store such a large amount of data. Real events or situations are defined deterministically instead of using stochastic data for the complete description of real systems. A fuzzy set is an alternative theory which is used to analyze the uncertainty and vagueness in real systems. The aim of this study is to present a novel approach to compute system availability using representation of MTBF and MTTR in fuzzy numbers. Based on the experience in the system, it is decided to choose 3 different spread of MTBF and MTTR such as 15%, 20% and 25% to obtain lower and upper limits of the fuzzy numbers. To the best of our knowledge, the proposed method is the first application that is used fuzzy MTBF and fuzzy MTTR for fuzzy system availability estimation. This method is easy to apply in any repairable production system by practitioners working in industry. It is provided that the reliability engineers/managers/practitioners could analyze the system performance in a more consistent and logical manner based on fuzzy availability. This paper presents a real case study of a repairable multi-stage production line in lead-acid battery production factory in Turkey. The following is focusing on the considered wet-charging battery process which has a higher production level than the other types of battery. In this system, system components could exist only in two states, working or failed, and it is assumed that when a component in the system fails, it becomes as good as new after repair. Instead of classical methods, using fuzzy set theory and obtaining intervals for these measures would be very useful for system managers, practitioners to analyze system qualifications to find better results for their working conditions. Thus, much more detailed information about system characteristics is obtained.Keywords: availability analysis, battery production system, fuzzy sets, triangular fuzzy numbers (TFNs)
Procedia PDF Downloads 224444 Intelligent Path Tracking Hybrid Fuzzy Controller for a Unicycle-Type Differential Drive Robot
Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Muhammad Moaz
Abstract:
In this paper, we discuss the performance of applying hybrid spiral dynamic bacterial chemotaxis (HSDBC) optimisation algorithm on an intelligent controller for a differential drive robot. A unicycle class of differential drive robot is utilised to serve as a basis application to evaluate the performance of the HSDBC algorithm. A hybrid fuzzy logic controller is developed and implemented for the unicycle robot to follow a predefined trajectory. Trajectories of various frictional profiles and levels were simulated to evaluate the performance of the robot at different operating conditions. Controller gains and scaling factors were optimised using HSDBC and the performance is evaluated in comparison to previously adopted optimisation algorithms. The HSDBC has proven its feasibility in achieving a faster convergence toward the optimal gains and resulted in a superior performance.Keywords: differential drive robot, hybrid fuzzy controller, optimization, path tracking, unicycle robot
Procedia PDF Downloads 463443 A Fuzzy Inference System for Predicting Air Traffic Demand Based on Socioeconomic Drivers
Authors: Nur Mohammad Ali, Md. Shafiqul Alam, Jayanta Bhusan Deb, Nowrin Sharmin
Abstract:
The past ten years have seen significant expansion in the aviation sector, which during the previous five years has steadily pushed emerging countries closer to economic independence. It is crucial to accurately forecast the potential demand for air travel to make long-term financial plans. To forecast market demand for low-cost passenger carriers, this study suggests working with low-cost airlines, airports, consultancies, and governmental institutions' strategic planning divisions. The study aims to develop an artificial intelligence-based methods, notably fuzzy inference systems (FIS), to determine the most accurate forecasting technique for domestic low-cost carrier demand in Bangladesh. To give end users real-world applications, the study includes nine variables, two sub-FIS, and one final Mamdani Fuzzy Inference System utilizing a graphical user interface (GUI) made with the app designer tool. The evaluation criteria used in this inquiry included mean square error (MSE), accuracy, precision, sensitivity, and specificity. The effectiveness of the developed air passenger demand prediction FIS is assessed using 240 data sets, and the accuracy, precision, sensitivity, specificity, and MSE values are 90.83%, 91.09%, 90.77%, and 2.09%, respectively.Keywords: aviation industry, fuzzy inference system, membership function, graphical user interference
Procedia PDF Downloads 72442 Qualitative Measurement of Literacy
Authors: Indrajit Ghosh, Jaydip Roy
Abstract:
Literacy rate is an important indicator for measurement of human development. But this is not a good one to capture the qualitative dimension of educational attainment of an individual or a society. The overall educational level of an area is an important issue beyond the literacy rate. The overall educational level can be thought of as an outcome of the educational levels of individuals. But there is no well-defined algorithm and mathematical model available to measure the overall educational level of an area. A heuristic approach based on accumulated experience of experts is effective one. It is evident that fuzzy logic offers a natural and convenient framework in modeling various concepts in social science domain. This work suggests the implementation of fuzzy logic to develop a mathematical model for measurement of educational attainment of an area in terms of Education Index. The contribution of the study is two folds: conceptualization of “Education Profile” and proposing a new mathematical model to measure educational attainment in terms of “Education Index”.Keywords: education index, education profile, fuzzy logic, literacy
Procedia PDF Downloads 316441 Phytoadaptation in Desert Soil Prediction Using Fuzzy Logic Modeling
Authors: S. Bouharati, F. Allag, M. Belmahdi, M. Bounechada
Abstract:
In terms of ecology forecast effects of desertification, the purpose of this study is to develop a predictive model of growth and adaptation of species in arid environment and bioclimatic conditions. The impact of climate change and the desertification phenomena is the result of combined effects in magnitude and frequency of these phenomena. Like the data involved in the phytopathogenic process and bacteria growth in arid soil occur in an uncertain environment because of their complexity, it becomes necessary to have a suitable methodology for the analysis of these variables. The basic principles of fuzzy logic those are perfectly suited to this process. As input variables, we consider the physical parameters, soil type, bacteria nature, and plant species concerned. The result output variable is the adaptability of the species expressed by the growth rate or extinction. As a conclusion, we prevent the possible strategies for adaptation, with or without shifting areas of plantation and nature adequate vegetation.Keywords: climate changes, dry soil, phytopathogenicity, predictive model, fuzzy logic
Procedia PDF Downloads 322440 Optimized and Secured Digital Watermarking Using Fuzzy Entropy, Bezier Curve and Visual Cryptography
Authors: R. Rama Kishore, Sunesh
Abstract:
Recent development in the usage of internet for different purposes creates a great threat for the copyright protection of the digital images. Digital watermarking can be used to address the problem. This paper presents detailed review of the different watermarking techniques, latest trends in the field of secured, robust and imperceptible watermarking. It also discusses the different optimization techniques used in the field of watermarking in order to improve the robustness and imperceptibility of the method. Different measures are discussed to evaluate the performance of the watermarking algorithm. At the end, this paper proposes a watermarking algorithm using (2, 2) share visual cryptography and Bezier curve based algorithm to improve the security of the watermark. The proposed method uses fractional transformation to improve the robustness of the copyright protection of the method. The algorithm is optimized using fuzzy entropy for better results.Keywords: digital watermarking, fractional transform, visual cryptography, Bezier curve, fuzzy entropy
Procedia PDF Downloads 365439 Adaptive Neuro Fuzzy Inference System Model Based on Support Vector Regression for Stock Time Series Forecasting
Authors: Anita Setianingrum, Oki S. Jaya, Zuherman Rustam
Abstract:
Forecasting stock price is a challenging task due to the complex time series of the data. The complexity arises from many variables that affect the stock market. Many time series models have been proposed before, but those previous models still have some problems: 1) put the subjectivity of choosing the technical indicators, and 2) rely upon some assumptions about the variables, so it is limited to be applied to all datasets. Therefore, this paper studied a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) time series model based on Support Vector Regression (SVR) for forecasting the stock market. In order to evaluate the performance of proposed models, stock market transaction data of TAIEX and HIS from January to December 2015 is collected as experimental datasets. As a result, the method has outperformed its counterparts in terms of accuracy.Keywords: ANFIS, fuzzy time series, stock forecasting, SVR
Procedia PDF Downloads 246438 Neuro-Fuzzy Based Model for Phrase Level Emotion Understanding
Authors: Vadivel Ayyasamy
Abstract:
The present approach deals with the identification of Emotions and classification of Emotional patterns at Phrase-level with respect to Positive and Negative Orientation. The proposed approach considers emotion triggered terms, its co-occurrence terms and also associated sentences for recognizing emotions. The proposed approach uses Part of Speech Tagging and Emotion Actifiers for classification. Here sentence patterns are broken into phrases and Neuro-Fuzzy model is used to classify which results in 16 patterns of emotional phrases. Suitable intensities are assigned for capturing the degree of emotion contents that exist in semantics of patterns. These emotional phrases are assigned weights which supports in deciding the Positive and Negative Orientation of emotions. The approach uses web documents for experimental purpose and the proposed classification approach performs well and achieves good F-Scores.Keywords: emotions, sentences, phrases, classification, patterns, fuzzy, positive orientation, negative orientation
Procedia PDF Downloads 378437 Design, Control and Implementation of 300Wp Single Phase Photovoltaic Micro Inverter for Village Nano Grid Application
Authors: Ramesh P., Aby Joseph
Abstract:
Micro Inverters provide Module Embedded Solution for harvesting energy from small-scale solar photovoltaic (PV) panels. In addition to higher modularity & reliability (25 years of life), the MicroInverter has inherent advantages such as avoidance of long DC cables, eliminates module mismatch losses, minimizes partial shading effect, improves safety and flexibility in installations etc. Due to the above-stated benefits, the renewable energy technology with Solar Photovoltaic (PV) Micro Inverter becomes more widespread in Village Nano Grid application ensuring grid independence for rural communities and areas without access to electricity. While the primary objective of this paper is to discuss the problems related to rural electrification, this concept can also be extended to urban installation with grid connectivity. This work presents a comprehensive analysis of the power circuit design, control methodologies and prototyping of 300Wₚ Single Phase PV Micro Inverter. This paper investigates two different topologies for PV Micro Inverters, based on the first hand on Single Stage Flyback/ Forward PV Micro-Inverter configuration and the other hand on the Double stage configuration including DC-DC converter, H bridge DC-AC Inverter. This work covers Power Decoupling techniques to reduce the input filter capacitor size to buffer double line (100 Hz) ripple energy and eliminates the use of electrolytic capacitors. The propagation of the double line oscillation reflected back to PV module will affect the Maximum Power Point Tracking (MPPT) performance. Also, the grid current will be distorted. To mitigate this issue, an independent MPPT control algorithm is developed in this work to reject the propagation of this double line ripple oscillation to PV side to improve the MPPT performance and grid side to improve current quality. Here, the power hardware topology accepts wide input voltage variation and consists of suitably rated MOSFET switches, Galvanically Isolated gate drivers, high-frequency magnetics and Film capacitors with a long lifespan. The digital controller hardware platform inbuilt with the external peripheral interface is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the PV Micro Inverter is written in C language and was developed using code composer studio Integrated Development Environment (IDE). In this work, the prototype hardware for the Single Phase Photovoltaic Micro Inverter with Double stage configuration was developed and the comparative analysis between the above mentioned configurations with experimental results will be presented.Keywords: double line oscillation, micro inverter, MPPT, nano grid, power decoupling
Procedia PDF Downloads 133436 Establishing Quality Evaluation Indicators of Early Education Center for 0~3 Years Old
Authors: Lina Feng
Abstract:
The study aimed at establishing quality evaluation indicators of an early education center for 0~3 years old, and defining the weight system of it. Expert questionnaire and Fuzzy Delphi method were applied. Firstly, in order to ensure the indicators in accordance with the practice of early education, 16 experts were invited as respondents to a preliminary Expert Questionnaire about Quality Evaluation Indicators of Early Education Center for 0~3 Years Old. The indicators were based on relevant studies on quality evaluation indicators of early education centers in China and abroad. Secondly, 20 scholars, kindergarten principals, and educational administrators were invited to form a fuzzy Delphi expert team. The experts’ opinions on the importance of indicators were calculated through triangle fuzzy numbers in order to select appropriate indicators and calculate indicator weights. This procedure resulted in the final Quality Evaluation Indicators of Early education Center for 0~3 Years Old. The Indicators contained three major levels, including 6 first-level indicators, 30 second-level indicators, and 147 third-level indicators. The 6 first-level indicators were health and safety; educational and cultivating activities; development of babies; conditions of the center; management of the center; and collaboration between family and the community. The indicators established by this study could provide suggestions for the high-quality environment for promoting the development of early year children.Keywords: early education center for 0~3 years old, educational management, fuzzy delphi method, quality evaluation indicator
Procedia PDF Downloads 261435 An Integrated Fuzzy Inference System and Technique for Order of Preference by Similarity to Ideal Solution Approach for Evaluation of Lean Healthcare Systems
Authors: Aydin M. Torkabadi, Ehsan Pourjavad
Abstract:
A decade after the introduction of Lean in Saskatchewan’s public healthcare system, its effectiveness remains a controversial subject among health researchers, workers, managers, and politicians. Therefore, developing a framework to quantitatively assess the Lean achievements is significant. This study investigates the success of initiatives across Saskatchewan health regions by recognizing the Lean healthcare criteria, measuring the success levels, comparing the regions, and identifying the areas for improvements. This study proposes an integrated intelligent computing approach by applying Fuzzy Inference System (FIS) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). FIS is used as an efficient approach to assess the Lean healthcare criteria, and TOPSIS is applied for ranking the values in regards to the level of leanness. Due to the innate uncertainty in decision maker judgments on criteria, principals of the fuzzy theory are applied. Finally, FIS-TOPSIS was established as an efficient technique in determining the lean merit in healthcare systems.Keywords: lean healthcare, intelligent computing, fuzzy inference system, healthcare evaluation, technique for order of preference by similarity to ideal solution, multi-criteria decision making, MCDM
Procedia PDF Downloads 162434 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm
Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn
Abstract:
Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.Keywords: binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct
Procedia PDF Downloads 225433 Fuzzy Logic Based Fault Tolerant Model Predictive MLI Topology
Authors: Abhimanyu Kumar, Chirag Gupta
Abstract:
This work presents a comprehensive study on the employment of Model Predictive Control (MPC) for a three-phase voltage-source inverter to regulate the output voltage efficiently. The inverter is modeled via the Clarke Transformation, considering a scenario where the load is unknown. An LC filter model is developed, demonstrating its efficacy in Total Harmonic Distortion (THD) reduction. The system, when implemented with fault-tolerant multilevel inverter topologies, ensures reliable operation even under fault conditions, a requirement that is paramount with the increasing dependence on renewable energy sources. The research also integrates a Fuzzy Logic based fault tolerance system which identifies and manages faults, ensuring consistent inverter performance. The efficacy of the proposed methodology is substantiated through rigorous simulations and comparative results, shedding light on the voltage prediction efficiency and the robustness of the model even under fault conditions.Keywords: total harmonic distortion, fuzzy logic, renewable energy sources, MLI
Procedia PDF Downloads 130432 Fuzzy Inference-Assisted Saliency-Aware Convolution Neural Networks for Multi-View Summarization
Authors: Tanveer Hussain, Khan Muhammad, Amin Ullah, Mi Young Lee, Sung Wook Baik
Abstract:
The Big Data generated from distributed vision sensors installed on large scale in smart cities create hurdles in its efficient and beneficial exploration for browsing, retrieval, and indexing. This paper presents a three-folded framework for effective video summarization of such data and provide a compact and representative format of Big Video Data. In the first fold, the paper acquires input video data from the installed cameras and collect clues such as type and count of objects and clarity of the view from a chunk of pre-defined number of frames of each view. The decision of representative view selection for a particular interval is based on fuzzy inference system, acquiring a precise and human resembling decision, reinforced by the known clues as a part of the second fold. In the third fold, the paper forwards the selected view frames to the summary generation mechanism that is supported by a saliency-aware convolution neural network (CNN) model. The new trend of fuzzy rules for view selection followed by CNN architecture for saliency computation makes the multi-view video summarization (MVS) framework a suitable candidate for real-world practice in smart cities.Keywords: big video data analysis, fuzzy logic, multi-view video summarization, saliency detection
Procedia PDF Downloads 188431 A New Criterion Using Pose and Shape of Objects for Collision Risk Estimation
Authors: DoHyeung Kim, DaeHee Seo, ByungDoo Kim, ByungGil Lee
Abstract:
As many recent researches being implemented in aviation and maritime aspects, strong doubts have been raised concerning the reliability of the estimation of collision risk. It is shown that using position and velocity of objects can lead to imprecise results. In this paper, therefore, a new approach to the estimation of collision risks using pose and shape of objects is proposed. Simulation results are presented validating the accuracy of the new criterion to adapt to collision risk algorithm based on fuzzy logic.Keywords: collision risk, pose, shape, fuzzy logic
Procedia PDF Downloads 529430 Adaptive Power Control of the City Bus Integrated Photovoltaic System
Authors: Piotr Kacejko, Mariusz Duk, Miroslaw Wendeker
Abstract:
This paper presents an adaptive controller to track the maximum power point of a photovoltaic modules (PV) under fast irradiation change on the city-bus roof. Photovoltaic systems have been a prominent option as an additional energy source for vehicles. The Municipal Transport Company (MPK) in Lublin has installed photovoltaic panels on its buses roofs. The solar panels turn solar energy into electric energy and are used to load the buses electric equipment. This decreases the buses alternators load, leading to lower fuel consumption and bringing both economic and ecological profits. A DC–DC boost converter is selected as the power conditioning unit to coordinate the operating point of the system. In addition to the conversion efficiency of a photovoltaic panel, the maximum power point tracking (MPPT) method also plays a main role to harvest most energy out of the sun. The MPPT unit on a moving vehicle must keep tracking accuracy high in order to compensate rapid change of irradiation change due to dynamic motion of the vehicle. Maximum power point track controllers should be used to increase efficiency and power output of solar panels under changing environmental factors. There are several different control algorithms in the literature developed for maximum power point tracking. However, energy performances of MPPT algorithms are not clarified for vehicle applications that cause rapid changes of environmental factors. In this study, an adaptive MPPT algorithm is examined at real ambient conditions. PV modules are mounted on a moving city bus designed to test the solar systems on a moving vehicle. Some problems of a PV system associated with a moving vehicle are addressed. The proposed algorithm uses a scanning technique to determine the maximum power delivering capacity of the panel at a given operating condition and controls the PV panel. The aim of control algorithm was matching the impedance of the PV modules by controlling the duty cycle of the internal switch, regardless of changes of the parameters of the object of control and its outer environment. Presented algorithm was capable of reaching the aim of control. The structure of an adaptive controller was simplified on purpose. Since such a simple controller, armed only with an ability to learn, a more complex structure of an algorithm can only improve the result. The presented adaptive control system of the PV system is a general solution and can be used for other types of PV systems of both high and low power. Experimental results obtained from comparison of algorithms by a motion loop are presented and discussed. Experimental results are presented for fast change in irradiation and partial shading conditions. The results obtained clearly show that the proposed method is simple to implement with minimum tracking time and high tracking efficiency proving superior to the proposed method. This work has been financed by the Polish National Centre for Research and Development, PBS, under Grant Agreement No. PBS 2/A6/16/2013.Keywords: adaptive control, photovoltaic energy, city bus electric load, DC-DC converter
Procedia PDF Downloads 211429 Robust Fuzzy PID Stabilizer: Modified Shuffled Frog Leaping Algorithm
Authors: Oveis Abedinia, Noradin Ghadimi, Nasser Mikaeilvand, Roza Poursoleiman, Asghar Poorfaraj
Abstract:
In this paper a robust Fuzzy Proportional Integral Differential (PID) controller is applied to multi-machine power system based on Modified Shuffled Frog Leaping (MSFL) algorithm. This newly proposed controller is more efficient because it copes with oscillations and different operating points. In this strategy the gains of the PID controller is optimized using the proposed technique. The nonlinear problem is formulated as an optimization problem for wide ranges of operating conditions using the MSFL algorithm. The simulation results demonstrate the effectiveness, good robustness and validity of the proposed method through some performance indices such as ITAE and FD under wide ranges operating conditions in comparison with TS and GSA techniques. The single-machine infinite bus system and New England 10-unit 39-bus standard power system are employed to illustrate the performance of the proposed method.Keywords: fuzzy PID, MSFL, multi-machine, low frequency oscillation
Procedia PDF Downloads 430428 Automatic Detection of Proliferative Cells in Immunohistochemically Images of Meningioma Using Fuzzy C-Means Clustering and HSV Color Space
Authors: Vahid Anari, Mina Bakhshi
Abstract:
Visual search and identification of immunohistochemically stained tissue of meningioma was performed manually in pathologic laboratories to detect and diagnose the cancers type of meningioma. This task is very tedious and time-consuming. Moreover, because of cell's complex nature, it still remains a challenging task to segment cells from its background and analyze them automatically. In this paper, we develop and test a computerized scheme that can automatically identify cells in microscopic images of meningioma and classify them into positive (proliferative) and negative (normal) cells. Dataset including 150 images are used to test the scheme. The scheme uses Fuzzy C-means algorithm as a color clustering method based on perceptually uniform hue, saturation, value (HSV) color space. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.Keywords: positive cell, color segmentation, HSV color space, immunohistochemistry, meningioma, thresholding, fuzzy c-means
Procedia PDF Downloads 210427 A Combined Approach Based on Artificial Intelligence and Computer Vision for Qualitative Grading of Rice Grains
Authors: Hemad Zareiforoush, Saeed Minaei, Ahmad Banakar, Mohammad Reza Alizadeh
Abstract:
The quality inspection of rice (Oryza sativa L.) during its various processing stages is very important. In this research, an artificial intelligence-based model coupled with computer vision techniques was developed as a decision support system for qualitative grading of rice grains. For conducting the experiments, first, 25 samples of rice grains with different levels of percentage of broken kernels (PBK) and degree of milling (DOM) were prepared and their qualitative grade was assessed by experienced experts. Then, the quality parameters of the same samples examined by experts were determined using a machine vision system. A grading model was developed based on fuzzy logic theory in MATLAB software for making a relationship between the qualitative characteristics of the product and its quality. Totally, 25 rules were used for qualitative grading based on AND operator and Mamdani inference system. The fuzzy inference system was consisted of two input linguistic variables namely, DOM and PBK, which were obtained by the machine vision system, and one output variable (quality of the product). The model output was finally defuzzified using Center of Maximum (COM) method. In order to evaluate the developed model, the output of the fuzzy system was compared with experts’ assessments. It was revealed that the developed model can estimate the qualitative grade of the product with an accuracy of 95.74%.Keywords: machine vision, fuzzy logic, rice, quality
Procedia PDF Downloads 419426 Model-Based Global Maximum Power Point Tracking at Photovoltaic String under Partial Shading Conditions Using Multi-Input Interleaved Boost DC-DC Converter
Authors: Seyed Hossein Hosseini, Seyed Majid Hashemzadeh
Abstract:
Solar energy is one of the remarkable renewable energy sources that have particular characteristics such as unlimited, no environmental pollution, and free access. Generally, solar energy can be used in thermal and photovoltaic (PV) types. The cost of installation of the PV system is very high. Additionally, due to dependence on environmental situations such as solar radiation and ambient temperature, electrical power generation of this system is unpredictable and without power electronics devices, there is no guarantee to maximum power delivery at the output of this system. Maximum power point tracking (MPPT) should be used to achieve the maximum power of a PV string. MPPT is one of the essential parts of the PV system which without this section, it would be impossible to reach the maximum amount of the PV string power and high losses are caused in the PV system. One of the noticeable challenges in the problem of MPPT is the partial shading conditions (PSC). In PSC, the output photocurrent of the PV module under the shadow is less than the PV string current. The difference between the mentioned currents passes from the module's internal parallel resistance and creates a large negative voltage across shaded modules. This significant negative voltage damages the PV module under the shadow. This condition is called hot-spot phenomenon. An anti-paralleled diode is inserted across the PV module to prevent the happening of this phenomenon. This diode is known as the bypass diode. Due to the performance of the bypass diode under PSC, the P-V curve of the PV string has several peaks. One of the P-V curve peaks that makes the maximum available power is the global peak. Model-based Global MPPT (GMPPT) methods can estimate the optimal point with higher speed than other GMPPT approaches. Centralized, modular, and interleaved DC-DC converter topologies are the significant structures that can be used for GMPPT at a PV string. there are some problems in the centralized structure such as current mismatch losses at PV sting, loss of power of the shaded modules because of bypassing by bypass diodes under PSC, needing to series connection of many PV modules to reach the desired voltage level. In the modular structure, each PV module is connected to a DC-DC converter. In this structure, by increasing the amount of demanded power from the PV string, the number of DC-DC converters that are used at the PV system will increase. As a result, the cost of the modular structure is very high. We can implement the model-based GMPPT through the multi-input interleaved boost DC-DC converter to increase the power extraction from the PV string and reduce hot-spot and current mismatch error in a PV string under different environmental condition and variable load circumstances. The interleaved boost DC-DC converter has many privileges than other mentioned structures, such as high reliability and efficiency, better regulation of DC voltage at DC link, overcome the notable errors such as module's current mismatch and hot spot phenomenon, and power switches voltage stress reduction.Keywords: solar energy, photovoltaic systems, interleaved boost converter, maximum power point tracking, model-based method, partial shading conditions
Procedia PDF Downloads 130425 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System Under Uncertainty
Authors: Ben Khayut, Lina Fabri, Maya Avikhana
Abstract:
The models of the modern Artificial Narrow Intelligence (ANI) cannot: a) independently and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, cognize, infer, and more in state of Uncertainty, and changes in situations, and environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU) using a neural network as its computational memory, operating under uncertainty, and activating its functions by perception, identification of real objects, fuzzy situational control, forming images of these objects, modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, and images, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, Wisdom, analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge in the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of Situational Control, Fuzzy Logic, Psycholinguistics, Informatics, and modern possibilities of Data Science were applied. The proposed self-controlled System of Brain and Mind is oriented on use as a plug-in in multilingual subject Applications.Keywords: computational brain, mind, psycholinguistic, system, under uncertainty
Procedia PDF Downloads 177424 Improving the Performance of Proton Exchange Membrane Using Fuzzy Logic
Authors: Sadık Ata, Kevser Dincer
Abstract:
In this study, the performance of proton exchange membrane (PEM) fuel cell was experimentally investigated and modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using Yttria-stabilized zirconia (YSZ). Input-output parameters were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6),High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of performance PEM fuel cell.Keywords: proton exchange membrane (PEM), fuel cell, rule-based mamdani-type fuzzy (RMBTF) modelling, Yttria-stabilized zirconia (YSZ)
Procedia PDF Downloads 241423 A Fuzzy Logic Based Health Assesment Platform
Authors: J. Al-Dmour, A. Sagahyroon, A. Al-Ali, S. Abusnana
Abstract:
Radio Frequency Based Identification Systems have emerged as one of the possible valuable solutions that can be utilized in healthcare systems. Nowadays, RFID tags are available with built-in human vital signs sensors such as Body Temperature, Blood Pressure, Heart Rate, Blood Sugar level and Oxygen Saturation in Blood. This work proposes the design, implementation, and testing of an integrated mobile RFID-based health care system. The system consists of a wireless mobile vital signs data acquisition unit (RFID-DAQ) integrated with a fuzzy-logic–based software algorithm to monitor and assess patients conditions. The system is implemented and tested in ‘Rashid Center for Diabetes and Research’, Ajman, UAE. System testing results are compared with the Modified Early Warning System (MEWS) that is currently used in practice. We demonstrate that the proposed and implemented system exhibits an accuracy level that is comparable and sometimes better than the widely adopted MEWS system.Keywords: healthcare, fuzzy logic, MEWS, RFID
Procedia PDF Downloads 348422 Toward a Measure of Appropriateness of User Interfaces Adaptations Solutions
Authors: Abderrahim Siam, Ramdane Maamri, Zaidi Sahnoun
Abstract:
The development of adaptive user interfaces (UI) presents for a long time an important research area in which researcher attempt to call upon the full resources and skills of several disciplines. The adaptive UI community holds a thorough knowledge regarding the adaptation of UIs with users and with contexts of use. Several solutions, models, formalisms, techniques, and mechanisms were proposed to develop adaptive UI. In this paper, we propose an approach based on the fuzzy set theory for modeling the concept of the appropriateness of different solutions of UI adaptation with different situations for which interactive systems have to adapt their UIs.Keywords: adaptive user interfaces, adaptation solution’s appropriateness, fuzzy sets
Procedia PDF Downloads 487421 Fuzzy-Genetic Algorithm Multi-Objective Optimization Methodology for Cylindrical Stiffened Tanks Conceptual Design
Authors: H. Naseh, M. Mirshams, M. Mirdamadian, H. R. Fazeley
Abstract:
This paper presents an extension of fuzzy-genetic algorithm multi-objective optimization methodology that could effectively be used to find the overall satisfaction of objective functions (selecting the design variables) in the early stages of design process. The coupling of objective functions due to design variables in an engineering design process will result in difficulties in design optimization problems. In many cases, decision making on design variables conflicts with more than one discipline in system design. In space launch system conceptual design, decision making on some design variable (e.g. oxidizer to fuel mass flow rate O/F) in early stages of the design process is related to objective of liquid propellant engine (specific impulse) and Tanks (structure weight). Then, the primary application of this methodology is the design of a liquid propellant engine with the maximum specific impulse and cylindrical stiffened tank with the minimum weight. To this end, the design problem is established the fuzzy rule set based on designer's expert knowledge with a holistic approach. The independent design variables in this model are oxidizer to fuel mass flow rate, thickness of stringers, thickness of rings, shell thickness. To handle the mentioned problems, a fuzzy-genetic algorithm multi-objective optimization methodology is developed based on Pareto optimal set. Consequently, this methodology is modeled with the one stage of space launch system to illustrate accuracy and efficiency of proposed methodology.Keywords: cylindrical stiffened tanks, multi-objective, genetic algorithm, fuzzy approach
Procedia PDF Downloads 655420 Measuring Banks’ Antifragility via Fuzzy Logic
Authors: Danielle Sandler dos Passos, Helder Coelho, Flávia Mori Sarti
Abstract:
Analysing the world banking sector, we realize that traditional risk measurement methodologies no longer reflect the actual scenario with uncertainty and leave out events that can change the dynamics of markets. Considering this, regulators and financial institutions began to search more realistic models. The aim is to include external influences and interdependencies between agents, to describe and measure the operationalization of these complex systems and their risks in a more coherent and credible way. Within this context, X-Events are more frequent than assumed and, with uncertainties and constant changes, the concept of antifragility starts to gain great prominence in comparison to others methodologies of risk management. It is very useful to analyse whether a system succumbs (fragile), resists (robust) or gets benefits (antifragile) from disorder and stress. Thus, this work proposes the creation of the Banking Antifragility Index (BAI), which is based on the calculation of a triangular fuzzy number – to "quantify" qualitative criteria linked to antifragility.Keywords: adaptive complex systems, X-Events, risk management, antifragility, banking antifragility index, triangular fuzzy number
Procedia PDF Downloads 183