Search results for: engagement prediction
3313 Copper Price Prediction Model for Various Economic Situations
Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.Keywords: copper prices, prediction model, neural network, time series forecasting
Procedia PDF Downloads 1133312 Attentional Engagement for Movie
Authors: Wuon-Shik Kim, Hyoung-Min Choi, Jeonggeon Woo, Sun Jung Kwon, SeungHee Lee
Abstract:
The research on attentional engagement (AE) in movies using physiological signals is rare and controversial. Therefore, whether physiological responses can be applied to evaluate AE in actual movies is unclear. To clarify this, we measured electrocardiogram and electroencephalogram (EEG) of 16 Japanese university students as they watched the American movie Iron Man. After the viewing, we evaluated the subjective AE and affection levels for 11 film content segments in Iron Man. Based on self-reports for AE, we selected two film content segments as stimuli: Film Content 9 describing Tony Stark (the main character) flying through the night sky (with the highest AE score) and Film Content 1, describing Tony Stark and his colleagues telling indecent jokes (with the lowest score). We divided these two content segments into two time intervals, respectively. Results indicated that the Film Content by Interval interaction for HR was significant, at F (1, 11)=35.64, p<.001, η2=.76; while HR in Film Content 1 decreased, that of in Film Content 9 increased. In Film Content 9, the main effects of the Interval for respiratory sinus arrhythmia (RSA) (F (1, 11)=5.91, p<.05, η2=.35) and for the attention index of EEG (F (1, 11)=5.23, p<.05, η2=.37) were significant. The increase in the RSA was significant (p<.05) as well, whereas that of the EEG attention index was nearly significant (p=.069). In conclusion, while RSA increases, HR decreases when people direct their attention toward normal films. However, while paying attention to a film evoking excitement, HR as well as RSA can increase.Keywords: attentional engagement, electroencephalogram, movie, respiratory sinus arrhythmia
Procedia PDF Downloads 3643311 Bioengineering System for Prediction and Early Prenosological Diagnostics of Stomach Diseases Based on Energy Characteristics of Bioactive Points with Fuzzy Logic
Authors: Mahdi Alshamasin, Riad Al-Kasasbeh, Nikolay Korenevskiy
Abstract:
We apply mathematical models for the interaction of the internal and biologically active points of meridian structures. Amongst the diseases for which reflex diagnostics are effective are those of the stomach disease. It is shown that use of fuzzy logic decision-making yields good results for the prediction and early diagnosis of gastrointestinal tract diseases, depending on the reaction energy of biologically active points (acupuncture points). It is shown that good results for the prediction and early diagnosis of diseases from the reaction energy of biologically active points (acupuncture points) are obtained by using fuzzy logic decision-making.Keywords: acupuncture points, fuzzy logic, diagnostically important points (DIP), confidence factors, membership functions, stomach diseases
Procedia PDF Downloads 4673310 Mobilizing Resources for Social Entrepreneurial Opportunity: A Framework of Engagement Strategy
Authors: Balram Bhushan
Abstract:
The emergence of social entrepreneurship challenges the strict categorization of not-for-profit, for-profit and hybrid organizations. Although the blurring of boundaries helps social entrepreneurial organizations (SEOs) make better use of emerging opportunities, it poses a significant challenge while mobilizing money from different sources. Additionally, for monetary resources, the legal framework of the host country may further complicate the issue by imposing strict accounting standards. Under such circumstances, the resource providers fail to recognize the suitable engagement strategy with the SEO of their choice. Based on the process of value creation and value capture, this paper develops a guiding framework for resource providers to design an appropriate mix of engagement with the identified SEOs. Essentially, social entrepreneurship creates value at the societal level, but value capture is a characteristic of an organization. Additionally, SEOs prefer value creation over value capture. The paper argued that the nature of the relationship between value creation and value capture determines the extent of blurred boundaries of the organization. Accordingly, synergistic, antagonistic and sequential relationships were proposed between value capture and value creation. When value creation is synergistically associated with value creation, the preferred nature of such action falls within the nature of for-profit organizations within the strictest legal framework. Banks offering micro-loans are good examples of this category. Opposite to this, the antagonist relationship between value creation and value capture, where value capture opportunities are sacrificed for value creation, dictates non-profit organizational structure. Examples of this category include non-government organizations and charity organizations. Finally, the sequential relationship between value capture opportunities is followed for value creation opportunities and guides the action closer to the hybrid structure. Examples of this category include organizations where a non-for-profit unit controls for-profit units of the organization either legally or structurally. As an SEO may attempt to utilize multiple entrepreneurial opportunities falling across any of the three relationships between value creation and value capture, the resource providers need to evaluate an appropriate mix of these relationships before designing their engagement strategies. The paper suggests three guiding principles for the engagement strategy. First, the extent of investment should be proportional to the synergistic relationship between value capture and value creation. Second, the subsidized support should be proportional to the sequential relationship. Finally, the funding (charity contribution) should be proportional to the antagonistic relationship. Finally, the resource providers are needed to keep a close watch on the evolving relationship between value creation and value capture for introducing appropriate changes in their engagement strategy.Keywords: social entrepreneurship, value creation, value capture, entrepreneurial opportunity
Procedia PDF Downloads 1333309 Towards the Prediction of Aesthetic Requirements for Women’s Apparel Product
Authors: Yu Zhao, Min Zhang, Yuanqian Wang, Qiuyu Yu
Abstract:
The prediction of aesthetics of apparel is helpful for the development of a new type of apparel. This study is to build the quantitative relationship between the aesthetics and its design parameters. In particular, women’s pants have been preliminarily studied. This aforementioned relationship has been carried out by statistical analysis. The contributions of this study include the development of a more personalized apparel design mechanism and the provision of some empirical knowledge for the development of other products in the aspect of aesthetics.Keywords: aesthetics, crease line, cropped straight leg pants, knee width
Procedia PDF Downloads 1863308 Understanding the Lived Experiences of Children and Young People Using Client Preference Tools in Mental Health Therapy: A Systematic Literature Review
Authors: Charlotte Zamani
Abstract:
Children's and young people’s (CYP’s) perspectives on using client preference tools are central to understanding youth mental health therapy engagement. This systematic literature review attempts to understand the meanings of CYP using preference tools that may allow greater connection with the therapeutic process. Following a systematic search using PRISMA guidelines, seven studies were identified that reported qualitative feedback on preferred treatment options or activities within therapy. The data were analysed using interpretative phenomenological analysis (IPA). Three group experiential themes were found: ‘Tailor my support’, ‘My autonomy leads to greater engagement’ and ‘Preferences facilitate my authentic self’. CYP is broadly divided into those who thrive in decision-making and those who require more support. Being offered a choice in therapy delivery provides easier access and means more freedom for CYP. Preferences in therapy appeared to enable greater self-knowledge and a deeper connection to the therapeutic process. The therapist is integral in using preference tools in therapy. Youth feedback is currently limited, yet essential and ethical in order to understand critical factors of CYP engagement and for future research.Keywords: child and adolescent, client preferences, mental health therapy, qualitative
Procedia PDF Downloads 63307 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction
Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba
Abstract:
Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform
Procedia PDF Downloads 513306 Network Analysis and Sex Prediction based on a full Human Brain Connectome
Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller
Abstract:
we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.Keywords: network analysis, neuroscience, machine learning, optimization
Procedia PDF Downloads 1473305 Celebrating Community Heritage through the People’s Collection Wales: A Case Study in the Development of Collecting Traditions and Engagement
Authors: Gruffydd E. Jones
Abstract:
The world’s largest collection of historical, cultural, and heritage material is unarchived and undocumented in the hands of the public. Not only does this material represent the missing collections in heritage sector archives today, but it is also the key to providing a diverse range of communities with the means to express their history in their own words and to celebrate their unique, personal heritage. The People’s Collection Wales (PCW) acts as a platform on which the heritage of Wales and her people can be collated and shared, at the heart of which is a thriving community engagement programme across a network of museums, archives, and libraries. By providing communities with the archival skillset commonly employed throughout the heritage sector, PCW enables local projects, societies, and individuals to express their understanding of local heritage with their own voices, empowering communities to embrace their diverse and complex identities around Wales. Drawing on key examples from the project’s history, this paper will demonstrate the successful way in which museums have been developed as hubs for community engagement where the public was at the heart of collection and documentation activities, informing collection and curatorial policies to benefit both the institute and its local community. This paper will also highlight how collections from marginalised, under-represented, and minority communities have been published and celebrated extensively around Wales, including adoption by the education system in classrooms today. Any activity within the heritage sector, whether of collection, preservation, digitisation, or accessibility, should be considerate of community engagement opportunities not only to remain relevant but in order to develop as community hubs, pivots around which local heritage is supported and preserved. Attention will be drawn to our digitisation workflow, which, through training and support from museums and libraries, has allowed the public not only to become involved but to actively lead the contemporary evolution of documentation strategies in Wales. This paper will demonstrate how the PCW online access archive is promoting museum collections, encouraging user interaction, and providing an invaluable platform on which a broader community can inform, preserve and celebrate their cultural heritage through their own archival material too. The continuing evolution of heritage engagement depends wholly on placing communities at the heart of the sector, recognising their wealth of cultural knowledge, and developing the archival skillset necessary for them to become archival practitioners of their own.Keywords: social history, cultural heritage, community heritage, museums, archives, libraries, community engagement, oral history, community archives
Procedia PDF Downloads 943304 When Women Take the Lead: Exploring the Intersection Between Gender Equality and Women’s Environmental Political Engagement from a Comparative Perspective
Authors: Summer Isaacson
Abstract:
Research on gender differences in environmental behavior has long claimed that women engage less than men in environmental political participation (EPP) (protests, petitions), despite their higher levels of environmental concern and vulnerability. Using recent data from the ISSP’s 2020 Environment module including 28 countries, we revisit the gender gap in EPP. Arguing that increasing gender equality and socio-economic development can allow women to voice their environmental grievances, we use multi-level models to examine the effects of macro-level gender equality on gender differences in environmental protests, petitions, and boycotts. By distinguishing individual from collective and non-confrontational from confrontational engagement forms, this study offers an encompassing understanding of gendered patterns of participation. Women do participate more than men, but mainly in individual and non-confrontational EPP forms (petitions, boycotts) and with substantial variation across countries. Moreover, considering how women have historically been restrained from participating in politics, we argue that structural gender inequality remains an important limitation to women’s engagement. Cross-level interactions indicate that in more egalitarian countries, women are more likely to engage in several types of EPP than men. The study offers new perspectives and findings on gender differences in EPP, highlighting the impact of gender inequality on women’s participation.Keywords: environmental activism, political participation, gender equality, pro-environmental behavior
Procedia PDF Downloads 643303 Stacking Ensemble Approach for Combining Different Methods in Real Estate Prediction
Authors: Sol Girouard, Zona Kostic
Abstract:
A home is often the largest and most expensive purchase a person makes. Whether the decision leads to a successful outcome will be determined by a combination of critical factors. In this paper, we propose a method that efficiently handles all the factors in residential real estate and performs predictions given a feature space with high dimensionality while controlling for overfitting. The proposed method was built on gradient descent and boosting algorithms and uses a mixed optimizing technique to improve the prediction power. Usually, a single model cannot handle all the cases thus our approach builds multiple models based on different subsets of the predictors. The algorithm was tested on 3 million homes across the U.S., and the experimental results demonstrate the efficiency of this approach by outperforming techniques currently used in forecasting prices. With everyday changes on the real estate market, our proposed algorithm capitalizes from new events allowing more efficient predictions.Keywords: real estate prediction, gradient descent, boosting, ensemble methods, active learning, training
Procedia PDF Downloads 2773302 Careers-Outreach Programmes for Children: Lessons for Perceptions of Engineering and Manufacturing
Authors: Niall J. English, Sylvia Leatham, Maria Isabel Meza Silva, Denis P. Dowling
Abstract:
The training and education of under- and post-graduate students can be promoted by more active learning especially in engineering, overcoming more passive and vicarious experiences and approaches in their documented effectiveness. However, the possibility of outreach to young pupils and school-children in primary and secondary schools is a lesser explored area in terms of Education and Public Engagement (EPE) efforts – as relates to feedback and influence on shaping 3rd-level engineering training and education. Therefore, the outreach and school-visit agenda constitutes an interesting avenue to observe how active learning, careers stimulus and EPE efforts for young children and teenagers can teach the university sector, to improve future engineering-teaching standards and enhance both quality and capabilities of practice. This intervention involved careers-outreach efforts to lead to statistical determinations of motivations towards engineering, manufacturing and training. The aim was to gauge to what extent this intervention would lead to an increased careers awareness in engineering, using the method of the schools-visits programme as the means for so doing. It was found that this led to an increase in engagement by school pupils with engineering as a career option and a greater awareness of the importance of manufacturing.Keywords: outreach, education and public engagement, careers, peer interactions
Procedia PDF Downloads 1523301 An Improved Heat Transfer Prediction Model for Film Condensation inside a Tube with Interphacial Shear Effect
Authors: V. G. Rifert, V. V. Gorin, V. V. Sereda, V. V. Treputnev
Abstract:
The analysis of heat transfer design methods in condensing inside plain tubes under existing influence of shear stress is presented in this paper. The existing discrepancy in more than 30-50% between rating heat transfer coefficients and experimental data has been noted. The analysis of existing theoretical and semi-empirical methods of heat transfer prediction is given. The influence of a precise definition concerning boundaries of phase flow (it is especially important in condensing inside horizontal tubes), shear stress (friction coefficient) and heat flux on design of heat transfer is shown. The substantiation of boundary conditions of the values of parameters, influencing accuracy of rated relationships, is given. More correct relationships for heat transfer prediction, which showed good convergence with experiments made by different authors, are substantiated in this work.Keywords: film condensation, heat transfer, plain tube, shear stress
Procedia PDF Downloads 2453300 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay
Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari
Abstract:
Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.Keywords: model tree, CART, logistic regression, soil shear strength
Procedia PDF Downloads 1973299 Ultimate Strength Prediction of Shear Walls with an Aspect Ratio between One and Two
Authors: Said Boukais, Ali Kezmane, Kahil Amar, Mohand Hamizi, Hannachi Neceur Eddine
Abstract:
This paper presents an analytical study on the behavior of rectangular reinforced concrete walls with an aspect ratio between one and tow. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood equation for shear and strain compatibility analysis for flexure. Subsequently, nominal ultimate wall strengths from the formulas were compared with the ultimate wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate strength. New semi empirical equation are developed using data from tests of 46 walls with the objective of improving the prediction of ultimate strength of walls with the most possible accuracy and for all failure modes.Keywords: prediction, ultimate strength, reinforced concrete walls, walls, rectangular walls
Procedia PDF Downloads 3373298 The Importance of Parental Involvement in Special Education: Enhancing Student Success through Family Engagement
Authors: Adel Al Hashlan
Abstract:
Parent and family engagement plays a crucial role in supporting the success of students with special needs in educational settings. This paper explores the significance of parental involvement in special education, examining its impact on academic achievement, social-emotional development, and overall well-being. Meaningful collaboration between educators, parents, and families can promote positive outcomes for students with diverse learning needs. The study employs a mixed-methods approach, incorporating both qualitative and quantitative techniques. Data were collected through structured interviews, focus groups, and surveys involving students with special needs, their parents, and educators across diverse educational settings. The analysis identifies patterns, themes, and correlations to understand the impact of parent and family engagement on student outcomes. Major findings reveal that effective parent and family involvement initiatives, characterized by strong communication strategies, collaboration frameworks, and partnership-building approaches, significantly enhance students’ academic performance, social-emotional development, and overall well-being. The study also identifies common barriers to parental involvement, such as cultural differences and accessibility issues, and suggests strategies for overcoming these challenges. In conclusion, the study underscores the importance of systemic support and resource allocation to facilitate meaningful partnerships between schools and families. Ongoing research and professional development are crucial to enhancing the effectiveness of parent and family engagement initiatives in special education, ultimately maximizing student achievement and well-being.Keywords: parental involvement, special education, student success, collaborative partnerships
Procedia PDF Downloads 433297 Relationships of Clergy Work-Family Enrichment with Job Attitudes
Authors: John Faucett, Hao Wu, Bruce Moore, Sean Nadji
Abstract:
The demands of the ministry often conflict with responsibilities at home, and clergy often experience domain ambiguity between the domains of work and family. However, the unique level of family involvement in the pastor’s profession might enrich the pastor’s ministry as well as the functioning of the family unit. Life in the church family might offer clergy family members a sense of meaning and purpose, social support, and a feeling of belonging. Church activities can offer enhanced opportunities for family interaction. The purpose of this study was to investigate the relationships of work/family enrichment to clergy job satisfaction, burnout, engagement, and withdrawal. Method: Participants were clergy serving within a state conference of the United Methodist Church. A survey was administered electronically, with e-mails and the United Methodist Church (UMC) Facebook page used as access points to the survey. Usable responses for this portion of the survey were obtained from 132 clergy. Participants completed The Work-Family Enrichment Scales, The Utrecht Work Engagement Scale, The Scale of Emotional Exhaustion in Ministry, The Satisfaction in Ministry Scale, and a scale of withdrawal developed for the present study. They also answered questions relating to how involved their spouses are in their ministry and the degree to which spouse involvement in church ministry strengthens church ministry. Findings: Higher scores for work to family enrichment correlated positively with job satisfaction (r = - .69, p < .01) and engagement (r = .50, p < .01), and negatively with burnout (r = -.48, p < .01) and withdrawal (r = -.46, p < .01). Higher scores for family to work enrichment correlated positively with job satisfaction (r = .29, p = .01) and engagement (.24, p < .05), and negatively with burnout (r = -.48, p < .01), and withdrawal (r = -.46, p < .01). Hierarchical regression analysis suggested that clergy perceptions concerning the degree to which spouse involvement in church ministry strengthens church ministry moderates the relationship between degree of spouse involvement in church activities and clergy withdrawal. To the degree that spouse involvement is believed to strengthen ministry, high spouse involvement is related to less clergy withdrawal (Multiple R-Squared = .068, Adj. R-Squared = .043, F = 2.69 on 3 & 110 DF, p = .05). Concluding Statement: Clergy job attitudes are related to work/family enrichment. Spouse involvement in parish ministry is associated with less clergy withdrawal, as long as clergy believe spouse involvement strengthens their ministry.Keywords: clergy, emotional exhaustion, job engagement, job satisfaction, work/family enrichment
Procedia PDF Downloads 2063296 Epilepsy Seizure Prediction by Effective Connectivity Estimation Using Granger Causality and Directed Transfer Function Analysis of Multi-Channel Electroencephalogram
Authors: Mona Hejazi, Ali Motie Nasrabadi
Abstract:
Epilepsy is a persistent neurological disorder that affects more than 50 million people worldwide. Hence, there is a necessity to introduce an efficient prediction model for making a correct diagnosis of the epileptic seizure and accurate prediction of its type. In this study we consider how the Effective Connectivity (EC) patterns obtained from intracranial Electroencephalographic (EEG) recordings reveal information about the dynamics of the epileptic brain and can be used to predict imminent seizures, as this will enable the patients (and caregivers) to take appropriate precautions. We use this definition because we believe that effective connectivity near seizures begin to change, so we can predict seizures according to this feature. Results are reported on the standard Freiburg EEG dataset which contains data from 21 patients suffering from medically intractable focal epilepsy. Six channels of EEG from each patients are considered and effective connectivity using Directed Transfer Function (DTF) and Granger Causality (GC) methods is estimated. We concentrate on effective connectivity standard deviation over time and feature changes in five brain frequency sub-bands (Alpha, Beta, Theta, Delta, and Gamma) are compared. The performance obtained for the proposed scheme in predicting seizures is: average prediction time is 50 minutes before seizure onset, the maximum sensitivity is approximate ~80% and the false positive rate is 0.33 FP/h. DTF method is more acceptable to predict epileptic seizures and generally we can observe that the greater results are in gamma and beta sub-bands. The research of this paper is significantly helpful for clinical applications, especially for the exploitation of online portable devices.Keywords: effective connectivity, Granger causality, directed transfer function, epilepsy seizure prediction, EEG
Procedia PDF Downloads 4693295 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence
Procedia PDF Downloads 1443294 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High Speed Streams
Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous
Abstract:
Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of solar wind using mathematical models, MHD models, and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulates the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar cycles (sc) 21, 22, 23, and most of 24.Keywords: artificial neural network, coronal hole area, feed-forward neural network models, solar high speed streams
Procedia PDF Downloads 883293 The Combination of the Mel Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), JITTER and SHIMMER Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech
Authors: Brahim-Fares Zaidi, Malika Boudraa, Sid-Ahmed Selouani
Abstract:
Our work aims to improve our Automatic Recognition System for Dysarthria Speech (ARSDS) based on the Hidden Models of Markov (HMM) and the Hidden Markov Model Toolkit (HTK) to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients (MFCC's) and Perceptual Linear Prediction (PLP's) and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.Keywords: hidden Markov model toolkit (HTK), hidden models of Markov (HMM), Mel-frequency cepstral coefficients (MFCC), perceptual linear prediction (PLP’s)
Procedia PDF Downloads 1613292 An Exploratory Study of the Effects of Head Movement on Engagement within a Telepresence Environment
Authors: B. S. Bamoallem, A. J. Wodehouse, G. M. Mair
Abstract:
Communication takes place not only through speech, but also by means of gestures such as facial expressions, gaze, head movements, hand movements and body posture, and though there has been rapid development, communication platforms still lack this type of behavior. We believe communication platforms need to fully achieve this verbal and non-verbal behavior in order to make interactions more engaging and more efficient. In this study we decided to focus our research on the head rather than any other body part as it is a rich source of information for speech-related movement Thus we aim to investigate the value of incorporating head movements into the use of telepresence robots as communication platforms; this will be done by investigating a system that reproduces head movement manually as closely as possible.Keywords: engagement, nonverbal behaviours, head movements, face-to-face interaction, telepresence robot
Procedia PDF Downloads 4553291 Different Roles for Mentors and Mentees in an e-Learning Environment
Authors: Nidhi Gadura
Abstract:
Given the increase in the number of students and administrators asking for online courses the author developed two partially online courses. One was a biology majors at genetics course while the other was a non-majors at biology course. The student body at Queensborough Community College is generally underprepared and has work and family obligations. As an educator, one has to be mindful about changing the pedagogical approach, therefore, special care was taken when designing the course material. Despite the initial concerns, both of these partially online courses were received really well by students. Lessons learnt were that student engagement is the key to success in an online course. Good practices to run a successful online course for underprepared students are discussed in this paper. Also discussed are the lessons learnt for making the eLearning environment better for all the students in the class, overachievers and underachievers alike.Keywords: partially online course, pedagogy, student engagement, community college
Procedia PDF Downloads 3953290 On-Line Data-Driven Multivariate Statistical Prediction Approach to Production Monitoring
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events in production processes is important to improve safety and reliability of manufacturing operations and reduce losses caused by failures. The construction of calibration models for predicting faulty conditions is quite essential in making decisions on when to perform preventive maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of process measurement data. The calibration model is used to predict faulty conditions from historical reference data. This approach utilizes variable selection techniques, and the predictive performance of several prediction methods are evaluated using real data. The results shows that the calibration model based on supervised probabilistic model yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: calibration model, monitoring, quality improvement, feature selection
Procedia PDF Downloads 3563289 A Deep Dive into the Multi-Pronged Nature of Student Engagement
Authors: Rosaline Govender, Shubnam Rambharos
Abstract:
Universities are, to a certain extent, the source of under-preparedness ideologically, structurally, and pedagogically, particularly since organizational cultures often alienate students by failing to enable epistemological access. This is evident in the unsustainably low graduation rates that characterize South African higher education, which indicate that under 30% graduate in minimum time, under two-thirds graduate within 6 years, and one-third have not graduated after 10 years. Although the statistics for the Faculty of Accounting and Informatics at the Durban University of Technology (DUT) in South Africa have improved significantly from 2019 to 2021, the graduation (32%), throughput (50%), and dropout rates (16%) are still a matter for concern as the graduation rates, in particular, are quite similar to the national statistics. For our students to succeed, higher education should take a multi-pronged approach to ensure student success, and student engagement is one of the ways to support our students. Student engagement depends not only on students’ teaching and learning experiences but, more importantly, on their social and academic integration, their sense of belonging, and their emotional connections in the institution. Such experiences need to challenge students academically and engage their intellect, grow their communication skills, build self-discipline, and promote confidence. The aim of this mixed methods study is to explore the multi-pronged nature of student success within the Faculty of Accounting and Informatics at DUT and focuses on the enabling and constraining factors of student success. The sources of data were the Mid-year student experience survey (N=60), the Hambisa Student Survey (N=85), and semi structured focus group interviews with first, second, and third year students of the Faculty of Accounting and Informatics Hambisa program. The Hambisa (“Moving forward”) focus area is part of the Siyaphumelela 2.0 project at DUT and seeks to understand the multiple challenges that are impacting student success which create a large “middle” cohort of students that are stuck in transition within academic programs. Using the lens of the sociocultural influences on student engagement framework, we conducted a thematic analysis of the two surveys and focus group interviews. Preliminary findings indicate that living conditions, choice of program, access to resources, motivation, institutional support, infrastructure, and pedagogical practices impact student engagement and, thus, student success. It is envisaged that the findings from this project will assist the university in being better prepared to enable student success.Keywords: social and academic integration, socio-cultural influences, student engagement, student success
Procedia PDF Downloads 733288 Instructional Leadership, Information and Communications Technology Competencies and Performance of Basic Education Teachers
Authors: Jay Martin L. Dionaldo
Abstract:
This study aimed to develop a causal model on the performance of the basic education teachers in the Division of Malaybalay City for the school year 2018-2019. This study used the responses of 300 randomly selected basic education teachers of Malaybalay City, Bukidnon. They responded to the three sets of questionnaires patterned from the National Education Association (2018) on instructional leadership of teachers, the questionnaire of Caluza et al., (2017) for information and communications technology competencies and the questionnaire on the teachers’ performance using the Individual Performance Commitment and Review Form (IPCRF) adopted by the Department of Education (DepEd). Descriptive statistics such as mean for the description, correlation for a relationship, regression for the extent influence, and path analysis for the model that best fits teachers’ performance were used. Result showed that basic education teachers have a very satisfactory level of performance. Also, the teachers highly practice instructional leadership practices in terms of coaching and mentoring, facilitating collaborative relationships, and community awareness and engagement. On the other hand, they are proficient users of ICT in terms of technology operations and concepts and basic users in terms of their pedagogical indicators. Furthermore, instructional leadership, coaching and mentoring, facilitating collaborative relationships and community awareness and engagement and information and communications technology competencies; technology operations and concept and pedagogy were significantly correlated toward teachers’ performance. Coaching and mentoring, community awareness and engagement, and technology operations and concept were the best predictors of teachers’ performance. The model that best fit teachers’ performance is anchored on coaching and mentoring of the teachers, embedded with facilitating collaborative relationships, community awareness, and engagement, technology operations, and concepts, and pedagogy.Keywords: information and communications technology, instructional leadership, coaching and mentoring, collaborative relationship
Procedia PDF Downloads 1163287 Future of E-Democracy in Polarized Politics and Role of Government with Perspective of E-Leadership in Pakistan
Authors: Kousar Shaheen
Abstract:
The electoral process of Pakistan always remains underestimated due to malpractices claimed by the political leaders. The democratic system relies on public decision, selectorial process, transparent arrangements made by public administration, and governance system. Political polarization plays a vital role in any democratic system, which depends upon the way of applying leadership capabilities. In modern societies, public engagement is playing a key role in changing political polarization and implementation of the newest technologies, e-leadership and e-governance to bring e-democracy. The Overseas Pakistanis are unable to cast their votes in the selectorial process of Pakistan. To align this issue with civil society, efforts were made to implement modernized services and facilities by intervening in the Supreme Court. However, the results were found insignificant because of ineffective citizen engagement, IT-based, governance and public administration. which proved that the shifting to advanced society is crucial in Pakistan due to the elected Officials of current democratic system. It is an empirical study to involve Pakistani nationals (overseas) in the democratic process by utilizing the digital facility of vote casting. The role of Government. The role of e-leadership in changing the political polarization for the implementation of e-election will be measured by collecting data from different sources.Keywords: e-democracy, e-leadership, political polarization, public engagement
Procedia PDF Downloads 403286 Gamipulation: Exploring Covert Manipulation through Gamification in the Context of Education
Authors: Aguiar-Castillo Lidia, Perez-Jimenez Rafael
Abstract:
The integration of gamification in educational settings aims to enhance student engagement and motivation through game design elements in learning activities. This paper introduces "Gamipulation," the subtle manipulation of students via gamification techniques serving hidden agendas without explicit consent. It highlights the need to distinguish between beneficial and exploitative uses of gamification in education, focusing on its potential to psychologically manipulate students for purposes misaligned with their best interests. Through a literature review and expert interviews, this study presents a conceptual framework outlining gamipulation's features. It examines ethical concerns like gradually introducing desired behaviors, using distraction to divert attention from significant learning objectives, immediacy of rewards fostering short-term engagement over long-term learning, infantilization of students, and exploitation of emotional responses over reflective thinking. Additionally, it discusses ethical issues in collecting and utilizing student data within gamified environments. Key findings suggest that while gamification can enhance motivation and engagement, there's a fine line between ethical motivation and unethical manipulation. The study emphasizes the importance of transparency, respect for student autonomy, and alignment with educational values in gamified systems. It calls for educators and designers to be aware of gamification's manipulative potential and strive for ethical implementation that benefits students. In conclusion, this paper provides a framework for educators and researchers to understand and address gamipulation's ethical challenges. It encourages developing ethical guidelines and practices to ensure gamification in education remains a tool for positive engagement and learning rather than covert manipulation.Keywords: gradualness, distraction, immediacy, infantilization, emotion
Procedia PDF Downloads 283285 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 2313284 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction
Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao
Abstract:
Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme
Procedia PDF Downloads 117