Search results for: automated checklists
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 915

Search results for: automated checklists

585 Integration Network ASI in Lab Automation and Networks Industrial in IFCE

Authors: Jorge Fernandes Teixeira Filho, André Oliveira Alcantara Fontenele, Érick Aragão Ribeiro

Abstract:

The constant emergence of new technologies used in automated processes makes it necessary for teachers and traders to apply new technologies in their classes. This paper presents an application of a new technology that will be employed in a didactic plant, which represents an effluent treatment process located in a laboratory of a federal educational institution. At work were studied in the first place, all components to be placed on automation laboratory in order to determine ways to program, parameterize and organize the plant. New technologies that have been implemented to the process are basically an AS-i network and a Profinet network, a SCADA system, which represented a major innovation in the laboratory. The project makes it possible to carry out in the laboratory various practices of industrial networks and SCADA systems.

Keywords: automation, industrial networks, SCADA systems, lab automation

Procedia PDF Downloads 545
584 Automated Detection of Related Software Changes by Probabilistic Neural Networks Model

Authors: Yuan Huang, Xiangping Chen, Xiaonan Luo

Abstract:

Current software are continuously updating. The change between two versions usually involves multiple program entities (e.g., packages, classes, methods, attributes) with multiple purposes (e.g., changed requirements, bug fixing). It is hard for developers to understand which changes are made for the same purpose. Whether two changes are related is not decided by the relationship between this two entities in the program. In this paper, we summarized 4 coupling rules(16 instances) and 4 state-combination types at the class, method and attribute levels for software change. Related Change Vector (RCV) are defined based on coupling rules and state-combination types, and applied to classify related software changes by using Probabilistic Neural Network during a software updating.

Keywords: PNN, related change, state-combination, logical coupling, software entity

Procedia PDF Downloads 437
583 EhfadHaya (SaveLife) / AateHayah (GiveLife) Blood Donor Website

Authors: Sameer Muhammad Aslam, Nura Said Mohsin Al-Saifi

Abstract:

This research shows the process of creating a blood donation website for Oman. Blood donation is a widespread, crucial, ongoing process, so it is important that this website is easy to use. Several automated blood management systems are available, but none provides an effective algorithm that takes into account variables such as frequency of donation, donation date, and gender. In Oman, the Ministry of Health maintains a blood bank and keeps donors informed about the need for blood through a website. They also inform donors and the wider public where and when is their next blood donation event. The website's main goals are to educate the community about the benefits of blood donation. It also manages donor and receiver documentation and encourages voluntary blood donation by providing easy access to information about blood types and blood distribution in various hospitals in Oman, based on hospital needs.

Keywords: Oman, blood bank, blood donors, donor website

Procedia PDF Downloads 217
582 The Operating Behaviour of Unbalanced Unpaced Merging Assembly Lines

Authors: S. Shaaban, T. McNamara, S. Hudson

Abstract:

This paper reports on the performance of deliberately unbalanced, reliable, non-automated and assembly lines that merge, whose workstations differ in terms of their mean operation times. Simulations are carried out on 5- and 8-station lines with 1, 2 and 4 buffer capacity units, % degrees of line imbalance of 2, 5 and 12, and 24 different patterns of means imbalance. Data on two performance measures, namely throughput and average buffer level were gathered, statistically analysed and compared to a merging balanced line counterpart. It was found that the best configurations are a balanced line arrangement and a monotone decreasing order for each of the parallel merging lines, with the first generally resulting in a lower throughput and the second leading to a lower average buffer level than those of a balanced line.

Keywords: average buffer level, merging lines, simulation, throughput, unbalanced

Procedia PDF Downloads 321
581 Computer Aided Assembly Attributes Retrieval Methods for Automated Assembly Sequence Generation

Authors: M. V. A. Raju Bahubalendruni, Bibhuti Bhusan Biswal, B. B. V. L. Deepak

Abstract:

Achieving an appropriate assembly sequence needs deep verification for its physical feasibility. For this purpose, industrial engineers use several assembly predicates; namely, liaison, geometric feasibility, stability and mechanical feasibility. However, testing an assembly sequence for these predicates requires huge assembly information. Extracting such assembly information from an assembled product is a time consuming and highly skillful task with complex reasoning methods. In this paper, computer aided methods are proposed to extract all the necessary assembly information from computer aided design (CAD) environment in order to perform the assembly sequence planning efficiently. These methods use preliminary capabilities of three-dimensional solid modelling and assembly modelling methods used in CAD software considering equilibrium laws of physical bodies.

Keywords: assembly automation, assembly attributes, assembly, CAD

Procedia PDF Downloads 305
580 From User's Requirements to UML Class Diagram

Authors: Zeineb Ben Azzouz, Wahiba Ben Abdessalem Karaa

Abstract:

The automated extraction of UML class diagram from natural language requirements is a highly challenging task. Many approaches, frameworks and tools have been presented in this field. Nonetheless, the experiments of these tools have shown that there is no approach that can work best all the time. In this context, we propose a new accurate approach to facilitate the automatic mapping from textual requirements to UML class diagram. Our new approach integrates the best properties of statistical Natural Language Processing (NLP) techniques to reduce ambiguity when analysing natural language requirements text. In addition, our approach follows the best practices defined by conceptual modelling experts to determine some patterns indispensable for the extraction of basic elements and concepts of the class diagram. Once the relevant information of class diagram is captured, a XMI document is generated and imported with a CASE tool to build the corresponding UML class diagram.

Keywords: class diagram, user’s requirements, XMI, software engineering

Procedia PDF Downloads 471
579 Evotrader: Bitcoin Trading Using Evolutionary Algorithms on Technical Analysis and Social Sentiment Data

Authors: Martin Pellon Consunji

Abstract:

Due to the rise in popularity of Bitcoin and other crypto assets as a store of wealth and speculative investment, there is an ever-growing demand for automated trading tools, such as bots, in order to gain an advantage over the market. Traditionally, trading in the stock market was done by professionals with years of training who understood patterns and exploited market opportunities in order to gain a profit. However, nowadays a larger portion of market participants are at minimum aided by market-data processing bots, which can generally generate more stable signals than the average human trader. The rise in trading bot usage can be accredited to the inherent advantages that bots have over humans in terms of processing large amounts of data, lack of emotions of fear or greed, and predicting market prices using past data and artificial intelligence, hence a growing number of approaches have been brought forward to tackle this task. However, the general limitation of these approaches can still be broken down to the fact that limited historical data doesn’t always determine the future, and that a lot of market participants are still human emotion-driven traders. Moreover, developing markets such as those of the cryptocurrency space have even less historical data to interpret than most other well-established markets. Due to this, some human traders have gone back to the tried-and-tested traditional technical analysis tools for exploiting market patterns and simplifying the broader spectrum of data that is involved in making market predictions. This paper proposes a method which uses neuro evolution techniques on both sentimental data and, the more traditionally human-consumed, technical analysis data in order to gain a more accurate forecast of future market behavior and account for the way both automated bots and human traders affect the market prices of Bitcoin and other cryptocurrencies. This study’s approach uses evolutionary algorithms to automatically develop increasingly improved populations of bots which, by using the latest inflows of market analysis and sentimental data, evolve to efficiently predict future market price movements. The effectiveness of the approach is validated by testing the system in a simulated historical trading scenario, a real Bitcoin market live trading scenario, and testing its robustness in other cryptocurrency and stock market scenarios. Experimental results during a 30-day period show that this method outperformed the buy and hold strategy by over 260% in terms of net profits, even when taking into consideration standard trading fees.

Keywords: neuro-evolution, Bitcoin, trading bots, artificial neural networks, technical analysis, evolutionary algorithms

Procedia PDF Downloads 123
578 Updating Stochastic Hosting Capacity Algorithm for Voltage Optimization Programs and Interconnect Standards

Authors: Nicholas Burica, Nina Selak

Abstract:

The ADHCAT (Automated Distribution Hosting Capacity Assessment Tool) was designed to run Hosting Capacity Analysis on the ComEd system via a stochastic DER (Distributed Energy Resource) placement on multiple power flow simulations against a set of violation criteria. The violation criteria in the initial version of the tool captured a limited amount of issues that individual departments design against for DER interconnections. Enhancements were made to the tool to further align with individual department violation and operation criteria, as well as the addition of new modules for use for future load profile analysis. A reporting engine was created for future analytical use based on the simulations and observations in the tool.

Keywords: distributed energy resources, hosting capacity, interconnect, voltage optimization

Procedia PDF Downloads 190
577 The Implementation of Human Resource Information System in the Public Sector: An Exploratory Study of Perceived Benefits and Challenges

Authors: Aneeqa Suhail, Shabana Naveed

Abstract:

The public sector (in both developed and developing countries) has gone through various waves of radical reforms in recent decades. In Pakistan, under the influence of New Public Management(NPM) Reforms; best practices of private sector are introduced in the public sector to modernize public organizations. Human Resource Information System (HRIS) has been popular in the private sector and proven to be a successful system, therefore it is being adopted in the public sector too. However, implementation of private business practices in public organizations us very challenging due to differences in context. This implementation gets further critical in Pakistan due to a centralizing tendency and lack of autonomy in public organizations. Adoption of HRIS by public organizations in Pakistan raises several questions: What challenges are faced by public organizations in implementation of HRIS? Are benefits of HRIS such as efficiency, process integration and cost reduction achieved? How is the previous system improved with this change and what are the impacts? Yet, it is an under-researched topic, especially in public enterprises. This study contributes to the existing body of knowledge by empirically exploring benefits and challenges of implementation of HRIS in public organizations. The research adopts a case study approach and uses qualitative data based on in-depth interviews conducted at various levels in the hierarchy including top management, departmental heads and employees. The unit of analysis is LESCO, the Lahore Electric Supply Company, a state-owned entity that generates, transmits and distributes electricity to 4 big cities in Punjab, Pakistan. The findings of the study show that LESCO has not achieved the benefits of HRIS as established in literature. The implementation process remained quite slow and costly. Various functions of HR are still in isolation and integration is a big challenge for the organization. Although the data is automated, the previous system of manually record maintenance and paperwork is still in work, resulting in the presence of parallel practices. The findings also identified resistance to change from top management and labor workforce, lack of commitment and technical knowledge, and costly vendors as major barriers that affect the effective implementation of HRIS. The paper suggests some potential actions to overcome these barriers and to enhance effective implementation of HR-technology. The findings are explained in light of an institutional logics perspective. HRIS’ new logic of automated and integrated HR system is in sharp contrast with the prevailing logic of process-oriented manual data maintenance, leading to resistance to change and deadlock.

Keywords: human resource information system, technological changes, state-owned enterprise, implementation challenges

Procedia PDF Downloads 144
576 Trajectory Planning Algorithms for Autonomous Agricultural Vehicles

Authors: Caner Koc, Dilara Gerdan Koc, Mustafa Vatandas

Abstract:

The fundamental components of autonomous agricultural robot design, such as having a working understanding of coordinates, correctly constructing the desired route, and sensing environmental elements, are the most important. A variety of sensors, hardware, and software are employed by agricultural robots to find these systems.These enable the fully automated driving system of an autonomous vehicle to simulate how a human-driven vehicle would respond to changing environmental conditions. To calculate the vehicle's motion trajectory using data from the sensors, this automation system typically consists of a sophisticated software architecture based on object detection and driving decisions. In this study, the software architecture of an autonomous agricultural vehicle is compared to the trajectory planning techniques.

Keywords: agriculture 5.0, computational intelligence, motion planning, trajectory planning

Procedia PDF Downloads 78
575 Meeting the Challanges of Regulating Artificial Intelligence

Authors: Abdulrahman S. Shryan Aldossary

Abstract:

Globally, artificial intelligence (AI) is already performing legitimate tasks on behalf of humans. In Saudi Arabia, large-scale national projects, primarily based on AI technologies and receiving billions of dollars of funding, are projected for completion by 2030. However, the legal aspect of these projects is seriously vulnerable, given AI’s unprecedented ability to self-learn and act independently. This paper, therefore, identifies the critical legal aspects of AI that authorities and policymakers should be aware of, specifically whether AI can possess identity and be liable for the risk of public harm. The article begins by identifying the problematic characteristics of AI and what should be considered by legal experts when dealing with it. Also discussed are the possible competent institutions that could regulate AI in Saudi Arabia. Finally, a procedural proposal is presented for controlling AI, focused on Saudi Arabia but potentially of interest to other jurisdictions facing similar concerns about AI safety.

Keywords: regulation, artificial intelligence, tech law, automated systems

Procedia PDF Downloads 175
574 Automated Recognition of Still’s Murmur in Children

Authors: Sukryool Kang, James McConnaughey, Robin Doroshow, Raj Shekhar

Abstract:

Still’s murmur, a vibratory heart murmur, is the most common normal innocent murmur of childhood. Many children with this murmur are unnecessarily referred for cardiology consultation and testing, which exacts a high cost financially and emotionally on the patients and their parents. Pediatricians to date are not successful at distinguishing Still’s murmur from murmurs of true heart disease. In this paper, we present a new algorithmic approach to distinguish Still’s murmur from pathological murmurs in children. We propose two distinct features, spectral width and signal power, which describe the sharpness of the spectrum and the signal intensity of the murmur, respectively. Seventy pediatric heart sound recordings of 41 Still’s and 29 pathological murmurs were used to develop and evaluate our algorithm that achieved a true positive rate of 97% and false positive rate of 0%. This approach would meet clinical standards in recognizing Still’s murmur.

Keywords: AR modeling, auscultation, heart murmurs, Still's murmur

Procedia PDF Downloads 368
573 An Automated Sensor System for Cochlear Implants Electrode Array Insertion

Authors: Lei Hou, Xinli Du, Nikolaos Boulgouris

Abstract:

A cochlear implant, referred to as a CI, is a small electronic device that can provide direct electrical stimulation to the auditory nerve. During cochlear implant surgery, atraumatic electrode array insertion is considered to be a crucial step. However, during implantation, the mechanical behaviour of an electrode array inside the cochlea is not known. The behaviour of an electrode array inside of the cochlea is hardly identified by regular methods. In this study, a CI electrode array capacitive sensor system is proposed. It is able to automatically determine the array state as a result of the capacitance variations. Instead of applying sensors to the electrode array, the capacitance information from the electrodes will be gathered and analysed. Results reveal that this sensing method is capable of recognising different states when fed into a pre-shaped model.

Keywords: cochlear implant, electrode, hearing preservation, insertion force, capacitive sensing

Procedia PDF Downloads 238
572 Rapid and Culture-Independent Detection of Staphylococcus Aureus by PCR Based Protocols

Authors: V. Verma, Syed Riyaz-ul-Hassan

Abstract:

Staphylococcus aureus is one of the most commonly found pathogenic bacteria and is hard to eliminate from the human environment. It is responsible for many nosocomial infections, besides being the main causative agent of food intoxication by virtue of its variety of enterotoxins. Routine detection of S. aureus in food is usually carried out by traditional methods based on morphological and biochemical characterization. These methods are time-consuming and tedious. In addition, misclassifications with automated susceptibility testing systems or commercially available latex agglutination kits have been reported by several workers. Consequently, there is a need for methods to specifically discriminate S. aureus from other staphylococci as quickly as possible. Data on protocols developed using molecular means like PCR technology will be presented for rapid and specific detection of this pathogen in food, clinical and environmental samples, especially milk.

Keywords: food Pathogens, PCR technology, rapid and specific detection, staphylococcus aureus

Procedia PDF Downloads 513
571 The Impact of Information and Communication Technology on the Performance of Office Technology Managers

Authors: Sunusi Tijjani

Abstract:

Information and communication technology is an indispensable tool in the performance of office technology managers. Today's offices are automated and equipped with modern office machines that enhances and improve the work of office managers. However, today's office technology managers can process, evaluate, manage and communicate all forms of information using technological devices. Information and Communication Technology is viewed as the process of processing, storing ad dissemination information while office technology managers are trained professional who can effectively operate modern office machines, perform administrative duties and attend meetings to take dawn minute of meetings. This paper examines the importance of information and communication technology toward enhancing the work of office managers. It also stresses the importance of information and communication technology toward proper and accurate record management.

Keywords: communication, information, technology, managers

Procedia PDF Downloads 485
570 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video

Authors: Nidhal K. Azawi, John M. Gauch

Abstract:

Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.

Keywords: colonoscopy classification, feature extraction, image alignment, machine learning

Procedia PDF Downloads 253
569 An Automated R-Peak Detection Method Using Common Vector Approach

Authors: Ali Kirkbas

Abstract:

R peaks in an electrocardiogram (ECG) are signs of cardiac activity in individuals that reveal valuable information about cardiac abnormalities, which can lead to mortalities in some cases. This paper examines the problem of detecting R-peaks in ECG signals, which is a two-class pattern classification problem in fact. To handle this problem with a reliable high accuracy, we propose to use the common vector approach which is a successful machine learning algorithm. The dataset used in the proposed method is obtained from MIT-BIH, which is publicly available. The results are compared with the other popular methods under the performance metrics. The obtained results show that the proposed method shows good performance than that of the other. methods compared in the meaning of diagnosis accuracy and simplicity which can be operated on wearable devices.

Keywords: ECG, R-peak classification, common vector approach, machine learning

Procedia PDF Downloads 64
568 Seamless MATLAB® to Register-Transfer Level Design Methodology Using High-Level Synthesis

Authors: Petri Solanti, Russell Klein

Abstract:

Many designers are asking for an automated path from an abstract mathematical MATLAB model to a high-quality Register-Transfer Level (RTL) hardware description. Manual transformations of MATLAB or intermediate code are needed, when the design abstraction is changed. Design conversion is problematic as it is multidimensional and it requires many different design steps to translate the mathematical representation of the desired functionality to an efficient hardware description with the same behavior and configurability. Yet, a manual model conversion is not an insurmountable task. Using currently available design tools and an appropriate design methodology, converting a MATLAB model to efficient hardware is a reasonable effort. This paper describes a simple and flexible design methodology that was developed together with several design teams.

Keywords: design methodology, high-level synthesis, MATLAB, verification

Procedia PDF Downloads 139
567 Analysis on Cyber Threat Actors Targeting Automated Border Security Systems

Authors: Mirko Sailio

Abstract:

Border crossing automatization reduces required human resources in handling people crossing borders. As technology replaces and augments the work done by border officers, new cyber threats arise to threaten border security. This research analyses the current cyber threat actors and their capabilities. The analysis is conducted by gathering the threat actor data from a wide range of public sources. A model for a general border automatization system is presented, and its most significant cyber-security attributes are then compared to threat actor activity and capabilities in order to predict priorities in securing such systems. Organized crime and nation-state actors present the clearest threat to border cyber-security, and additional focus is given to their motivations and activities.

Keywords: border automation, cyber-security, threat actors, border cyber-security

Procedia PDF Downloads 203
566 Net-Trainer-ST: A Swiss Army Knife for Pentesting, Based on Single Board Computer, for Cybersecurity Professionals and Hobbyists

Authors: K. Hołda, D. Śliwa, K. Daniec, A. Nawrat

Abstract:

This article was created as part of the developed master's thesis. It attempts to present a newly developed device, which will support the work of specialists dealing with broadly understood cybersecurity terms. The device is contrived to automate security tests. In addition, it simulates potential cyberattacks in the most realistic way possible, without causing permanent damage to the network, in order to maximize the quality of the subsequent corrections to the tested network systems. The proposed solution is a fully operational prototype created from commonly available electronic components and a single board computer. The focus of the following article is not only put on the hardware part of the device but also on the theoretical and applicatory way in which implemented cybersecurity tests operate and examples of their results.

Keywords: Raspberry Pi, ethernet, automated cybersecurity tests, ARP, DNS, backdoor, TCP, password sniffing

Procedia PDF Downloads 125
565 Deep Convolutional Neural Network for Detection of Microaneurysms in Retinal Fundus Images at Early Stage

Authors: Goutam Kumar Ghorai, Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, G. Sarkar, Ashis K. Dhara

Abstract:

Diabetes mellitus is one of the most common chronic diseases in all countries and continues to increase in numbers significantly. Diabetic retinopathy (DR) is damage to the retina that occurs with long-term diabetes. DR is a major cause of blindness in the Indian population. Therefore, its early diagnosis is of utmost importance towards preventing progression towards imminent irreversible loss of vision, particularly in the huge population across rural India. The barriers to eye examination of all diabetic patients are socioeconomic factors, lack of referrals, poor access to the healthcare system, lack of knowledge, insufficient number of ophthalmologists, and lack of networking between physicians, diabetologists and ophthalmologists. A few diabetic patients often visit a healthcare facility for their general checkup, but their eye condition remains largely undetected until the patient is symptomatic. This work aims to focus on the design and development of a fully automated intelligent decision system for screening retinal fundus images towards detection of the pathophysiology caused by microaneurysm in the early stage of the diseases. Automated detection of microaneurysm is a challenging problem due to the variation in color and the variation introduced by the field of view, inhomogeneous illumination, and pathological abnormalities. We have developed aconvolutional neural network for efficient detection of microaneurysm. A loss function is also developed to handle severe class imbalance due to very small size of microaneurysms compared to background. The network is able to locate the salient region containing microaneurysms in case of noisy images captured by non-mydriatic cameras. The ground truth of microaneurysms is created by expert ophthalmologists for MESSIDOR database as well as private database, collected from Indian patients. The network is trained from scratch using the fundus images of MESSIDOR database. The proposed method is evaluated on DIARETDB1 and the private database. The method is successful in detection of microaneurysms for dilated and non-dilated types of fundus images acquired from different medical centres. The proposed algorithm could be used for development of AI based affordable and accessible system, to provide service at grass root-level primary healthcare units spread across the country to cater to the need of the rural people unaware of the severe impact of DR.

Keywords: retinal fundus image, deep convolutional neural network, early detection of microaneurysms, screening of diabetic retinopathy

Procedia PDF Downloads 141
564 Solution to Increase the Produced Power in Micro-Hydro Power Plant

Authors: Radu Pop, Adrian Bot, Vasile Rednic, Emil Bruj, Oana Raita, Liviu Vaida

Abstract:

Our research presents a study concerning optimization of water flow capture for micro-hydro power plants in order to increase the energy production. It is known that the fish ladder whole, were the water is capture is fix, and the water flow may vary with the river flow, this means that on the fish ladder we will have different servitude flows, sometimes more than needed. We propose to demonstrate that the ‘winter intake’ from micro-hydro power plant, could be automated with an intelligent system which is capable to read some imposed data and adjust the flow in to the needed value. With this automation concept, we demonstrate that the performance of the micro-hydro power plant could increase, in some flow operating regimes, with approx. 10%.

Keywords: energy, micro-hydro, water intake, fish ladder

Procedia PDF Downloads 234
563 A Multifactorial Algorithm to Automate Screening of Drug-Induced Liver Injury Cases in Clinical and Post-Marketing Settings

Authors: Osman Turkoglu, Alvin Estilo, Ritu Gupta, Liliam Pineda-Salgado, Rajesh Pandey

Abstract:

Background: Hepatotoxicity can be linked to a variety of clinical symptoms and histopathological signs, posing a great challenge in the surveillance of suspected drug-induced liver injury (DILI) cases in the safety database. Additionally, the majority of such cases are rare, idiosyncratic, highly unpredictable, and tend to demonstrate unique individual susceptibility; these qualities, in turn, lend to a pharmacovigilance monitoring process that is often tedious and time-consuming. Objective: Develop a multifactorial algorithm to assist pharmacovigilance physicians in identifying high-risk hepatotoxicity cases associated with DILI from the sponsor’s safety database (Argus). Methods: Multifactorial selection criteria were established using Structured Query Language (SQL) and the TIBCO Spotfire® visualization tool, via a combination of word fragments, wildcard strings, and mathematical constructs, based on Hy’s law criteria and pattern of injury (R-value). These criteria excluded non-eligible cases from monthly line listings mined from the Argus safety database. The capabilities and limitations of these criteria were verified by comparing a manual review of all monthly cases with system-generated monthly listings over six months. Results: On an average, over a period of six months, the algorithm accurately identified 92% of DILI cases meeting established criteria. The automated process easily compared liver enzyme elevations with baseline values, reducing the screening time to under 15 minutes as opposed to multiple hours exhausted using a cognitively laborious, manual process. Limitations of the algorithm include its inability to identify cases associated with non-standard laboratory tests, naming conventions, and/or incomplete/incorrectly entered laboratory values. Conclusions: The newly developed multifactorial algorithm proved to be extremely useful in detecting potential DILI cases, while heightening the vigilance of the drug safety department. Additionally, the application of this algorithm may be useful in identifying a potential signal for DILI in drugs not yet known to cause liver injury (e.g., drugs in the initial phases of development). This algorithm also carries the potential for universal application, due to its product-agnostic data and keyword mining features. Plans for the tool include improving it into a fully automated application, thereby completely eliminating a manual screening process.

Keywords: automation, drug-induced liver injury, pharmacovigilance, post-marketing

Procedia PDF Downloads 152
562 A Survey on Ambient Intelligence in Agricultural Technology

Authors: C. Angel, S. Asha

Abstract:

Despite the advances made in various new technologies, application of these technologies for agriculture still remains a formidable task, as it involves integration of diverse domains for monitoring the different process involved in agricultural management. Advances in ambient intelligence technology represents one of the most powerful technology for increasing the yield of agricultural crops and to mitigate the impact of water scarcity, climatic change and methods for managing pests, weeds, and diseases. This paper proposes a GPS-assisted, machine to machine solutions that combine information collected by multiple sensors for the automated management of paddy crops. To maintain the economic viability of paddy cultivation, the various techniques used in agriculture are discussed and a novel system which uses ambient intelligence technique is proposed in this paper. The ambient intelligence based agricultural system gives a great scope.

Keywords: ambient intelligence, agricultural technology, smart agriculture, precise farming

Procedia PDF Downloads 606
561 Model Based Optimization of Workplace Ergonomics by Workpiece and Resource Positioning

Authors: Edward Hage, Pieter Lietaert, Gabriel Abedrabbo

Abstract:

Musculoskeletal disorders are an important category of work-related diseases. They are often caused by working in non-ergonomic postures and are preventable with proper workplace design, possibly including human-machine collaboration. This paper presents a methodology and a supporting software prototype to design a simple assembly cell with minimal ergonomic risk. The methodology helps to determine the optimal position and orientation of workpieces and workplace resources for specific operator assembly actions. The methodology is tested on an industrial use case: a collaborative robot (cobot) assisted assembly of a clamping device. It is shown that the automated methodology results in a workplace design with significantly reduced ergonomic risk to the operator compared to a manual design of the cell.

Keywords: ergonomics optimization, design for ergonomics, workplace design, pose generation

Procedia PDF Downloads 124
560 Performance Analysis of Artificial Neural Network Based Land Cover Classification

Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul

Abstract:

Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.

Keywords: landcover classification, artificial neural network, remote sensing, SPOT 5

Procedia PDF Downloads 546
559 Using AI for Analysing Political Leaders

Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu

Abstract:

This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.

Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence

Procedia PDF Downloads 86
558 Retraction Free Motion Approach and Its Application in Automated Robotic Edge Finishing and Inspection Processes

Authors: M. Nemer, E. I. Konukseven

Abstract:

In this paper, a motion generation algorithm for a six Degrees of Freedom (DoF) robotic hand in a static environment is presented. The purpose of developing this method is to be used in the path generation of the end-effector for edge finishing and inspection processes by utilizing the CAD model of the considered workpiece. Nonetheless, the proposed algorithm may be extended to be applicable for other similar manufacturing processes. A software package programmed in the application programming interface (API) of SolidWorks generates tool path data for the robot. The proposed method significantly simplifies the given problem, resulting in a reduction in the CPU time needed to generate the path, and offers an efficient overall solution. The ABB IRB2000 robot is chosen for executing the generated tool path.

Keywords: CAD-based tools, edge deburring, edge scanning, offline programming, path generation

Procedia PDF Downloads 284
557 Development on the Modeling Driven Architecture

Authors: Sahar Shahsavaripour Ghazanfarpour

Abstract:

As our daily life depends on quality of built services by systems and using devices in our environment; so education and model of software′s quality will be so important. By daily growth in software′s systems and using them so much, progressing process and requirements′ evaluation in primary level of progress especially architecture level in software get more important. Modern driver architecture changes an in dependent model of a level into some specific models that their purpose is reducing number of software changes into an executive model. Process of designing software engineering is mid-automated. The needed quality attribute in designing architecture and quality attribute in representation are in architecture models. The main problem is the relationship between needs, and elements in some aspect with implicit models and input sources in process. It’s because there is no detection ability. The MART profile is use to describe real-time properties and perform plat form modeling.

Keywords: MDA, DW, OMG, UML, AKB, software architecture, ontology, evaluation

Procedia PDF Downloads 495
556 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie

Abstract:

Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. That is why the need for automation of this task is urgent. A lot of studies have investigated the subject using different standard image processing descriptors and sometimes hand-crafted ones.In this work, we make a comparative study between classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN, Autoencoders, Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approaches

Keywords: pollens identification, features extraction, pollens classification, automated palynology

Procedia PDF Downloads 136