Search results for: the adapted English lessons
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3463

Search results for: the adapted English lessons

13 Including All Citizens Pathway (IACP): Transforming Post-Secondary Education Using Inclusion and Accessibility as Foundation

Authors: Fiona Whittington-Walsh

Abstract:

Including All Citizens Pathway (IACP) is addressing the systems wide discrimination that students with disabilities experience throughout the education system. IACP offers a wide, institutional support structure so that all students, including students with intellectual/developmental disabilities, are included and can succeed. The entire process from admissions, course selection, course instruction, graduation is designed to address systemic discrimination while supporting learners and faculty. The inclusive and accessible pedagogical model that is the foundation of IACP opens the doors of post-secondary education by making existing academic courses environments where all students can participate and succeed. IACP is about transforming teaching, not modifying, or adapting the curriculum or essential knowledge and skill sets that are required learning outcomes. Universal Design for Learning (UDL) principles are applied to instructional teaching strategies such as lectures, presentations, and assessment tools. Created in 2016 as a research pilot, IACP is one of the first fully inclusive for credit post-secondary options available. The pilot received numerous external and internal grants to support its initiative to investigate and assess the teaching strategies and techniques that support student learning of essential knowledge and skill sets. IACP pilot goals included: (1) provide a successful pilot as a model of inclusive and accessible pedagogy; (2) create a teacher’s guide to assist other instructors in transforming their teaching to reach a wide range of learners; (3) identify policy barriers located within the educational system; and (4) provide leadership and encouraging innovative and inclusive pedagogical practices. The pilot was a success and in 2020 the first cohort of students graduated with an exit credential that pre-exists IACP and consists of ten academic courses. The University has committed to continue IACP and has developed a sustainable model. Each new academic year a new cohort of IACP students starts their post-secondary educational journey, while two additional instructors are mentored with the pedagogy. The pedagogical foundation of IACP has far-reaching potential including, but not limited to, programs that offer services for international students whose first language is not English as well as influencing pedagogical reform in secondary and post-secondary education. IACP also supports universities in satisfying educational standards that are or will be included in accessibility/disability legislation. This session will present information about IACP, share examples of systems transformation, hear from students and instructors, and provide participatory experiential activities that demonstrate the transformative techniques. We will be drawing from the experiences of a recent course that explored research documenting the lived experiences of students with disabilities in post-secondary institutes in B.C (Whittington-Walsh). Students created theatrical scenes out of the data and presented it using Forum Theatre method. Forum Theatre was used to create conversations, challenge stereotypes, and build connections between ableism, disability justice, Indigeneity, and social policy.

Keywords: disability justice, inclusive education, pedagogical transformation, systems transformation

Procedia PDF Downloads 8
12 Unveiling the Dynamics of Preservice Teachers’ Engagement with Mathematical Modeling through Model Eliciting Activities: A Comprehensive Exploration of Acceptance and Resistance Towards Modeling and Its Pedagogy

Authors: Ozgul Kartal, Wade Tillett, Lyn D. English

Abstract:

Despite its global significance in curricula, mathematical modeling encounters persistent disparities in recognition and emphasis within regular mathematics classrooms and teacher education across countries with diverse educational and cultural traditions, including variations in the perceived role of mathematical modeling. Over the past two decades, increased attention has been given to the integration of mathematical modeling into national curriculum standards in the U.S. and other countries. Therefore, the mathematics education research community has dedicated significant efforts to investigate various aspects associated with the teaching and learning of mathematical modeling, primarily focusing on exploring the applicability of modeling in schools and assessing students', teachers', and preservice teachers' (PTs) competencies and engagement in modeling cycles and processes. However, limited attention has been directed toward examining potential resistance hindering teachers and PTs from effectively implementing mathematical modeling. This study focuses on how PTs, without prior modeling experience, resist and/or embrace mathematical modeling and its pedagogy as they learn about models and modeling perspectives, navigate the modeling process, design and implement their modeling activities and lesson plans, and experience the pedagogy enabling modeling. Model eliciting activities (MEAs) were employed due to their high potential to support the development of mathematical modeling pedagogy. The mathematical modeling module was integrated into a mathematics methods course to explore how PTs embraced or resisted mathematical modeling and its pedagogy. The module design included reading, reflecting, engaging in modeling, assessing models, creating a modeling task (MEA), and designing a modeling lesson employing an MEA. Twelve senior undergraduate students participated, and data collection involved video recordings, written prompts, lesson plans, and reflections. An open coding analysis revealed acceptance and resistance toward teaching mathematical modeling. The study identified four overarching themes, including both acceptance and resistance: pedagogy, affordance of modeling (tasks), modeling actions, and adjusting modeling. In the category of pedagogy, PTs displayed acceptance based on potential pedagogical benefits and resistance due to various concerns. The affordance of modeling (tasks) category emerged from instances when PTs showed acceptance or resistance while discussing the nature and quality of modeling tasks, often debating whether modeling is considered mathematics. PTs demonstrated both acceptance and resistance in their modeling actions, engaging in modeling cycles as students and designing/implementing MEAs as teachers. The adjusting modeling category captured instances where PTs accepted or resisted maintaining the qualities and nature of the modeling experience or converted modeling into a typical structured mathematics experience for students. While PTs displayed a mix of acceptance and resistance in their modeling actions, limitations were observed in embracing complexity and adhering to model principles. The study provides valuable insights into the challenges and opportunities of integrating mathematical modeling into teacher education, emphasizing the importance of addressing pedagogical concerns and providing support for effective implementation. In conclusion, this research offers a comprehensive understanding of PTs' engagement with modeling, advocating for a more focused discussion on the distinct nature and significance of mathematical modeling in the broader curriculum to establish a foundation for effective teacher education programs.

Keywords: mathematical modeling, model eliciting activities, modeling pedagogy, secondary teacher education

Procedia PDF Downloads 65
11 ChatGPT 4.0 Demonstrates Strong Performance in Standardised Medical Licensing Examinations: Insights and Implications for Medical Educators

Authors: K. O'Malley

Abstract:

Background: The emergence and rapid evolution of large language models (LLMs) (i.e., models of generative artificial intelligence, or AI) has been unprecedented. ChatGPT is one of the most widely used LLM platforms. Using natural language processing technology, it generates customized responses to user prompts, enabling it to mimic human conversation. Responses are generated using predictive modeling of vast internet text and data swathes and are further refined and reinforced through user feedback. The popularity of LLMs is increasing, with a growing number of students utilizing these platforms for study and revision purposes. Notwithstanding its many novel applications, LLM technology is inherently susceptible to bias and error. This poses a significant challenge in the educational setting, where academic integrity may be undermined. This study aims to evaluate the performance of the latest iteration of ChatGPT (ChatGPT4.0) in standardized state medical licensing examinations. Methods: A considered search strategy was used to interrogate the PubMed electronic database. The keywords ‘ChatGPT’ AND ‘medical education’ OR ‘medical school’ OR ‘medical licensing exam’ were used to identify relevant literature. The search included all peer-reviewed literature published in the past five years. The search was limited to publications in the English language only. Eligibility was ascertained based on the study title and abstract and confirmed by consulting the full-text document. Data was extracted into a Microsoft Excel document for analysis. Results: The search yielded 345 publications that were screened. 225 original articles were identified, of which 11 met the pre-determined criteria for inclusion in a narrative synthesis. These studies included performance assessments in national medical licensing examinations from the United States, United Kingdom, Saudi Arabia, Poland, Taiwan, Japan and Germany. ChatGPT 4.0 achieved scores ranging from 67.1 to 88.6 percent. The mean score across all studies was 82.49 percent (SD= 5.95). In all studies, ChatGPT exceeded the threshold for a passing grade in the corresponding exam. Conclusion: The capabilities of ChatGPT in standardized academic assessment in medicine are robust. While this technology can potentially revolutionize higher education, it also presents several challenges with which educators have not had to contend before. The overall strong performance of ChatGPT, as outlined above, may lend itself to unfair use (such as the plagiarism of deliverable coursework) and pose unforeseen ethical challenges (arising from algorithmic bias). Conversely, it highlights potential pitfalls if users assume LLM-generated content to be entirely accurate. In the aforementioned studies, ChatGPT exhibits a margin of error between 11.4 and 32.9 percent, which resonates strongly with concerns regarding the quality and veracity of LLM-generated content. It is imperative to highlight these limitations, particularly to students in the early stages of their education who are less likely to possess the requisite insight or knowledge to recognize errors, inaccuracies or false information. Educators must inform themselves of these emerging challenges to effectively address them and mitigate potential disruption in academic fora.

Keywords: artificial intelligence, ChatGPT, generative ai, large language models, licensing exam, medical education, medicine, university

Procedia PDF Downloads 32
10 Voices of Dissent: Case Study of a Digital Archive of Testimonies of Political Oppression

Authors: Andrea Scapolo, Zaya Rustamova, Arturo Matute Castro

Abstract:

The “Voices in Dissent” initiative aims at collecting and making available in a digital format, testimonies, letters, and other narratives produced by victims of political oppression from different geographical spaces across the Atlantic. By recovering silenced voices behind the official narratives, this open-access online database will provide indispensable tools for rewriting the history of authoritarian regimes from the margins as memory debates continue to provoke controversy among academic and popular transnational circles. In providing an extensive database of non-hegemonic discourses in a variety of political and social contexts, the project will complement the existing European and Latin-American studies, and invite further interdisciplinary and trans-national research. This digital resource will be available to academic communities and the general audience and will be organized geographically and chronologically. “Voices in Dissent” will offer a first comprehensive study of these personal accounts of persecution and repression against determined historical backgrounds and their impact on collective memory formation in contemporary societies. The digitalization of these texts will allow to run metadata analyses and adopt comparatist approaches for a broad range of research endeavors. Most of the testimonies included in our archive are testimonies of trauma: the trauma of exile, imprisonment, torture, humiliation, censorship. The research on trauma has now reached critical mass and offers a broad spectrum of critical perspectives. By putting together testimonies from different geographical and historical contexts, our project will provide readers and scholars with an extraordinary opportunity to investigate how culture shapes individual and collective memories and provides or denies resources to make sense and cope with the trauma. For scholars dealing with the epistemological and rhetorical analysis of testimonies, an online open-access archive will prove particularly beneficial to test theories on truth status and the formation of belief as well as to study the articulation of discourse. An important aspect of this project is also its pedagogical applications since it will contribute to the creation of Open Educational Resources (OER) to support students and educators worldwide. Through collaborations with our Library System, the archive will form part of the Digital Commons database. The texts collected in this online archive will be made available in the original languages as well as in English translation. They will be accompanied by a critical apparatus that will contextualize them historically by providing relevant background information and bibliographical references. All these materials can serve as a springboard for a broad variety of educational projects and classroom activities. They can also be used to design specific content courses or modules. In conclusion, the desirable outcomes of the “Voices in Dissent” project are: 1. the collections and digitalization of political dissent testimonies; 2. the building of a network of scholars, educators, and learners involved in the design, development, and sustainability of the digital archive; 3. the integration of the content of the archive in both research and teaching endeavors, such as publication of scholarly articles, design of new upper-level courses, and integration of the materials in existing courses.

Keywords: digital archive, dissent, open educational resources, testimonies, transatlantic studies

Procedia PDF Downloads 106
9 Canadian Undergraduate and Graduate Nursing Students: Interest in Education in Medical and Recreational Cannabis for Practice and Career Development

Authors: Margareth S. Zanchetta, Kateryna Metersky, Valerie Tan, Charissa Cordon, Stephanie Lucchese, Yana Siganevich, Prasha Sivasundaram, Truong Binh Nguyen, Imran Qureshi

Abstract:

Due to a new area of practice, Canadian nurses possess knowledge gaps regarding the use of cannabis-based therapies by clients/patients. Education related to medical cannabis (MC) and recreational cannabis (RC) is required to promote nurses’ competency and confidence in supporting clients/patients using MC/RC toward the improvement of health outcomes. A team composed of nursing researchers and undergraduate/graduate students implemented a national survey to explore this theme with the population of undergraduate, graduate (MN and NP), and Post-Diploma (RN Bridging) nursing students enrolled in Canadian Universities Nursing Programs. Upon Research Ethics Board approval, survey recruitment was supported by major nursing stakeholders. The research questions were : (a) Which are the most preferred sources of information on MC/RC for nursing students? (b) Which are the factors and preferred learning modalities that could increase interest in learning about MC/RC, and (c) What are the future career plans among nursing students, and how would they consider the prospective use of cannabis in their practice? The survey was available from Sept. 2022 to Feb. 2023, hosted by a remote platform. An original questionnaire (English-French) was composed of 18 multiple choice questions and 2 open-ended questions. Sociodemographic information and closed-ended responses were compiled as descriptive statistics, while narrative accounts will be analysed through thematic analysis. Respondents (n=153) were from 7 Canadian provinces, national (99%) and international students (1%); the majority of respondents (61%) were in the age range of 21-30 years old. Results indicated that respondents perceive a gap in the undergraduate curriculum on the topics of MC/RC (91%) and that their learning needs include regulations (90%), data on effectiveness (88%), dosing best practices (86%), contraindications (83%), and clinical and medical indications (76%). Respondents reported motivation to learn more about MC/RC through online lectures/videos (65%), e-learning modules or online interactive training (61%), workshops (51%), webinars (36%), and social media (35%). Their primary career-related motivations regarding MC/RC knowledge include enhancing nursing practice (76%), learning about this growing scope of practice (61%), keeping up-to-date responding to scientific curiosity (59%), learning about evidence-based practice (59%), and utilizing alternative forms of medical treatment (37%). Respondents indicated that the integration of topics on cannabis in any course in the undergraduate and/or graduate curriculum would increase their desire to learn about MC/RC as equally as exposure within a clinical setting (75%). The emerging trend in the set of narrative responses (n=130) suggests that respondents believe educational MC/RC content should be integrated into core nursing courses. Respondents also urged educators to be well-informed about evidence-based practice related to MC/RC and to reflect upon stigma and biases surrounding its use. Future knowledge dissemination and translation activities include scholarly products and presentations to stimulate discussion amongst nursing faculty and students, as well as nurses in clinical settings. The goal is to mobilise talents and build collaboration for the development of a socially responsive curriculum on MC/RC competency to address the education-related expectations of all these social actors.

Keywords: Canada, medical cannabis, nursing education, nursing graduate student, nursing undergraduate student, online survey, recreational cannabis

Procedia PDF Downloads 90
8 Cluster Randomized Trial of 'Ready to Learn': An After-School Literacy Program for Children Starting School

Authors: Geraldine Macdonald, Oliver Perra, Nina O’Neill, Laura Neeson, Kathryn Higgins

Abstract:

Background: Despite improvements in recent years, almost one in six children in Northern Ireland (NI) leaves primary school without achieving the expected level in English and Maths. By early adolescence, this ratio is one in five. In 2010-11, around 9000 pupils in NI had failed to achieve the required standard in literacy and numeracy by the time they left full-time education. This paper reports the findings of an experimental evaluation of a programmed designed to improve educational outcomes of a cohort of children starting primary school in areas of high social disadvantage in Northern Ireland. The intervention: ‘Ready to Learn’ comprised two key components: a literacy-rich After School programme (one hour after school, three days per week), and a range of activities and support to promote the engagement of parents with their children’s learning, in school and at home. The intervention was delivered between September 2010 and August 2013. Study aims and objectives: The primary aim was to assess whether, and to what extent, ‘Ready to Learn’ improved the literacy of socially disadvantaged children entering primary schools compared with children in schools without access to the programme. Secondary aims included assessing the programme’s impact on children’s social, emotional and behavioural regulation, and parents’ engagement with their children’s learning. In total, 505 children (almost all) participated in the baseline assessment for the study, with good retention over seven sweeps of data collection. Study design: The intervention was evaluated by means of a cluster randomized trial, with schools as the unit of randomization and analysis. It included a qualitative component designed to examine process and implementation, and to explore the concept of parental engagement. Sixteen schools participated, with nine randomized to the experimental group. As well as outcome data relating to children, 134 semi-structured interviews were conducted with parents over the three years of the study, together with 88 interviews with school staff. Results: Given the children’s ages, not all measures used were direct measures of reading. Findings point to a positive impact of “Ready to Learn” on children’s reading achievement (comprehension and fluency), as assessed by the York Assessment of Reading Comprehension (YARC) and decoding, assessed using the Word Recognition and Phonic Skills (WRaPS3). Effects were not large, but evidence suggests that it is unusual for an after school programme to clearly to demonstrate effects on reading skills. No differences were found on three other measures of literacy-related skills: British Picture Vocabulary Scale (BPVS-II), Naming Speed and Non-word Reading Tests from the Phonological Assessment Battery (PhAB) or Concepts about Print (CAP) – the last due to an age-related ceiling effect). No differences were found between the two groups on measures of social, emotional and behavioural regulation, and due to low levels of participation, it was not possible directly to assess the contribution of the parent component to children’s outcomes. The qualitative data highlighted conflicting concepts of engagement between parents and school staff. Ready to Learn is a promising intervention that merits further support and evaluation.

Keywords: after-school, education, literacy, parental engagement

Procedia PDF Downloads 379
7 Structured-Ness and Contextual Retrieval Underlie Language Comprehension

Authors: Yao-Ying Lai, Maria Pinango, Ashwini Deo

Abstract:

While grammatical devices are essential to language processing, how comprehension utilizes cognitive mechanisms is less emphasized. This study addresses this issue by probing the complement coercion phenomenon: an entity-denoting complement following verbs like begin and finish receives an eventive interpretation. For example, (1) “The queen began the book” receives an agentive reading like (2) “The queen began [reading/writing/etc.…] the book.” Such sentences engender additional processing cost in real-time comprehension. The traditional account attributes this cost to an operation that coerces the entity-denoting complement to an event, assuming that these verbs require eventive complements. However, in closer examination, examples like “Chapter 1 began the book” undermine this assumption. An alternative, Structured Individual (SI) hypothesis, proposes that the complement following aspectual verbs (AspV; e.g. begin, finish) is conceptualized as a structured individual, construed as an axis along various dimensions (e.g. spatial, eventive, temporal, informational). The composition of an animate subject and an AspV such as (1) engenders an ambiguity between an agentive reading along the eventive dimension like (2), and a constitutive reading along the informational/spatial dimension like (3) “[The story of the queen] began the book,” in which the subject is interpreted as a subpart of the complement denotation. Comprehenders need to resolve the ambiguity by searching contextual information, resulting in additional cost. To evaluate the SI hypothesis, a questionnaire was employed. Method: Target AspV sentences such as “Shakespeare began the volume.” were preceded by one of the following types of context sentence: (A) Agentive-biasing, in which an event was mentioned (…writers often read…), (C) Constitutive-biasing, in which a constitutive meaning was hinted (Larry owns collections of Renaissance literature.), (N) Neutral context, which allowed both interpretations. Thirty-nine native speakers of English were asked to (i) rate each context-target sentence pair from a 1~5 scale (5=fully understandable), and (ii) choose possible interpretations for the target sentence given the context. The SI hypothesis predicts that comprehension is harder for the Neutral condition, as compared to the biasing conditions because no contextual information is provided to resolve an ambiguity. Also, comprehenders should obtain the specific interpretation corresponding to the context type. Results: (A) Agentive-biasing and (C) Constitutive-biasing were rated higher than (N) Neutral conditions (p< .001), while all conditions were within the acceptable range (> 3.5 on the 1~5 scale). This suggests that when lacking relevant contextual information, semantic ambiguity decreases comprehensibility. The interpretation task shows that the participants selected the biased agentive/constitutive reading for condition (A) and (C) respectively. For the Neutral condition, the agentive and constitutive readings were chosen equally often. Conclusion: These findings support the SI hypothesis: the meaning of AspV sentences is conceptualized as a parthood relation involving structured individuals. We argue that semantic representation makes reference to spatial structured-ness (abstracted axis). To obtain an appropriate interpretation, comprehenders utilize contextual information to enrich the conceptual representation of the sentence in question. This study connects semantic structure to human’s conceptual structure, and provides a processing model that incorporates contextual retrieval.

Keywords: ambiguity resolution, contextual retrieval, spatial structured-ness, structured individual

Procedia PDF Downloads 333
6 Black-Box-Optimization Approach for High Precision Multi-Axes Forward-Feed Design

Authors: Sebastian Kehne, Alexander Epple, Werner Herfs

Abstract:

A new method for optimal selection of components for multi-axes forward-feed drive systems is proposed in which the choice of motors, gear boxes and ball screw drives is optimized. Essential is here the synchronization of electrical and mechanical frequency behavior of all axes because even advanced controls (like H∞-controls) can only control a small part of the mechanical modes – namely only those of observable and controllable states whose value can be derived from the positions of extern linear length measurement systems and/or rotary encoders on the motor or gear box shafts. Further problems are the unknown processing forces like cutting forces in machine tools during normal operation which make the estimation and control via an observer even more difficult. To start with, the open source Modelica Feed Drive Library which was developed at the Laboratory for Machine Tools, and Production Engineering (WZL) is extended from one axis design to the multi axes design. It is capable to simulate the mechanical, electrical and thermal behavior of permanent magnet synchronous machines with inverters, different gear boxes and ball screw drives in a mechanical system. To keep the calculation time down analytical equations are used for field and torque producing equivalent circuit, heat dissipation and mechanical torque at the shaft. As a first step, a small machine tool with a working area of 635 x 315 x 420 mm is taken apart, and the mechanical transfer behavior is measured with an impulse hammer and acceleration sensors. With the frequency transfer functions, a mechanical finite element model is built up which is reduced with substructure coupling to a mass-damper system which models the most important modes of the axes. The model is modelled with Modelica Feed Drive Library and validated by further relative measurements between machine table and spindle holder with a piezo actor and acceleration sensors. In a next step, the choice of possible components in motor catalogues is limited by derived analytical formulas which are based on well-known metrics to gain effective power and torque of the components. The simulation in Modelica is run with different permanent magnet synchronous motors, gear boxes and ball screw drives from different suppliers. To speed up the optimization different black-box optimization methods (Surrogate-based, gradient-based and evolutionary) are tested on the case. The objective that was chosen is to minimize the integral of the deviations if a step is given on the position controls of the different axes. Small values are good measures for a high dynamic axes. In each iteration (evaluation of one set of components) the control variables are adjusted automatically to have an overshoot less than 1%. It is obtained that the order of the components in optimization problem has a deep impact on the speed of the black-box optimization. An approach to do efficient black-box optimization for multi-axes design is presented in the last part. The authors would like to thank the German Research Foundation DFG for financial support of the project “Optimierung des mechatronischen Entwurfs von mehrachsigen Antriebssystemen (HE 5386/14-1 | 6954/4-1)” (English: Optimization of the Mechatronic Design of Multi-Axes Drive Systems).

Keywords: ball screw drive design, discrete optimization, forward feed drives, gear box design, linear drives, machine tools, motor design, multi-axes design

Procedia PDF Downloads 286
5 Septic Pulmonary Emboli as a Complication of Peripheral Venous Cannula Insertion

Authors: Ankita Baidya, Vanishri Ganakumar, Ranveer S. Jadon, Piyush Ranjan, Rita Sood

Abstract:

Septic embolism can have varied presentations and clinical considerations. Infected central venous catheters are commonly associated with septic emboli but peripheral vascular catheters are rarely implicated. We describe a rare case of septic pulmonary emboli related to infected peripheral venous cannulation caused by an unusual etiological agent. A young male presented with complaints of fever, productive cough, sudden onset shortness of breath and cellulitis in both the upper limbs. He was recently hospitalised for dengue fever and administered intravenous fluids through peripheral venous line. The patient was febrile, tachypneic and in respiratory distress, there were multiple pus filled bullae in left hand alongwith swelling and erythema involving right forearm that started at the site of cannulation. Chest examination showed active accessory muscles of respiration, stony dull percussion at the base of right lung and decreased breath sounds at right infrascapular, infraaxillary and mammary area. Other system examination was within normal limits. Chest X-ray revealed bilateral multiple patchy heterogenous peripheral opacities and infiltrates with right-sided pleural effusion. Contrast-enhanced computed tomography (CECT) chest showed feeding vessel sign confirming the diagnosis as septic emboli. Venous Doppler and 2D-echocardiogarm were normal. Laboratory findings showed marked leucocytosis (22000/mm3). Pus aspirate, blood sample, and sputum sample were sent for microbiological testing. The patient was started empirically on ceftriaxone, vancomycin, and clindamycin. The Pus culture and sputum culture showed Klebsiella pneumoniae sensitive to cefoperazone-sulbactum, piperacillin-tazobactum, meropenem and amikacin. The antibiotics were modified accordingly to antimicrobial sensitivity profile to Cefoperazone-sulbactum. Bronchoalveolar lavage (BAL) was done and sent for microbiological investigations. BAL culture showed Klebsiella pneumoniae with same antimicrobial resistance profile. On day 6 of starting cefoperazone-sulbactum, he became afebrile. The skin lesions improved significantly. He was administered 2 weeks of cefoperazone–sulbactum and discharged on oral faropenem for 4 weeks. At the time of discharge, TLC was 11200/mm3 with marked radiological resolution of infection and healed skin lesions. He was kept in regular follow up. Chest X-ray and skin lesions showed complete resolution after 8 weeks. Till date, only couple of case reports of septic emboli through peripheral intravenous line have been reported in English literature. This case highlights that a simple procedure of peripheral intravenous cannulation can lead to catastrophic complication of septic pulmonary emboli and widespread cellulitis if not done with proper care and precautions. Also, the usual pathogens in such clinical settings are gram positive bacteria, but with the history of recent hospitalization, empirical therapy should also cover drug resistant gram negative microorganisms. It also emphasise the importance of appropriate healthcare practices to be taken care during all procedures.

Keywords: antibiotics, cannula, Klebsiella pneumoniae, septic emboli

Procedia PDF Downloads 160
4 Clinical Course and Prognosis of Cutaneous Manifestations of COVID-19: A Systematic Review of Reported Cases

Authors: Hilary Modir, Kyle Dutton, Michelle Swab, Shabnam Asghari

Abstract:

Since its emergence, the cutaneous manifestations of COVID-19 have been documented in the literature. However, the majority are case reports with significant limitations in appraisal quality, thus leaving the role of dermatological manifestations of COVID-19 erroneously underexplored. The primary aim of this review was to systematically examine clinical patterns of dermatological manifestations as reported in the literature. This study was designed as a systematic review of case reports. The inclusion criteria consisted of all published reports and articles regarding COVID-19 in English, from September 1st, 2019, until June 22nd, 2020. The population consisted of confirmed cases of COVID-19 with associated cutaneous signs and symptoms. Exclusion criteria included research in planning stages, protocols, book reviews, news articles, review studies, and policy analyses. With the collaboration of a librarian, a search strategy was created consisting of a mixture of keyword terms and controlled vocabulary. Electronic databases searched were MEDLINE via PubMed, EMBASE, CINAHL, Web of Science, LILACS, PsycINFO, WHO Global Literature on Coronavirus Disease, Cochrane Library, Campbell Collaboration, Prospero, WHO International Clinical Trials Registry Platform, Australian and New Zealand Clinical Trials Registry, U.S. Institutes of Health Ongoing Trials Register, AAD Registry, OSF preprints, SSRN, MedRxiV and BioRxiV. The study selection featured an initial pre-screening of titles and abstracts by one independent reviewer. Results were verified by re-examining a random sample of 1% of excluded articles. Eligible studies progressed for full-text review by two calibrated independent reviewers. Covidence was used to store and extract data, such as citation information and findings pertaining to COVID-19 and cutaneous signs and symptoms. Data analysis and summarization methodology reflect the framework proposed by PRISMA and recommendations set out by Cochrane and Joanna Brigg’s Institute for conducting systematic reviews. The Oxford Centre for Evidence-Based Medicine’s level of evidence was used to appraise the quality of individual studies. The literature search revealed a total of 1221 articles. After the abstract and full-text screening, only 95 studies met the eligibility criteria, proceeding to data extraction. Studies were divided into 58% case reports and 42% series. A total of 833 manifestations were reported in 723 confirmed COVID-19 cases. The most frequent lesions were 23% maculopapular, 15% urticarial and 13% pseudo-chilblains, with 46% of lesions reporting pruritus, 16% erythema, 14% pain, 12% burning sensation, and 4% edema. The most common lesion locations were 20% trunk, 19.5% lower limbs, and 17.7% upper limbs. The time to resolution of lesions was between one and twenty-one days. In conclusion, over half of the reported cutaneous presentations in COVID-19 positive patients were maculopapular, urticarial and pseudo-chilblains, with the majority of lesions distributed to the extremities and trunk. As this review’s sample size only contained COVID-19 confirmed cases with skin presentations, it becomes difficult to deduce the direct relationship between skin findings and COVID-19. However, it can be correlated that acute onset of skin lesions, such as chilblains-like, may be associated with or may warrant consideration of COVID-19 as part of the differential diagnosis.

Keywords: COVID-19, cutaneous manifestations, cutaneous signs, general dermatology, medical dermatology, Sars-Cov-2, skin and infectious disease, skin findings, skin manifestations

Procedia PDF Downloads 181
3 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales

Authors: Philipp Sommer, Amgad Agoub

Abstract:

The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.

Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning

Procedia PDF Downloads 57
2 Developing a Place-Name Gazetteer for Singapore by Mining Historical Planning Archives and Selective Crowd-Sourcing

Authors: Kevin F. Hsu, Alvin Chua, Sarah X. Lin

Abstract:

As a multilingual society, Singaporean names for different parts of the city have changed over time. Residents included Indigenous Malays, dialect-speakers from China, European settler-colonists, and Tamil-speakers from South India. Each group would name locations in their own languages. Today, as ancestral tongues are increasingly supplanted by English, contemporary Singaporeans’ understanding of once-common place names is disappearing. After demolition or redevelopment, some urban places will only exist in archival records or in human memory. United Nations conferences on the standardization of geographic names have called attention to how place names relate to identity, well-being, and a sense of belonging. The Singapore Place-Naming Project responds to these imperatives by capturing past and present place names through digitizing historical maps, mining archival records, and applying selective crowd-sourcing to trace the evolution of place names throughout the city. The project ensures that both formal and vernacular geographical names remain accessible to historians, city planners, and the public. The project is compiling a gazetteer, a geospatial archive of placenames, with streets, buildings, landmarks, and other points of interest (POI) appearing in the historic maps and planning documents of Singapore, currently held by the National Archives of Singapore, the National Library Board, university departments, and the Urban Redevelopment Authority. To create a spatial layer of information, the project links each place name to either a geo-referenced point, line segment, or polygon, along with the original source material in which the name appears. This record is supplemented by crowd-sourced contributions from civil service officers and heritage specialists, drawing from their collective memory to (1) define geospatial boundaries of historic places that appear in past documents, but maybe unfamiliar to users today, and (2) identify and record vernacular place names not captured in formal planning documents. An intuitive interface allows participants to demarcate feature classes, vernacular phrasings, time periods, and other knowledge related to historical or forgotten spaces. Participants are stratified into age bands and ethnicity to improve representativeness. Future iterations could allow additional public contributions. Names reveal meanings that communities assign to each place. While existing historical maps of Singapore allow users to toggle between present-day and historical raster files, this project goes a step further by adding layers of social understanding and planning documents. Tracking place names illuminates linguistic, cultural, commercial, and demographic shifts in Singapore, in the context of transformations of the urban environment. The project also demonstrates how a moderated, selectively crowd-sourced effort can solicit useful geospatial data at scale, sourced from different generations, and at higher granularity than traditional surveys, while mitigating negative impacts of unmoderated crowd-sourcing. Stakeholder agencies believe the project will achieve several objectives, including Supporting heritage conservation and public education; Safeguarding intangible cultural heritage; Providing historical context for street, place or development-renaming requests; Enhancing place-making with deeper historical knowledge; Facilitating emergency and social services by tagging legal addresses to vernacular place names; Encouraging public engagement with heritage by eliciting multi-stakeholder input.

Keywords: collective memory, crowd-sourced, digital heritage, geospatial, geographical names, linguistic heritage, place-naming, Singapore, Southeast Asia

Procedia PDF Downloads 129
1 Modeling the Human Harbor: An Equity Project in New York City, New York USA

Authors: Lauren B. Birney

Abstract:

The envisioned long-term outcome of this three-year research, and implementation plan is for 1) teachers and students to design and build their own computational models of real-world environmental-human health phenomena occurring within the context of the “Human Harbor” and 2) project researchers to evaluate the degree to which these integrated Computer Science (CS) education experiences in New York City (NYC) public school classrooms (PreK-12) impact students’ computational-technical skill development, job readiness, career motivations, and measurable abilities to understand, articulate, and solve the underlying phenomena at the center of their models. This effort builds on the partnership’s successes over the past eight years in developing a benchmark Model of restoration-based Science, Technology, Engineering, and Math (STEM) education for urban public schools and achieving relatively broad-based implementation in the nation’s largest public school system. The Billion Oyster Project Curriculum and Community Enterprise for Restoration Science (BOP-CCERS STEM + Computing) curriculum, teacher professional developments, and community engagement programs have reached more than 200 educators and 11,000 students at 124 schools, with 84 waterfront locations and Out of School of Time (OST) programs. The BOP-CCERS Partnership is poised to develop a more refined focus on integrating computer science across the STEM domains; teaching industry-aligned computational methods and tools; and explicitly preparing students from the city’s most under-resourced and underrepresented communities for upwardly mobile careers in NYC’s ever-expanding “digital economy,” in which jobs require computational thinking and an increasing percentage require discreet computer science technical skills. Project Objectives include the following: 1. Computational Thinking (CT) Integration: Integrate computational thinking core practices across existing middle/high school BOP-CCERS STEM curriculum as a means of scaffolding toward long term computer science and computational modeling outcomes. 2. Data Science and Data Analytics: Enabling Researchers to perform interviews with Teachers, students, community members, partners, stakeholders, and Science, Technology, Engineering, and Mathematics (STEM) industry Professionals. Collaborative analysis and data collection were also performed. As a centerpiece, the BOP-CCERS partnership will expand to include a dedicated computer science education partner. New York City Department of Education (NYCDOE), Computer Science for All (CS4ALL) NYC will serve as the dedicated Computer Science (CS) lead, advising the consortium on integration and curriculum development, working in tandem. The BOP-CCERS Model™ also validates that with appropriate application of technical infrastructure, intensive teacher professional developments, and curricular scaffolding, socially connected science learning can be mainstreamed in the nation’s largest urban public school system. This is evidenced and substantiated in the initial phases of BOP-CCERS™. The BOP-CCERS™ student curriculum and teacher professional development have been implemented in approximately 24% of NYC public middle schools, reaching more than 250 educators and 11,000 students directly. BOP-CCERS™ is a fully scalable and transferable educational model, adaptable to all American school districts. In all settings of the proposed Phase IV initiative, the primary beneficiary group will be underrepresented NYC public school students who live in high-poverty neighborhoods and are traditionally underrepresented in the STEM fields, including African Americans, Latinos, English language learners, and children from economically disadvantaged households. In particular, BOP-CCERS Phase IV will explicitly prepare underrepresented students for skilled positions within New York City’s expanding digital economy, computer science, computational information systems, and innovative technology sectors.

Keywords: computer science, data science, equity, diversity and inclusion, STEM education

Procedia PDF Downloads 58