Search results for: deep seated gravitational slope deformation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3679

Search results for: deep seated gravitational slope deformation

229 Enhancing Athlete Training using Real Time Pose Estimation with Neural Networks

Authors: Jeh Patel, Chandrahas Paidi, Ahmed Hambaba

Abstract:

Traditional methods for analyzing athlete movement often lack the detail and immediacy required for optimal training. This project aims to address this limitation by developing a Real-time human pose estimation system specifically designed to enhance athlete training across various sports. This system leverages the power of convolutional neural networks (CNNs) to provide a comprehensive and immediate analysis of an athlete’s movement patterns during training sessions. The core architecture utilizes dilated convolutions to capture crucial long-range dependencies within video frames. Combining this with the robust encoder-decoder architecture to further refine pose estimation accuracy. This capability is essential for precise joint localization across the diverse range of athletic poses encountered in different sports. Furthermore, by quantifying movement efficiency, power output, and range of motion, the system provides data-driven insights that can be used to optimize training programs. Pose estimation data analysis can also be used to develop personalized training plans that target specific weaknesses identified in an athlete’s movement patterns. To overcome the limitations posed by outdoor environments, the project employs strategies such as multi-camera configurations or depth sensing techniques. These approaches can enhance pose estimation accuracy in challenging lighting and occlusion scenarios, where pose estimation accuracy in challenging lighting and occlusion scenarios. A dataset is collected From the labs of Martin Luther King at San Jose State University. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing different poses, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced pose detection model and lays the groundwork for future innovations in assistive enhancement technologies.

Keywords: computer vision, deep learning, human pose estimation, U-NET, CNN

Procedia PDF Downloads 54
228 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods

Authors: Mohammad Arabi

Abstract:

The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.

Keywords: electric motor, fault detection, frequency features, temporal features

Procedia PDF Downloads 46
227 The Debureaucratization Strategy for the Portuguese Health Service through Effective Communication

Authors: Fernando Araujo, Sandra Cardoso, Fátima Fonseca, Sandra Cavaca

Abstract:

A debureaucratization strategy for the Portuguese Health Service was assumed by the Executive Board of the SNS, in deep articulation with the Shared Services of the Ministry of Health. Two of the main dimensions were focused on sick leaves (SL), that transform primary health care (PHC) in administrative institutions, limiting access to patients. The self-declaration of illness (SDI) project, through the National Health Service Contact Centre (SNS24), began on May 1, 2023, and has already resulted in the issuance of more than 300,000 SDI without the need to allocate resources from the National Health Service (NHS). This political decision allows each citizen, in a maximum 2 times/year, and 3 days each time, if ill, through their own responsibility, report their health condition in a dematerialized way, and by this way justified the absence to work, although by Portuguese law in these first three days, there is no payment of salary. Using a digital approach, it is now feasible without the need to go to the PHC and occupy the time of the PHC only to obtain an SL. Through this measure, bureaucracy has been reduced, and the system has been focused on users, improving the lives of citizens and reducing the administrative burden on PHC, which now has more consultation times for users who need it. The second initiative, which began on March 1, 2024, allows the SL to be issued in emergency departments (ED) of public hospitals and in the health institutions of the social and private sectors. This project is intended to allow the user who has suffered a situation of acute urgent illness and who has been observed in an ED of a public hospital or in a private or social entity no longer need to go to PHC only to apply for the respective SL. Since March 1, 54,453 SLs have been issued, 242 in private or social sector institutions and 6,918 in public hospitals, of which 134 were in ED and 47,292 in PHC. This approach has proven to be technically robust, allows immediate resolution of problems and differentiates the performance of doctors. However, it is important to continue to qualify the proper functioning of the ED, preventing non-urgent users from going there only to obtain SL. Thus, in order to make better use of existing resources, it was operationalizing this extension of its issuance in a balanced way, allowing SL to be issued in the ED of hospitals only to critically ill patients or patients referred by INEM, SNS24, or PHC. In both cases, an intense public campaign was implemented to explain the way it works and the benefits for patients. In satisfaction surveys, more than 95% of patients and doctors were satisfied with the solutions, asking for extensions to other areas. The administrative simplification agenda of the NHS continues its effective development. For the success of this debureaucratization agenda, the key factors are effective communication and the ability to reach patients and health professionals in order to increase health literacy and the correct use of NHS.

Keywords: debureaucratization strategy, self-declaration of illness, sick leaves, SNS24

Procedia PDF Downloads 71
226 The Second Column of Origen’s Hexapla and the Transcription of BGDKPT Consonants: A Confrontation with Transliterated Hebrew Names in Greek Documents

Authors: Isabella Maurizio

Abstract:

This research analyses the pronunciation of Hebrew consonants 'bgdkpt' in II- III C. E. in Palestine, through the confrontation of two kinds of data: the fragments of transliteration of Old Testament in the Greek alphabet, from the second column of Origen’s synopsis, called Hexapla, and Hebrew names transliterated in Greek documents, especially epigraphs. Origen is a very important author, not only for his bgdkpt theological and exegetic works: the Hexapla, synoptic six columns for a critical edition of Septuaginta, has a relevant role in attempting to reconstruct the pronunciation of Hebrew language before Masoretic punctuation. For this reason, at the beginning, it is important to analyze the column in order to study phonetic and linguistic phenomena. Among the most problematic data, there is the evidence from bgdkpt consonants, always represented as Greek aspirated graphemes. This transcription raised the question if their pronunciation was the only spirant, and consequently, the double one, that is, the stop/spirant contrast, was introduced by Masoretes. However, the phonetic and linguistic examination of the column alone is not enough to establish a real pronunciation of language: this paper is significant because a confrontation between the second column’s transliteration and Hebrew names found in Greek documents epigraphic ones mainly, is achieved. Palestine in II - III was a bilingual country: Greek and Aramaic language lived together, the first one like the official language, the second one as the principal mean of communication between people. For this reason, Hebrew names are often found in Greek documents of the same geographical area: a deep examination of bgdkpt’s transliteration can help to understand better which the real pronunciation of these consonants was, or at least it allows to evidence a phonetic tendency. As a consequence, the research considers the contemporary documents to Origen and the previous ones: the first ones testify a specific stadium of pronunciation, the second ones reflect phonemes’ evolution. Alexandrian documents are also examined: Origen was from there, and the influence of Greek language, spoken in his native country, must be considered. The epigraphs have another implication: they are totally free from morphological criteria, probably used by Origen in his column, because of their popular origin. Thus, a confrontation between the hexaplaric transliteration and Hebrew names is absolutely required, in Hexapla’s studies: first of all, it can be the second clue of a pronunciation already noted in the column; then because, for documents’ specific nature, it has more probabilities to be real, reflecting a daily use of language. The examination of data shows a general tendency to employ the aspirated graphemes for bgdkpt consonants’ transliteration. This probably means that they were closer to Greek aspirated consonants rather than to the plosive ones. The exceptions are linked to a particular status of the name, i.e. its history and origin. In this way, this paper gives its contribution to onomastic studies, too: indeed, the research may contribute to verify the diffusion and the treatment of Jewish names in Hellenized world and in the koinè language.

Keywords: bgdkpt consonants, Greek epigraphs, Jewish names, origen's Hexapla

Procedia PDF Downloads 139
225 Shark Detection and Classification with Deep Learning

Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti

Abstract:

Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.

Keywords: classification, data mining, Instagram, remote monitoring, sharks

Procedia PDF Downloads 121
224 An Analytical Metric and Process for Critical Infrastructure Architecture System Availability Determination in Distributed Computing Environments under Infrastructure Attack

Authors: Vincent Andrew Cappellano

Abstract:

In the early phases of critical infrastructure system design, translating distributed computing requirements to an architecture has risk given the multitude of approaches (e.g., cloud, edge, fog). In many systems, a single requirement for system uptime / availability is used to encompass the system’s intended operations. However, when architected systems may perform to those availability requirements only during normal operations and not during component failure, or during outages caused by adversary attacks on critical infrastructure (e.g., physical, cyber). System designers lack a structured method to evaluate availability requirements against candidate system architectures through deep degradation scenarios (i.e., normal ops all the way down to significant damage of communications or physical nodes). This increases risk of poor selection of a candidate architecture due to the absence of insight into true performance for systems that must operate as a piece of critical infrastructure. This research effort proposes a process to analyze critical infrastructure system availability requirements and a candidate set of systems architectures, producing a metric assessing these architectures over a spectrum of degradations to aid in selecting appropriate resilient architectures. To accomplish this effort, a set of simulation and evaluation efforts are undertaken that will process, in an automated way, a set of sample requirements into a set of potential architectures where system functions and capabilities are distributed across nodes. Nodes and links will have specific characteristics and based on sampled requirements, contribute to the overall system functionality, such that as they are impacted/degraded, the impacted functional availability of a system can be determined. A machine learning reinforcement-based agent will structurally impact the nodes, links, and characteristics (e.g., bandwidth, latency) of a given architecture to provide an assessment of system functional uptime/availability under these scenarios. By varying the intensity of the attack and related aspects, we can create a structured method of evaluating the performance of candidate architectures against each other to create a metric rating its resilience to these attack types/strategies. Through multiple simulation iterations, sufficient data will exist to compare this availability metric, and an architectural recommendation against the baseline requirements, in comparison to existing multi-factor computing architectural selection processes. It is intended that this additional data will create an improvement in the matching of resilient critical infrastructure system requirements to the correct architectures and implementations that will support improved operation during times of system degradation due to failures and infrastructure attacks.

Keywords: architecture, resiliency, availability, cyber-attack

Procedia PDF Downloads 108
223 Servitization in Machine and Plant Engineering: Leveraging Generative AI for Effective Product Portfolio Management Amidst Disruptive Innovations

Authors: Till Gramberg

Abstract:

In the dynamic world of machine and plant engineering, stagnation in the growth of new product sales compels companies to reconsider their business models. The increasing shift toward service orientation, known as "servitization," along with challenges posed by digitalization and sustainability, necessitates an adaptation of product portfolio management (PPM). Against this backdrop, this study investigates the current challenges and requirements of PPM in this industrial context and develops a framework for the application of generative artificial intelligence (AI) to enhance agility and efficiency in PPM processes. The research approach of this study is based on a mixed-method design. Initially, qualitative interviews with industry experts were conducted to gain a deep understanding of the specific challenges and requirements in PPM. These interviews were analyzed using the Gioia method, painting a detailed picture of the existing issues and needs within the sector. This was complemented by a quantitative online survey. The combination of qualitative and quantitative research enabled a comprehensive understanding of the current challenges in the practical application of machine and plant engineering PPM. Based on these insights, a specific framework for the application of generative AI in PPM was developed. This framework aims to assist companies in implementing faster and more agile processes, systematically integrating dynamic requirements from trends such as digitalization and sustainability into their PPM process. Utilizing generative AI technologies, companies can more quickly identify and respond to trends and market changes, allowing for a more efficient and targeted adaptation of the product portfolio. The study emphasizes the importance of an agile and reactive approach to PPM in a rapidly changing environment. It demonstrates how generative AI can serve as a powerful tool to manage the complexity of a diversified and continually evolving product portfolio. The developed framework offers practical guidelines and strategies for companies to improve their PPM processes by leveraging the latest technological advancements while maintaining ecological and social responsibility. This paper significantly contributes to deepening the understanding of the application of generative AI in PPM and provides a framework for companies to manage their product portfolios more effectively and adapt to changing market conditions. The findings underscore the relevance of continuous adaptation and innovation in PPM strategies and demonstrate the potential of generative AI for proactive and future-oriented business management.

Keywords: servitization, product portfolio management, generative AI, disruptive innovation, machine and plant engineering

Procedia PDF Downloads 82
222 Association between G2677T/A MDR1 Polymorphism with the Clinical Response to Disease Modifying Anti-Rheumatic Drugs in Rheumatoid Arthritis

Authors: Alan Ruiz-Padilla, Brando Villalobos-Villalobos, Yeniley Ruiz-Noa, Claudia Mendoza-Macías, Claudia Palafox-Sánchez, Miguel Marín-Rosales, Álvaro Cruz, Rubén Rangel-Salazar

Abstract:

Introduction: In patients with rheumatoid arthritis, resistance or poor response to disease modifying antirheumatic drugs (DMARD) may be a reflection of the increase in g-P. The expression of g-P may be important in mediating the effluence of DMARD from the cell. In addition, P-glycoprotein is involved in the transport of cytokines, IL-1, IL-2 and IL-4, from normal lymphocytes activated to the surrounding extracellular matrix, thus influencing the activity of RA. The involvement of P-glycoprotein in the transmembrane transport of cytokines can serve as a modulator of the efficacy of DMARD. It was shown that a number of lymphocytes with glycoprotein P activity is increased in patients with RA; therefore, P-glycoprotein expression could be related to the activity of RA and could be a predictor of poor response to therapy. Objective: To evaluate in RA patients, if the G2677T/A MDR1 polymorphisms is associated with differences in the rate of therapeutic response to disease-modifying antirheumatic agents in patients with rheumatoid arthritis. Material and Methods: A prospective cohort study was conducted. Fifty seven patients with RA were included. They had an active disease according to DAS-28 (score >3.2). We excluded patients receiving biological agents. All the patients were followed during 6 months in order to identify the rate of therapeutic response according to the American College of Rheumatology (ACR) criteria. At the baseline peripheral blood samples were taken in order to identify the G2677T/A MDR1 polymorphisms using PCR- Specific allele. The fragment was identified by electrophoresis in polyacrylamide gels stained with ethidium bromide. For statistical analysis, the genotypic and allelic frequencies of MDR1 gene polymorphism between responders and non-responders were determined. Chi-square tests as well as, relative risks with 95% confidence intervals (95%CI) were computed to identify differences in the risk for achieving therapeutic response. Results: RA patients had a mean age of 47.33 ± 12.52 years, 87.7% were women with a mean for DAS-28 score of 6.45 ± 1.12. At the 6 months, the rate of therapeutic response was 68.7 %. The observed genotype frequencies were: for G/G 40%, T/T 32%, A/A 19%, G/T 7% and for A/A genotype 2%. Patients with G allele developed at 6 months of treatment, higher rate for therapeutic response assessed by ACR20 compared to patients with others alleles (p=0.039). Conclusions: Patients with G allele of the - G2677T/A MDR1 polymorphisms had a higher rate of therapeutic response at 6 months with DMARD. These preliminary data support the requirement for a deep evaluation of these and other genotypes as factors that may influence the therapeutic response in RA.

Keywords: pharmacogenetics, MDR1, P-glycoprotein, therapeutic response, rheumatoid arthritis

Procedia PDF Downloads 208
221 European Hinterland and Foreland: Impact of Accessibility, Connectivity, Inter-Port Competition on Containerization

Authors: Dial Tassadit Rania, Figueiredo De Oliveira Gabriel

Abstract:

In this paper, we investigate the relationship between ports and their hinterland and foreland environments and the competitive relationship between the ports themselves. These two environments are changing, evolving and introducing new challenges for commercial and economic development at the regional, national and international levels. Because of the rise of the containerization phenomenon, shipping costs and port handling costs have considerably decreased due to economies of scale. The volume of maritime trade has increased substantially and the markets served by the ports have expanded. On these bases, overlapping hinterlands can give rise to the phenomenon of competition between ports. Our main contribution comparing to the existing literature on this issue, is to build a set of hinterland, foreland and competition indicators. Using these indicators? we investigate the effect of hinterland accessibility, foreland connectivity and inter-ports competition on containerized traffic of Europeans ports. For this, we have a 10-year panel database from 2004 to 2014. Our hinterland indicators are given by two indicators of accessibility; they describe the market potential of a port and are calculated using information on population and wealth (GDP). We then calculate population and wealth for different neighborhoods within a distance from a port ranging from 100 to 1000km. For the foreland, we produce two indicators: port connectivity and number of partners for each port. Finally, we compute the two indicators of inter-port competition and a market concentration indicator (Hirshmann-Herfindhal) for different neighborhood-distances around the port. We then apply a fixed-effect model to test the relationship above. Again, with a fixed effects model, we do a sensitivity analysis for each of these indicators to support the results obtained. The econometric results of the general model given by the regression of the accessibility indicators, the LSCI for port i, and the inter-port competition indicator on the containerized traffic of European ports show a positive and significant effect for accessibility to wealth and not to the population. The results are positive and significant for the two indicators of connectivity and competition as well. One of the main results of this research is that the port development given here by the increase of its containerized traffic is strongly related to the development of its hinterland and foreland environment. In addition, it is the market potential, given by the wealth of the hinterland that has an impact on the containerized traffic of a port. However, accessibility to a large population pool is not important for understanding the dynamics of containerized port traffic. Furthermore, in order to continue to develop, a port must penetrate its hinterland at a deep level exceeding 100 km around the port and seek markets beyond this perimeter. The port authorities could focus their marketing efforts on the immediate hinterland, which can, as the results shows, not be captive and thus engage new approaches of port governance to make it more attractive.

Keywords: accessibility, connectivity, European containerization, European hinterland and foreland, inter-port competition

Procedia PDF Downloads 195
220 Management of Caverno-Venous Leakage: A Series of 133 Patients with Symptoms, Hemodynamic Workup, and Results of Surgery

Authors: Allaire Eric, Hauet Pascal, Floresco Jean, Beley Sebastien, Sussman Helene, Virag Ronald

Abstract:

Background: Caverno-venous leakage (CVL) is devastating, although barely known disease, the first cause of major physical impairment in men under 25, and responsible for 50% of resistances to phosphodiesterase 5-inhibitors (PDE5-I), affecting 30 to 40% of users in this medication class. In this condition, too early blood drainage from corpora cavernosa prevents penile rigidity and penetration during sexual intercourse. The role of conservative surgery in this disease remains controversial. Aim: Assess complications and results of combined open surgery and embolization for CVL. Method: Between June 2016 and September 2021, 133 consecutive patients underwent surgery in our institution for CVL, causing severe erectile dysfunction (ED) resistance to oral medical treatment. Procedures combined vein embolization and ligation with microsurgical techniques. We performed a pre-and post-operative clinical (Erection Harness Scale: EHS) hemodynamic evaluation by duplex sonography in all patients. Before surgery, the CVL network was visualized by computed tomography cavernography. Penile EMG was performed in case of diabetes or suspected other neurological conditions. All patients were optimized for hormonal status—data we prospectively recorded. Results: Clinical signs suggesting CVL were ED since age lower than 25, loss of erection when changing position, penile rigidity varying according to the position. Main complications were minor pulmonary embolism in 2 patients, one after airline travel, one with Factor V Leiden heterozygote mutation, one infection and three hematomas requiring reoperation, one decreased gland sensitivity lasting for more than one year. Mean pre-operative pharmacologic EHS was 2.37+/-0.64, mean pharmacologic post-operative EHS was 3.21+/-0.60, p<0.0001 (paired t-test). The mean EHS variation was 0.87+/-0.74. After surgery, 81.5% of patients had a pharmacologic EHS equal to or over 3, allowing for intercourse with penetration. Three patients (2.2%) experienced lower post-operative EHS. The main cause of failure was leakage from the deep dorsal aspect of the corpus cavernosa. In a 14 months follow-up, 83.2% of patients had a clinical EHS equal to or over 3, allowing for sexual intercourse with penetration, one-third of them without any medication. 5 patients had a penile implant after unsuccessful conservative surgery. Conclusion: Open surgery combined with embolization for CVL is an efficient approach to CVL causing severe erectile dysfunction.

Keywords: erectile dysfunction, cavernovenous leakage, surgery, embolization, treatment, result, complications, penile duplex sonography

Procedia PDF Downloads 149
219 Application of Geosynthetics for the Recovery of Located Road on Geological Failure

Authors: Rideci Farias, Haroldo Paranhos

Abstract:

The present work deals with the use of drainage geo-composite as a deep drainage and geogrid element to reinforce the base of the body of the landfill destined to the road pavement on geological faults in the stretch of the TO-342 Highway, between the cities of Miracema and Miranorte, in the State of Tocantins / TO, Brazil, which for many years was the main link between TO-010 and BR-153, after the city of Palmas, also in the state of Tocantins / TO, Brazil. For this application, geotechnical and geological studies were carried out by means of SPT percussion drilling, drilling and rotary drilling, to understand the problem, identifying the type of faults, filling material and the definition of the water table. According to the geological and geotechnical studies carried out, the area where the route was defined, passes through a zone of longitudinal fault to the runway, with strong breaking / fracturing, with presence of voids, intense alteration and with advanced argilization of the rock and with the filling up parts of the faults by organic and compressible soils leachate from other horizons. This geology presents as a geotechnical aggravating agent a medium of high hydraulic load and very low resistance to penetration. For more than 20 years, the region presented constant excessive deformations in the upper layers of the pavement, which after routine services of regularization, reconformation, re-compaction of the layers and application of the asphalt coating. The faults were quickly propagated to the surface of the asphalt pavement, generating a longitudinal shear, forming steps (unevenness), close to 40 cm, causing numerous accidents and discomfort to the drivers, since the geometric positioning was in a horizontal curve. Several projects were presented to the region's highway department to solve the problem. Due to the need for partial closure of the runway, the short time for execution, the use of geosynthetics was proposed and the most adequate solution for the problem was taken into account the movement of existing geological faults and the position of the water level in relation to several Layers of pavement and failure. In order to avoid any flow of water in the body of the landfill and in the filling material of the faults, a drainage curtain solution was used, carried out at 4.0 meters depth, with drainage geo-composite and as reinforcement element and inhibitor of the possible A geogrid of 200 kN / m of resistance was inserted at the base of the reconstituted landfill. Recent evaluations, after 13 years of application of the solution, show the efficiency of the technique used, supported by the geotechnical studies carried out in the area.

Keywords: geosynthetics, geocomposite, geogrid, road, recovery, geological failure

Procedia PDF Downloads 170
218 Machine Learning in Patent Law: How Genetic Breeding Algorithms Challenge Modern Patent Law Regimes

Authors: Stefan Papastefanou

Abstract:

Artificial intelligence (AI) is an interdisciplinary field of computer science with the aim of creating intelligent machine behavior. Early approaches to AI have been configured to operate in very constrained environments where the behavior of the AI system was previously determined by formal rules. Knowledge was presented as a set of rules that allowed the AI system to determine the results for specific problems; as a structure of if-else rules that could be traversed to find a solution to a particular problem or question. However, such rule-based systems typically have not been able to generalize beyond the knowledge provided. All over the world and especially in IT-heavy industries such as the United States, the European Union, Singapore, and China, machine learning has developed to be an immense asset, and its applications are becoming more and more significant. It has to be examined how such products of machine learning models can and should be protected by IP law and for the purpose of this paper patent law specifically, since it is the IP law regime closest to technical inventions and computing methods in technical applications. Genetic breeding models are currently less popular than recursive neural network method and deep learning, but this approach can be more easily described by referring to the evolution of natural organisms, and with increasing computational power; the genetic breeding method as a subset of the evolutionary algorithms models is expected to be regaining popularity. The research method focuses on patentability (according to the world’s most significant patent law regimes such as China, Singapore, the European Union, and the United States) of AI inventions and machine learning. Questions of the technical nature of the problem to be solved, the inventive step as such, and the question of the state of the art and the associated obviousness of the solution arise in the current patenting processes. Most importantly, and the key focus of this paper is the problem of patenting inventions that themselves are developed through machine learning. The inventor of a patent application must be a natural person or a group of persons according to the current legal situation in most patent law regimes. In order to be considered an 'inventor', a person must actually have developed part of the inventive concept. The mere application of machine learning or an AI algorithm to a particular problem should not be construed as the algorithm that contributes to a part of the inventive concept. However, when machine learning or the AI algorithm has contributed to a part of the inventive concept, there is currently a lack of clarity regarding the ownership of artificially created inventions. Since not only all European patent law regimes but also the Chinese and Singaporean patent law approaches include identical terms, this paper ultimately offers a comparative analysis of the most relevant patent law regimes.

Keywords: algorithms, inventor, genetic breeding models, machine learning, patentability

Procedia PDF Downloads 108
217 Effects of Learner-Content Interaction Activities on the Context of Verbal Learning Outcomes in Interactive Courses

Authors: Alper Tolga Kumtepe, Erdem Erdogdu, M. Recep Okur, Eda Kaypak, Ozlem Kaya, Serap Ugur, Deniz Dincer, Hakan Yildirim

Abstract:

Interaction is one of the most important components of open and distance learning. According to Moore, who proposed one of the keystones on interaction types, there are three basic types of interaction: learner-teacher, learner-content, and learner-learner. From these interaction types, learner-content interaction, without doubt, can be identified as the most fundamental one on which all education is based. Efficacy, efficiency, and attraction of open and distance learning systems can be achieved by the practice of effective learner-content interaction. With the development of new technologies, interactive e-learning materials have been commonly used as a resource in open and distance learning, along with the printed books. The intellectual engagement of the learners with the content that is course materials may also affect their satisfaction for the open and distance learning practices in general. Learner satisfaction holds an important place in open and distance learning since it will eventually contribute to the achievement of learning outcomes. Using the learner-content interaction activities in course materials, Anadolu University, by its Open Education system, tries to involve learners in deep and meaningful learning practices. Especially, during the e-learning material design and production processes, identifying appropriate learner-content interaction activities within the context of learning outcomes holds a big importance. Considering the lack of studies adopting this approach, as well as its being a study on the use of e-learning materials in Open Education system, this research holds a big value in open and distance learning literature. In this respect, the present study aimed to investigate a) which learner-content interaction activities included in interactive courses are the most effective in learners’ achievement of verbal information learning outcomes and b) to what extent distance learners are satisfied with these learner-content interaction activities. For this study, the quasi-experimental research design was adopted. The 120 participants of the study were from Anadolu University Open Education Faculty students living in Eskişehir. The students were divided into 6 groups randomly. While 5 of these groups received different learner-content interaction activities as a part of the experiment, the other group served as the control group. The data were collected mainly through two instruments: pre-test and post-test. In addition to those tests, learners’ perceived learning was assessed with an item at the end of the program. The data collected from pre-test and post-test were analyzed by ANOVA, and in the light of the findings of this approximately 24-month study, suggestions for the further design of e-learning materials within the context of learner-content interaction activities will be provided at the conference. The current study is planned to be an antecedent for the following studies that will examine the effects of activities on other learning domains.

Keywords: interaction, distance education, interactivity, online courses

Procedia PDF Downloads 194
216 The Language of Science in Higher Education: Related Topics and Discussions

Authors: Gurjeet Singh, Harinder Singh

Abstract:

In this paper, we present "The Language of Science in Higher Education: Related Questions and Discussions". Linguists have written and researched in depth the role of language in science. On this basis, it is clear that language is not just a medium or vehicle for communicating knowledge and ideas. Nor are there mere signs of language knowledge and conversion of ideas into code. In the process of reading and writing, everyone thinks deeply and struggles to understand concepts and make sense. Linguistics play an important role in achieving concepts. In the context of such linguistic diversity, there is no straightforward and simple answer to the question of which language should be the language of advanced science and technology. Many important topics related to this issue are as follows: Involvement in practical or Deep theoretical issues. Languages for the study of science and other subjects. Language issues of science to be considered separate from the development of science, capitalism, colonial history, the worldview of the common man. The democratization of science and technology education in India is possible only by providing maximum reading/resource material in regional languages. The scientific research should be increase to chances of understanding the subject. Multilingual instead or monolingual. As far as deepening the understanding of the subject is concerned, we can shed light on it based on two or three experiences. An attempt was made to make the famous sociological journal Economic and Political Weekly Hindi almost three decades ago. There were many obstacles in this work. The original articles written in Hindi were not found, and the papers and articles of the English Journal were translated into Hindi, and a journal called Sancha was taken out. Equally important is the democratization of knowledge and the deepening of understanding of the subject. However, the question is that if higher education in science is in Hindi or other languages, then it would be a problem to get job. In fact, since independence, English has been dominant in almost every field except literature. There are historical reasons for this, which cannot be reversed. As mentioned above, due to colonial rule, even before independence, English was established as a language of communication, the language of power/status, the language of higher education, the language of administration, and the language of scholarly discourse. After independence, attempts to make Hindi or Hindustani the national language in India were unsuccessful. Given this history and current reality, higher education should be multilingual or at least bilingual. Translation limits should also be increased for those who choose the material for translation. Writing in regional languages on science, making knowledge of various international languages available in Indian languages, etc., is equally important for all to have opportunities to learn English.

Keywords: language, linguistics, literature, culture, ethnography, punjabi, gurmukhi, higher education

Procedia PDF Downloads 91
215 Human Interaction Skills and Employability in Courses with Internships: Report of a Decade of Success in Information Technology

Authors: Filomena Lopes, Miguel Magalhaes, Carla Santos Pereira, Natercia Durao, Cristina Costa-Lobo

Abstract:

The option to implement curricular internships with undergraduate students is a pedagogical option with some good results perceived by academic staff, employers, and among graduates in general and IT (Information Technology) in particular. Knowing that this type of exercise has never been so relevant, as one tries to give meaning to the future in a landscape of rapid and deep changes. We have as an example the potential disruptive impact on the jobs of advances in robotics, artificial intelligence and 3-D printing, which is a focus of fierce debate. It is in this context that more and more students and employers engage in the pursuit of career-promoting responses and business development, making their investment decisions of training and hiring. Three decades of experience and research in computer science degree and in information systems technologies degree at the Portucalense University, Portuguese private university, has provided strong evidence of its advantages. The Human Interaction Skills development as well as the attractiveness of such experiences for students are topics assumed as core in the Ccnception and management of the activities implemented in these study cycles. The objective of this paper is to gather evidence of the Human Interaction Skills explained and valued within the curriculum internship experiences of IT students employability. Data collection was based on the application of questionnaire to intern counselors and to students who have completed internships in these undergraduate courses in the last decade. The trainee supervisor, responsible for monitoring the performance of IT students in the evolution of traineeship activities, evaluates the following Human Interaction Skills: Motivation and interest in the activities developed, interpersonal relationship, cooperation in company activities, assiduity, ease of knowledge apprehension, Compliance with norms, insertion in the work environment, productivity, initiative, ability to take responsibility, creativity in proposing solutions, and self-confidence. The results show that these undergraduate courses promote the development of Human Interaction Skills and that these students, once they finish their degree, are able to initiate remunerated work functions, mainly by invitation of the institutions in which they perform curricular internships. Findings obtained from the present study contribute to widen the analysis of its effectiveness in terms of future research and actions in regard to the transition from Higher Education pathways to the Labour Market.

Keywords: human interaction skills, employability, internships, information technology, higher education

Procedia PDF Downloads 287
214 Development and Characterization of Novel Topical Formulation Containing Niacinamide

Authors: Sevdenur Onger, Ali Asram Sagiroglu

Abstract:

Hyperpigmentation is a cosmetically unappealing skin problem caused by an overabundance of melanin in the skin. Its pathophysiology is caused by melanocytes being exposed to paracrine melanogenic stimuli, which can upregulate melanogenesis-related enzymes (such as tyrosinase) and cause melanosome formation. Tyrosinase is linked to the development of melanosomes biochemically, and it is the main target of hyperpigmentation treatment. therefore, decreasing tyrosinase activity to reduce melanosomes has become the main target of hyperpigmentation treatment. Niacinamide (NA) is a natural chemical found in a variety of plants that is used as a skin-whitening ingredient in cosmetic formulations. NA decreases melanogenesis in the skin by inhibiting melanosome transfer from melanocytes to covering keratinocytes. Furthermore, NA protects the skin from reactive oxygen species and acts as a main barrier with the skin, reducing moisture loss by increasing ceramide and fatty acid synthesis. However, it is very difficult for hydrophilic compounds such as NA to penetrate deep into the skin. Furthermore, because of the nicotinic acid in NA, it is an irritant. As a result, we've concentrated on strategies to increase NA skin permeability while avoiding its irritating impacts. Since nanotechnology can affect drug penetration behavior by controlling the release and increasing the period of permanence on the skin, it can be a useful technique in the development of whitening formulations. Liposomes have become increasingly popular in the cosmetics industry in recent years due to benefits such as their lack of toxicity, high penetration ability in living skin layers, ability to increase skin moisture by forming a thin layer on the skin surface, and suitability for large-scale production. Therefore, liposomes containing NA were developed for this study. Different formulations were prepared by varying the amount of phospholipid and cholesterol and examined in terms of particle sizes, polydispersity index (PDI) and pH values. The pH values of the produced formulations were determined to be suitable with the pH value of the skin. Particle sizes were determined to be smaller than 250 nm and the particles were found to be of homogeneous size in the formulation (pdi<0.30). Despite the important advantages of liposomal systems, they have low viscosity and stability for topical use. For these reasons, in this study, liposomal cream formulations have been prepared for easy topical application of liposomal systems. As a result, liposomal cream formulations containing NA have been successfully prepared and characterized. Following the in-vitro release and ex-vivo diffusion studies to be conducted in the continuation of the study, it is planned to test the formulation that gives the most appropriate result on the volunteers after obtaining the approval of the ethics committee.

Keywords: delivery systems, hyperpigmentation, liposome, niacinamide

Procedia PDF Downloads 112
213 A Systematic Review Investigating the Use of EEG Measures in Neuromarketing

Authors: A. M. Byrne, E. Bonfiglio, C. Rigby, N. Edelstyn

Abstract:

Introduction: Neuromarketing employs numerous methodologies when investigating products and advertisement effectiveness. Electroencephalography (EEG), a non-invasive measure of electrical activity from the brain, is commonly used in neuromarketing. EEG data can be considered using time-frequency (TF) analysis, where changes in the frequency of brainwaves are calculated to infer participant’s mental states, or event-related potential (ERP) analysis, where changes in amplitude are observed in direct response to a stimulus. This presentation discusses the findings of a systematic review of EEG measures in neuromarketing. A systematic review summarises evidence on a research question, using explicit measures to identify, select, and critically appraise relevant research papers. Thissystematic review identifies which EEG measures are the most robust predictor of customer preference and purchase intention. Methods: Search terms identified174 papers that used EEG in combination with marketing-related stimuli. Publications were excluded if they were written in a language other than English or were not published as journal articles (e.g., book chapters). The review investigated which TF effect (e.g., theta-band power) and ERP component (e.g., N400) most consistently reflected preference and purchase intention. Machine-learning prediction was also investigated, along with the use of EEG combined with physiological measures such as eye-tracking. Results: Frontal alpha asymmetry was the most reliable TF signal, where an increase in activity over the left side of the frontal lobe indexed a positive response to marketing stimuli, while an increase in activity over the right side indexed a negative response. The late positive potential, a positive amplitude increase around 600 ms after stimulus presentation, was the most reliable ERP component, reflecting the conscious emotional evaluation of marketing stimuli. However, each measure showed mixed results when related to preference and purchase behaviour. Predictive accuracy was greatly improved through machine-learning algorithms such as deep neural networks, especially when combined with eye-tracking or facial expression analyses. Discussion: This systematic review provides a novel catalogue of the most effective use of each EEG measure commonly used in neuromarketing. Exciting findings to emerge are the identification of the frontal alpha asymmetry and late positive potential as markers of preferential responses to marketing stimuli. Predictive accuracy using machine-learning algorithms achieved predictive accuracies as high as 97%, and future research should therefore focus on machine-learning prediction when using EEG measures in neuromarketing.

Keywords: EEG, ERP, neuromarketing, machine-learning, systematic review, time-frequency

Procedia PDF Downloads 111
212 Rehabilitation Team after Brain Damages as Complex System Integrating Consciousness

Authors: Olga Maksakova

Abstract:

A work with unconscious patients after acute brain damages besides special knowledge and practical skills of all the participants requires a very specific organization. A lot of said about team approach in neurorehabilitation, usually as for outpatient mode. Rehabilitologists deal with fixed patient problems or deficits (motion, speech, cognitive or emotional disorder). Team-building means superficial paradigm of management psychology. Linear mode of teamwork fits casual relationships there. Cases with deep altered states of consciousness (vegetative states, coma, and confusion) require non-linear mode of teamwork: recovery of consciousness might not be the goal due to phenomenon uncertainty. Rehabilitation team as Semi-open Complex System includes the patient as a part. Patient's response pattern becomes formed not only with brain deficits but questions-stimuli, context, and inquiring person. Teamwork is sourcing of phenomenology knowledge of patient's processes as Third-person approach is replaced with Second- and after First-person approaches. Here is a chance for real-time change. Patient’s contacts with his own body and outward things create a basement for restoration of consciousness. The most important condition is systematic feedbacks to any minimal movement or vegetative signal of the patient. Up to now, recovery work with the most severe contingent is carried out in the mode of passive physical interventions, while an effective rehabilitation team should include specially trained psychologists and psychotherapists. It is they who are able to create a network of feedbacks with the patient and inter-professional ones building up the team. Characteristics of ‘Team-Patient’ system (TPS) are energy, entropy, and complexity. Impairment of consciousness as the absence of linear contact appears together with a loss of essential functions (low energy), vegetative-visceral fits (excessive energy and low order), motor agitation (excessive energy and excessive order), etc. Techniques of teamwork are different in these cases for resulting optimization of the system condition. Directed regulation of the system complexity is one of the recovery tools. Different signs of awareness appear as a result of system self-organization. Joint meetings are an important part of teamwork. Regular or event-related discussions form the language of inter-professional communication, as well as the patient's shared mental model. Analysis of complex communication process in TPS may be useful for creation of the general theory of consciousness.

Keywords: rehabilitation team, urgent rehabilitation, severe brain damage, consciousness disorders, complex system theory

Procedia PDF Downloads 146
211 The Impact of Sensory Overload on Students on the Autism Spectrum in Italian Inclusive Classrooms: Teachers' Perspectives and Training Needs

Authors: Paola Molteni, Luigi d’Alonzo

Abstract:

Background: Sensory issues are now considered one of the key aspects in defining and diagnosing autism, changing the perspectives on behavioural analysis and intervention in mainstream educational services. However, Italian teachers’ training is yet not specific on the topic of autism and its sensory-related effects and this research investigates the teacher’s capability in understanding the student’s needs and his/her challenging behaviours considering sensory perceptions. Objectives: The research aims to analyse mainstream schools teachers’ awareness on students’ sensory perceptions and how this affects classroom inclusion and learning process. The research questions are: i) Are teachers able to identify student’s sensory issues?; ii) Are trained teachers more able to identify sensory problems then untrained ones?; iii) What is the impact of sensory issues on inclusion in mainstream classrooms?; iv) What should teachers know about autistic sensory dimensions? Methods: This research was designed as a pilot study that involves a multi-methods approach, including action and collaborative research methodology. The designed research allows the researcher to catch the complexity of a province school district (from kindergarten to high school) through a deep detailed analysis of selected aspects. The researcher explored the questions described above through 133 questionnaires and 6 focus groups. The qualitative and quantitative data collected during the research were analysed using the Interpretative Phenomenological Analysis (IPA). Results: Mainstream schools teachers are not able to confidently recognise sensory issues of children included in the classroom. The research underlines: how professionals with no specific training on autism are not able to recognise sensory problems in students on the spectrum; how hearing and sight issues have higher impact on classroom inclusion and student’s learning process; how a lack of understanding is often followed by misinterpretations of the impact of sensory issues and challenging behaviours. Conclusions: As this research has shown, promoting and enhancing the importance of understanding sensory issues related to autism is fundamental to enable mainstream schools teachers to define educational and life-long plans able to properly answer the student’s needs and support his/her real inclusion in the classroom. This study is a good example of how the educational research can meet and help the daily practice in working with people on the autism spectrum and support the training design for mainstream school teachers: the emerging need of designed preparation on sensory issues is fundamental to be considered when planning school district in-service training programmes, specifically declined for inclusive services.

Keywords: autism spectrum condition, scholastic inclusion, sensory overload, teacher's training

Procedia PDF Downloads 317
210 Role of Artificial Intelligence in Nano Proteomics

Authors: Mehrnaz Mostafavi

Abstract:

Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.

Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence

Procedia PDF Downloads 95
209 Provisional Settlements and Urban Resilience: The Transformation of Refugee Camps into Cities

Authors: Hind Alshoubaki

Abstract:

The world is now confronting a widespread urban phenomenon: refugee camps, which have mostly been established in ‘rushing mode,’ pointing toward affording temporary settlements for refugees that provide them with minimum levels of safety, security and protection from harsh weather conditions within a very short time period. In fact, those emergency settlements are transforming into permanent ones since time is a decisive factor in terms of construction and camps’ age. These play an essential role in transforming their temporary character into a permanent one that generates deep modifications to the city’s territorial structure, shaping a new identity and creating a contentious change in the city’s form and history. To achieve a better understanding for the transformation of refugee camps, this study is based on a mixed-methods approach: the qualitative approach explores different refugee camps and analyzes their transformation process in terms of population density and the changes to the city’s territorial structure and urban features. The quantitative approach employs a statistical regression analysis as a reliable prediction of refugees’ satisfaction within the Zaatari camp in order to predict its future transformation. Obviously, refugees’ perceptions of their current conditions will affect their satisfaction, which plays an essential role in transforming emergency settlements into permanent cities over time. The test basically discusses five main themes: the access and readiness of schools, the dispersion of clinics and shopping centers; the camp infrastructure, the construction materials, and the street networks. The statistical analysis showed that Syrian refugees were not satisfied with their current conditions inside the Zaatari refugee camp and that they had started implementing changes according to their needs, desires, and aspirations because they are conscious about the fact of their prolonged stay in this settlement. Also, the case study analyses showed that neglecting the fact that construction takes time leads settlements being created with below-minimum standards that are deteriorating and creating ‘slums,’ which lead to increased crime rates, suicide, drug use and diseases and deeply affect cities’ urban tissues. For this reason, recognizing the ‘temporary-eternal’ character of those settlements is the fundamental concept to consider refugee camps from the beginning as definite permanent cities. This is the key factor to minimize the trauma of displacement on both refugees and the hosting countries. Since providing emergency settlements within a short time period does not mean using temporary materials, having a provisional character or creating ‘makeshift cities.’

Keywords: refugee, refugee camp, temporary, Zaatari

Procedia PDF Downloads 133
208 Specific Earthquake Ground Motion Levels That Would Affect Medium-To-High Rise Buildings

Authors: Rhommel Grutas, Ishmael Narag, Harley Lacbawan

Abstract:

Construction of high-rise buildings is a means to address the increasing population in Metro Manila, Philippines. The existence of the Valley Fault System within the metropolis and other nearby active faults poses threats to a densely populated city. The distant, shallow and large magnitude earthquakes have the potential to generate slow and long-period vibrations that would affect medium-to-high rise buildings. Heavy damage and building collapse are consequences of prolonged shaking of the structure. If the ground and the building have almost the same period, there would be a resonance effect which would cause the prolonged shaking of the building. Microzoning the long-period ground response would aid in the seismic design of medium to high-rise structures. The shear-wave velocity structure of the subsurface is an important parameter in order to evaluate ground response. Borehole drilling is one of the conventional methods of determining shear-wave velocity structure however, it is an expensive approach. As an alternative geophysical exploration, microtremor array measurements can be used to infer the structure of the subsurface. Microtremor array measurement system was used to survey fifty sites around Metro Manila including some municipalities of Rizal and Cavite. Measurements were carried out during the day under good weather conditions. The team was composed of six persons for the deployment and simultaneous recording of the microtremor array sensors. The instruments were laid down on the ground away from sewage systems and leveled using the adjustment legs and bubble level. A total of four sensors were deployed for each site, three at the vertices of an equilateral triangle with one sensor at the centre. The circular arrays were set up with a maximum side length of approximately four kilometers and the shortest side length for the smallest array is approximately at 700 meters. Each recording lasted twenty to sixty minutes. From the recorded data, f-k analysis was applied to obtain phase velocity curves. Inversion technique is applied to construct the shear-wave velocity structure. This project provided a microzonation map of the metropolis and a profile showing the long-period response of the deep sedimentary basin underlying Metro Manila which would be suitable for local administrators in their land use planning and earthquake resistant design of medium to high-rise buildings.

Keywords: earthquake, ground motion, microtremor, seismic microzonation

Procedia PDF Downloads 468
207 Evaluation of the Incorporation of Modified Starch in Puff Pastry Dough by Mixolab Rheological Analysis

Authors: Alejandra Castillo-Arias, Carlos A. Fuenmayor, Carlos M. Zuluaga-Domínguez

Abstract:

The connection between health and nutrition has driven the food industry to explore healthier and more sustainable alternatives. Key strategies to enhance nutritional quality and extend shelf life include reducing saturated fats and incorporating natural ingredients. One area of focus is the use of modified starch in baked goods, which has attracted significant interest in food science and industry due to its functional benefits. Modified starches are commonly used for their gelling, thickening, and water-retention properties. Derived from sources like waxy corn, potatoes, tapioca, or rice, these polysaccharides improve thermal stability and resistance to dough. The use of modified starch enhances the texture and structure of baked goods, which is crucial for consumer acceptance. In this study, it was evaluated the effects of modified starch inclusion on dough used for puff pastry elaboration, measured with Mixolab analysis. This technique assesses flour quality by examining its behavior under varying conditions, providing a comprehensive profile of its baking properties. The analysis included measurements of water absorption capacity, dough development time, dough stability, softening, final consistency, and starch gelatinization. Each of these parameters offers insights into how the flour will perform during baking and the quality of the final product. The performance of wheat flour with varying levels of modified starch inclusion (10%, 20%, 30%, and 40%) was evaluated through Mixolab analysis, with a control sample consisting of 100% wheat flour. Water absorption, gluten content, and retrogradation indices were analyzed to understand how modified starch affects dough properties. The results showed that the inclusion of modified starch increased the absorption index, especially at levels above 30%, indicating a dough with better handling qualities and potentially improved texture in the final baked product. However, the reduction in wheat flour resulted in a lower kneading index, affecting dough strength. Conversely, incorporating more than 20% modified starch reduced the retrogradation index, indicating improved stability and resistance to crystallization after cooling. Additionally, the modified starch improved the gluten index, contributing to better dough elasticity and stability, providing good structural support and resistance to deformation during mixing and baking. As expected, the control sample exhibited a higher amylase index, due to the presence of enzymes in wheat flour. However, this is of low concern in puff pastry dough, as amylase activity is more relevant in fermented doughs, which is not the case here. Overall, the use of modified starch in puff pastry enhanced product quality by improving texture, structure, and shelf life, particularly when used at levels between 30% and 40%. This research underscores the potential of modified starches to address health concerns associated with traditional starches and to contribute to the development of higher-quality, consumer-friendly baked products. Furthermore, the findings suggest that modified starches could play a pivotal role in future innovations within the baking industry, particularly in products aiming to balance healthfulness with sensory appeal. By incorporating modified starch into their formulations, bakeries can meet the growing demand for healthier, more sustainable products while maintaining the indulgent qualities that consumers expect from baked goods.

Keywords: baking quality, dough properties, modified starch, puff pastry

Procedia PDF Downloads 22
206 The Rise in Popularity of Online Islamic Fashion In Indonesia: An Economic, Political, and Socio-Anthropological Perspective

Authors: Cazadira Fediva Tamzil, Agung Sulthonaulia Utama

Abstract:

The rise in popularity of Indonesian Islamic fashion displayed and sold through social networking sites, especially Instagram, might seem at first glance like a commonplace and localized phenomenon. However, when analyzed critically, it actually reveals the relations between the global and local Indonesian economy, as well as a deep socio-anthropological dimension relating to religion, culture, class, work, identity. Conducted using a qualitative methodology, data collection technique of literature review, and observation of various social networking sites, this research finds four things that lead to the aforementioned conclusion. First, the rise of online Islamic fashion retailers was triggered by the shift in the structure of global and national Indonesian economy as well as the free access of information made possible by democratization in Indonesia and worldwide advances in terms of technology. All of those factors combined together gave birth to a large amount of middle-class Indonesians with high consumer culture and entrepreneurial flair. Second, online Islamic fashion retailers are the new cultural trendsetters in society. All these show how Indonesians are becoming increasingly pious, no longer only adhere to Western conception of luxury and that many are increasingly exploiting Islam commercial and status-acquiring purposes. Third, the online Islamic fashion retailers actually reveal a shift in the conception of ‘work’ – social media has made work no longer only confined to the toiling activities inside factories, but instead something that can be done from any location only through posting online words or pictures that can increase a fashion product’s capital value. Without realizing it, many celebrities and online retailers who promote Islamic fashion through social media on a daily basis are now also ‘semi-free immaterial labors’ – a slight reconceptualization to Tiziana Terranova’s concept of ‘free labor’ and Maurizio Lazzarato’s ‘immaterial labor’, which basically refer to people who create economic value and thus help out capitals from producing immaterial things with only little compensation in return. Fourth, this research also shows that the diversity of Islamic fashion styles being sold on Instagram reflects the polarized identity of Islam in Indonesia. In stark contrast with the theory which states that globalization always leads to the strengthening and unification of identity, this research shows how polarized the Islamic identity in Indonesia really is – even in the face of globalization.

Keywords: global economy, Indonesian online Islamic fashion, political relations, socio-anthropology

Procedia PDF Downloads 345
205 A Qualitative Exploration of the Beliefs and Experiences of HIV-Related Self-Stigma Amongst Young Adults Living with HIV in Zimbabwe

Authors: Camille Rich, Nadine Ferris France, Ann Nolan, Webster Mavhu, Vongai Munatsi

Abstract:

Background and Aim: Zimbabwe has one of the highest HIV rates in the world, with a 12.7% adult prevalence rate. Young adults are a key group affected by HIV, and one-third of all new infections in Zimbabwe are amongst people ages 18-24 years. Stigma remains one of the main barriers to managing and reducing the HIV crisis, especially for young adults. There are several types of stigma, including enacted stigma, the outward discrimination towards someone and self-stigma, the negative self-judgments one has towards themselves. Self-stigma can have severe consequences, including feelings of worthlessness, shame, suicidal thoughts, and avoidance of medical help. This can have detrimental effects on those living with HIV. However, the unique beliefs and impacts of self-stigma amongst key groups living with HIV have not yet been explored. Therefore, the focus of this study is on the beliefs and experiences of HIV-related self-stigma, as experienced by young adults living in Harare, Zimbabwe. Research Methods: A qualitative approach was taken for this study, using sixteen semi-structured interviews with young adults (18-24 years) who are living with HIV in Harare. Participants were conveniently and purposefully sampled as members of Africa, an organization dedicated to young people living with HIV. Interviews were conducted over Zoom due to the COVID-19 pandemic, recorded and then coded using the software NVivo. The data was analyzed using both inductive and deductive Thematic Analysis to find common themes. Results: All of the participants experienced HIV-related self-stigma, and both beliefs and experiences were explored. These negative self-perceptions included beliefs of worthlessness, hopelessness, and negative body image. The young adults described believing they were not good enough to be around HIV negative people or that they could never be loved due to their HIV status. Developing self-stigmatizing thoughts came from internalizing negative cultural values, stereotypes about people living with HIV, and adverse experiences. Three main themes of self-stigmatizing experiences emerged: disclosure difficulties, relationship complications, and being isolated. Fear of telling someone their status, rejection in a relationship, and being excluded by others due to their HIV status contributed to their self-stigma. These experiences caused feelings of loneliness, sadness, shame, fear, and low self-worth. Conclusions: This study explored the beliefs and experiences of HIV-related self-stigma of these young adults. The emergence of negative self-perceptions demonstrated deep-rooted beliefs of HIV-related self-stigma that adversely impact the participants. The negative self-perceptions and self-stigmatizing experiences caused the participants to feel worthless, hopeless, shameful, and alone-negatively impacting their physical and mental health, personal relationships, and sense of self-identity. These results can now be used to pursue interventions to target the specific beliefs and experiences of young adults living with HIV and reduce the adverse consequences of self-stigma.

Keywords: beliefs, HIV, self-stigma, stigma, Zimbabwe

Procedia PDF Downloads 115
204 Electric Vehicle Fleet Operators in the Energy Market - Feasibility and Effects on the Electricity Grid

Authors: Benjamin Blat Belmonte, Stephan Rinderknecht

Abstract:

The transition to electric vehicles (EVs) stands at the forefront of innovative strategies designed to address environmental concerns and reduce fossil fuel dependency. As the number of EVs on the roads increases, so too does the potential for their integration into energy markets. This research dives deep into the transformative possibilities of using electric vehicle fleets, specifically electric bus fleets, not just as consumers but as active participants in the energy market. This paper investigates the feasibility and grid effects of electric vehicle fleet operators in the energy market. Our objective centers around a comprehensive exploration of the sector coupling domain, with an emphasis on the economic potential in both electricity and balancing markets. Methodologically, our approach combines data mining techniques with thorough pre-processing, pulling from a rich repository of electricity and balancing market data. Our findings are grounded in the actual operational realities of the bus fleet operator in Darmstadt, Germany. We employ a Mixed Integer Linear Programming (MILP) approach, with the bulk of the computations being processed on the High-Performance Computing (HPC) platform ‘Lichtenbergcluster’. Our findings underscore the compelling economic potential of EV fleets in the energy market. With electric buses becoming more prevalent, the considerable size of these fleets, paired with their substantial battery capacity, opens up new horizons for energy market participation. Notably, our research reveals that economic viability is not the sole advantage. Participating actively in the energy market also translates into pronounced positive effects on grid stabilization. Essentially, EV fleet operators can serve a dual purpose: facilitating transport while simultaneously playing an instrumental role in enhancing grid reliability and resilience. This research highlights the symbiotic relationship between the growth of EV fleets and the stabilization of the energy grid. Such systems could lead to both commercial and ecological advantages, reinforcing the value of electric bus fleets in the broader landscape of sustainable energy solutions. In conclusion, the electrification of transport offers more than just a means to reduce local greenhouse gas emissions. By positioning electric vehicle fleet operators as active participants in the energy market, there lies a powerful opportunity to drive forward the energy transition. This study serves as a testament to the synergistic potential of EV fleets in bolstering both economic viability and grid stabilization, signaling a promising trajectory for future sector coupling endeavors.

Keywords: electric vehicle fleet, sector coupling, optimization, electricity market, balancing market

Procedia PDF Downloads 74
203 Calibration of Residential Buildings Energy Simulations Using Real Data from an Extensive in situ Sensor Network – A Study of Energy Performance Gap

Authors: Mathieu Bourdeau, Philippe Basset, Julien Waeytens, Elyes Nefzaoui

Abstract:

As residential buildings account for a third of the overall energy consumption and greenhouse gas emissions in Europe, building energy modeling is an essential tool to reach energy efficiency goals. In the energy modeling process, calibration is a mandatory step to obtain accurate and reliable energy simulations. Nevertheless, the comparison between simulation results and the actual building energy behavior often highlights a significant performance gap. The literature discusses different origins of energy performance gaps, from building design to building operation. Then, building operation description in energy models, especially energy usages and users’ behavior, plays an important role in the reliability of simulations but is also the most accessible target for post-occupancy energy management and optimization. Therefore, the present study aims to discuss results on the calibration ofresidential building energy models using real operation data. Data are collected through a sensor network of more than 180 sensors and advanced energy meters deployed in three collective residential buildings undergoing major retrofit actions. The sensor network is implemented at building scale and in an eight-apartment sample. Data are collected for over one year and half and coverbuilding energy behavior – thermal and electricity, indoor environment, inhabitants’ comfort, occupancy, occupants behavior and energy uses, and local weather. Building energy simulations are performed using a physics-based building energy modeling software (Pleaides software), where the buildings’features are implemented according to the buildingsthermal regulation code compliance study and the retrofit project technical files. Sensitivity analyses are performed to highlight the most energy-driving building features regarding each end-use. These features are then compared with the collected post-occupancy data. Energy-driving features are progressively replaced with field data for a step-by-step calibration of the energy model. Results of this study provide an analysis of energy performance gap on an existing residential case study under deep retrofit actions. It highlights the impact of the different building features on the energy behavior and the performance gap in this context, such as temperature setpoints, indoor occupancy, the building envelopeproperties but also domestic hot water usage or heat gains from electric appliances. The benefits of inputting field data from an extensive instrumentation campaign instead of standardized scenarios are also described. Finally, the exhaustive instrumentation solution provides useful insights on the needs, advantages, and shortcomings of the implemented sensor network for its replicability on a larger scale and for different use cases.

Keywords: calibration, building energy modeling, performance gap, sensor network

Procedia PDF Downloads 159
202 Exploring the Challenges of Post-conflict Peacebuilding in the Border Districts of Eastern Zone of Tigray Region

Authors: Gebreselassie Sebhatleab

Abstract:

According to the Global Peace Index report (GPI, 2023), global peacefulness has deteriorated by more than 0.42%. Old and new conflicts, COVID-19, and political and cultural polarization are the main drivers of conflicts in the world. The 2022 was the deadliest year for armed conflict in the history of the GPI. In Ethiopia, over half a million people died in the Tigray war, which was the largest conflict death event since the 1994 Rwandan genocide. In total, 84 countries recorded an improvement, while 79 countries recorded a deterioration in peacefulness across the globe. The Russia-Ukraine war and its consequences were the main drivers of the deterioration in peacefulness globally. Both Russia and Ukraine are now ranked amongst the ten least peaceful countries, and Ukraine had the largest deterioration of any country in the 2023 GPI. In the same year, the global impact of violence on the economy was 17 percent, which was equivalent to 10.9% of global GDP. Besides, the brutal conflict in Tigray started in November. 2020 claimed more than half a million lives lost and displaced nearly 3 million people, along with widespread human rights violations and sexual violence has left deep damage on the population. The displaced people are still unable to return home because the western, southern and Eastern parts of Tigray are occupied by Eritrean and Amhara forces, despite the Pretoria Agreement. Currently, armed conflicts in Amhara in the Oromya regions are intensified, and human rights violations are being reported in both regions. Meanwhile, protests have been held by war-injured TDF members, IDPs and teachers in the Tigray region. Hence, the general objective of this project is to explore the challenges of peace-building processes in the border woredas of the Eastern Zone of the Tigray Region. Methodologically, the project will employ exploratory qualitative research designs to gather and analyze qualitative data. A purposive sampling technique will be applied to gather pertinent information from the key stakeholders. Open-ended interview questions will be prepared to gather relevant information about the challenges and perceptions of peacebuilding in the study area. Data will be analyzed using qualitative methods such as content analysis, narrative analysis and phenomenological analysis to deeply investigate the challenges of peace-building in the study woredas. Findings of this research project will be employed for program intervention to promote sustainable peace in the study area.

Keywords: peace building, conflcit and violence, political instability, insecurity

Procedia PDF Downloads 39
201 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning

Authors: Shayan Mohajer Hamidi

Abstract:

Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.

Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning

Procedia PDF Downloads 75
200 Learning Academic Skills through Movement: A Case Study in Evaluation

Authors: Y. Salfati, D. Sharef Bussel, J. Zamir

Abstract:

In this paper, we present an Evaluation Case Study implementing the eight principles of Collaborative Approaches to Evaluation (CAE) as designed by Brad Cousins in the past decade. The focus of this paper is sharing a rich experience in which we achieved two main goals. The first was the development of a valuable and meaningful new teacher training program, and the second was a successful implementation of the CAE principles. The innovative teacher training program is based on the idea of including physical movement during the process of teaching and learning academic themes. The program is called Learning through Movement. This program is a response to a call from the Ministry of Education, claiming that today children sit in front of screens and do not exercise any physical activity. In order to contribute to children’s health, physical, and cognitive development, the Ministry of Education promotes learning through physical activities. Research supports the idea that sports and physical exercise improve academic achievements. The Learning through Movement program is operated by Kaye Academic College. Students in the Elementary School Training Program, together with students in the Physical Education Training Program, implement the program in collaboration with two mentors from the College. The program combines academic learning with physical activity. The evaluation began at the beginning of the program. During the evaluation process, data was collected by means of qualitative tools, including interviews with mentors, observations during the students’ collaborative planning, class observations at school and focus groups with students, as well as the collection of documentation related to the teamwork and to the program itself. The data was analyzed using content analysis and triangulation. The preliminary results show outcomes relating to the Teacher Training Programs, the student teachers, the pupils in class, the role of Physical Education teachers, and the evaluation. The Teacher Training Programs developed a collaborative approach to lesson planning. The students' teachers demonstrated a change in their basic attitudes towards the idea of integrating physical activities during the lessons. The pupils indicated higher motivation through full participation in classes. These three outcomes are indicators of the success of the program. An additional significant outcome of the program relates to the status and role of the physical education teachers, changing their role from marginal to central in the school. Concerning evaluation, a deep sense of trust and confidence was achieved, between the evaluator and the whole team. The paper includes the perspectives and challenges of the heads and mentors of the two programs as well as the evaluator’s conclusions. The evaluation unveils challenges in conducting a CAE evaluation in such a complex setting.

Keywords: collaborative evaluation, training teachers, learning through movement

Procedia PDF Downloads 146