Search results for: recycled paper
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25210

Search results for: recycled paper

24910 Bamboo: A Trendy and New Alternative to Wood

Authors: R. T. Aggangan, R. J. Cabangon

Abstract:

Bamboo is getting worldwide attention over the last 20 to 30 years due to numerous uses and it is regarded as the closest material that can be used as substitute to wood. In the domestic market, high quality bamboo products are sold in high-end markets while lower quality products are generally sold to medium and low income consumers. The global market in 2006 stands at about 7 billion US dollars and was projected to increase to US$ 17 B from 2015 to 2020. The Philippines had been actively producing and processing bamboo products for the furniture, handicrafts and construction industry. It was however in 2010 that the Philippine bamboo industry was formalized by virtue of Executive Order 879 that stated that the Philippine bamboo industry development is made a priority program of the government and created the Philippine Bamboo Industry Development Council (PBIDC) to provide the overall policy and program directions of the program for all stakeholders. At present, the most extensive use of bamboo is for the manufacture of engineered bamboo for school desks for all public schools as mandated by EO 879. Also, engineered bamboo products are used for high-end construction and furniture as well as for handicrafts. Development of cheap adhesives, preservatives, and finishing chemicals from local species of plants, development of economical methods of drying and preservation, product development and processing of lesser-used species of bamboo, development of processing tools, equipment and machineries are the strategies that will be employed to reduce the price and mainstream engineered bamboo products in the local and foreign market. In addition, processing wastes from bamboo can be recycled into fuel products such as charcoal are already in use. The more exciting possibility, however, is the production of bamboo pellets that can be used as a substitute for wood pellets for heating, cooking and generating electricity.

Keywords: bamboo charcoal and light distillates, engineered bamboo, furniture and handicraft industries, housing and construction, pellets

Procedia PDF Downloads 248
24909 Experimental Studies on Flexural Behaviour on Beam Using Lathe Waste in SIFCON

Authors: R. Saravanakumar, A. Siva, R. Banupriya, K. Balasubramanian

Abstract:

Slurry infiltrated fibrous concrete (SIFCON) is one of the recently developed construction material that can be considered as a special type of high performance fibre reinforced concrete (HPFRC) with higher fibre content. Fibre reinforced concrete is essentially a composite material in which fibres out of waste having higher modulus of elasticity. SIFCON is a special type of high fibrous concrete and it is having a high cementious content and sand. The matrix usually consists of cement-sand slurry or fluent mortar. The construction industry is in need of finding cost effective materials for increasing the strength of concrete structures hence an endeavour has been made in the present investigations to study the influence of addition of waste material like Lathe waste from workshop at different dosages to the total weight of concrete. The waste of steel scrap material which is available from the lathe is used as a steel fibre for innovative construction industry. To get sustainable and environmental benefits, lathe scrap as recycled fibres with concrete are likely to be used. An experimental program was carried out to investigate the flexural behavior of Slurry infiltrated fibrous concrete (SIFCON) in which the fibres having an aspect ratio of 100 is used. The investigations were done using M25 mix and tests were carried out as per recommended procedures by appropriate codes. SIFCON specimens with 8%, 10% and 12% volume of fraction fibres are used in this study. Test results were presented in comparison of SIFCON with and without conventional steel reinforcement. The load carrying capacity of SIFCON specimen is higher than conventional concrete and it also reduced crack width. In the SIFCON specimen less number of cracks as compared with conventional concrete.

Keywords: SIFCON, lathe waste, RCC, fibre volume, flexural behaviour

Procedia PDF Downloads 316
24908 Comprehensive Evaluation of Oral and Maxillofacial Radiology in "COVID-19"

Authors: Sahar Heidary, Ramin Ghasemi Shayan

Abstract:

The recent coronavirus disease 2019 (COVID-19) occurrence has carried considerabletrials to the world health system, comprising the training of dental and maxillofacial radiology (DMFR). DMFR will keep avital role in healthcare throughout this disaster. Severe acute breathing disease coronavirus 2 (SARS-CoV-2), the virus producing the current coronavirus disease 2019 (COVID-19) pandemic, is not only extremely contagious but can make solemn consequences in susceptible persons comprising dental patients and dental health care personnel (DHCPs). Reactions to COVID-19 have been available by the Cores for Infection Switch and Inhibition and the American Dental Association, but a more detailed answer is necessary for the harmless preparation of oral and maxillofacial radiology. Our goal is to evaluation the existing information just how the illness threatens patients and DHCPs and how to define which patients are possible to be SARS-CoV-2 infected; study how the usage of private shielding utensils and contamination control measures based on recent top observes, and knowledge can decrease the danger of virus spread in radiologic trials; and scrutinize how intraoral radiography, with its actually superior danger of scattering the infection, might be changed by extraoralradiographic methods for definite diagnostic jobs. In the pandemic, teleradiology has been extensively recycled for diagnostic determinations of COVID-19 patients, for discussions with radiologists in crisis cases, or managing of distance among radiology clinics. Dentists can have the digital radiographic images of their emergency patients through online service area also by electronic message or messaging applications to view in their smart phones, laptops, or other electronic devices.

Keywords: radiology, dental, oral, COVID-19, infection

Procedia PDF Downloads 172
24907 Multi-Index Performance Investigation of Rubberized Reclaimed Asphalt Mixture

Authors: Ling Xu, Giuseppe Loprencipe, Antonio D'Andrea

Abstract:

Asphalt pavement with recycled and sustainable materials has become the most commonly adopted strategy for road construction, including reclaimed asphalt pavement (RAP) and crumb rubber (CR) from waste tires. However, the adhesion and cohesion characteristics of rubberized reclaimed asphalt pavement were still ambiguous, resulting in deteriorated adhesion behavior and life performance. This research investigated the effect of bonding characteristics on rutting resistance and moisture susceptibility of rubberized reclaimed asphalt pavement in terms of two RAP sources with different oxidation levels and two tire rubber with different particle sizes. Firstly, the binder bond strength (BBS) test and bonding failure distinguishment were conducted to analyze the surface behaviors of binder-aggregate interaction. Then, the compatibility and penetration grade of rubberized RAP binder were evaluated by rotational viscosity test and penetration test, respectively. Hamburg wheel track (HWT) test with high-temperature viscoelastic deformation analysis was adopted, which illustrated the rutting resistance. Additionally, a water boiling test was employed to evaluate the moisture susceptibility of the mixture and the texture features were characterized with the statistical parameters of image colors. Finally, the colloid structure model of rubberized RAP binder with surface interaction was proposed, and statistical analysis was established to release the correlation among various indexes. This study concluded that the gel-phase colloid structure and molecular diffusion of the free light fraction would affect the surface interpretation with aggregate, determining the bonding characteristic of rubberized RAP asphalt.

Keywords: bonding characteristics, reclaimed asphalt pavement, rubberized asphalt, sustainable material

Procedia PDF Downloads 62
24906 Evaluation of Life Cycle Assessment in Furniture Manufacturing by Analytical Hierarchy Process

Authors: Majid Azizi, Payam Ghorbannezhad, Mostafa Amiri, Mohammad Ghofrani

Abstract:

Environmental issues in the furniture industry are of great importance due to the use of natural materials such as wood and chemical substances like adhesives and paints. These issues encompass environmental conservation and managing pollution and waste generated. Improper use of wood resources, along with the use of chemicals and their release, leads to the depletion of natural resources, damage to forests, and the emission of greenhouse gases. Therefore, identifying influential indicators in the life cycle assessment of classic furniture and proposing solutions to reduce environmental impacts becomes crucial. In this study, the life cycle of classic furniture was evaluated using a hierarchical analytical process from cradle to grave. The life cycle assessment was employed to assess the environmental impacts of the furniture industry, ranging from raw material extraction to waste disposal and recycling. The most significant indicators in the furniture industry's production chain were also identified. The results indicated that the wood quality indicator is the most essential factor in the life cycle of classic furniture. Furthermore, the relative contribution of each type of traditional furniture was proposed concerning impact categories in the life cycle assessment. The results showed that among the three proposed types, the design and production of furniture with prefabricated parts had the most negligible impact in categories such as global warming potential and ozone layer depletion compared to furniture design with solid wood and furniture design with recycled components. Among the three suggested types of furniture to reduce environmental impacts, producing furniture with solid wood or other woods was chosen as the most crucial solution.

Keywords: life cycle assessment, analytic hierarchy process, environmental issues, furniture

Procedia PDF Downloads 64
24905 Sulfonic Acid Functionalized Ionic Liquid in Combinatorial Approach: A Recyclable and Water Tolerant-Acidic Catalyst for Friedlander Quinoline Synthesis

Authors: Jafar Akbari

Abstract:

Quinolines are very important compounds partially because of their pharmacological properties which include wide applications in medicinal chemistry. notable among them are antimalarial drugs, anti-inflammatory agents, antiasthamatic, antibacterial, antihypertensive, and tyrosine kinase inhibiting agents. Despite quinoline usage in pharmaceutical and other industries, comparatively few methods for their preparation have been reported.The Friedlander annulation is one of the simplest and most straightforward methods for the synthesis of poly substituted quinolines. Although, modified methods employing lewis or br¢nsted acids have been reported for the synthesis of quinolines, the development of water stable acidic catalyst for quinoline synthesis is quite desirable. One of the most remarkable features of ionic liquids is that the yields can be optimized by changing the anions or the cations. Recently, sulfonic acid functionalized ionic liquids were used as solvent-catalyst for several organic reactions. We herein report the one pot domino approach for the synthesis of quinoline derivatives in Friedlander manner using TSIL as a catalyst. These ILs are miscible in water, and their homogeneous system is readily separated from the reaction product, combining advantages of both homogeneous and heterogeneous catalysis. In this reaction, the catalyst plays a dual role; it ensures an effective condensation and cyclization of 2-aminoaryl ketone with second carbonyl group and it also promotes the aromatization to the final product. Various types of quinolines from 2-aminoaryl ketones and β-ketoesters/ketones were prepared in 85-98% yields using the catalytic system of SO3-H functionalized ionic liquid/H2O. More importantly, the catalyst could be easily recycled for five times without loss of much activity.

Keywords: antimalarial drugs, green chemistry, ionic liquid, quinolines

Procedia PDF Downloads 210
24904 A Prototype for Biological Breakdown of Plastic Bags in Desert Areas

Authors: Yassets Egaña, Patricio Núñez, Juan C. Rios, Ivan Balic, Alex Manquez, Yarela Flores, Maria C. Gatica, Sergio Diez De Medina, Rocio Tijaro-Rojas

Abstract:

Globally, humans produce millions of tons of waste per year. An important percentage of this waste is plastic, which frequently ends up in landfills and oceans. During the last decades, the greatest plastics production in history have been made, a few amount of this plastic is recycled, the rest ending up as plastic pollution in soils and seas. Plastic pollution is disastrous for the environment, affecting essential species, quality of consumption water, and some economic activities such as tourism, in different parts of the world. Due to its durability and decomposition on micro-plastics, animals and humans are accumulating a variety of plastic components without having clear their effects on human health, economy, and wildlife. In dry regions as the Atacama Desert, up to 95% of the water consumption comes from underground reservoirs, therefore preventing the soil pollution is an urgent need. This contribution focused on isolating, genotyping and optimizing microorganisms that use plastic waste as the only source of food to construct a batch-type bioreactor able to degrade in a faster way the plastic waste before it gets the desert soils and groundwater consumed by people living in this areas. Preliminary results, under laboratory conditions, has shown an improved degradation of polyethylene when three species of bacteria and three of fungi act on a selected plastic material. These microorganisms have been inoculated in dry soils, initially lacking organic matter, under environmental conditions in the laboratory. Our team designed and constructed a prototype using the natural conditions of the region and the best experimental results.

Keywords: biological breakdown, plastic bags, prototype, desert regions

Procedia PDF Downloads 287
24903 New Platform of Biobased Aromatic Building Blocks for Polymers

Authors: Sylvain Caillol, Maxence Fache, Bernard Boutevin

Abstract:

Recent years have witnessed an increasing demand on renewable resource-derived polymers owing to increasing environmental concern and restricted availability of petrochemical resources. Thus, a great deal of attention was paid to renewable resources-derived polymers and to thermosetting materials especially, since they are crosslinked polymers and thus cannot be recycled. Also, most of thermosetting materials contain aromatic monomers, able to confer high mechanical and thermal properties to the network. Therefore, the access to biobased, non-harmful, and available aromatic monomers is one of the main challenges of the years to come. Starting from phenols available in large volumes from renewable resources, our team designed platforms of chemicals usable for the synthesis of various polymers. One of these phenols, vanillin, which is readily available from lignin, was more specifically studied. Various aromatic building blocks bearing polymerizable functions were synthesized: epoxy, amine, acid, carbonate, alcohol etc. These vanillin-based monomers can potentially lead to numerous polymers. The example of epoxy thermosets was taken, as there is also the problematic of bisphenol A substitution for these polymers. Materials were prepared from the biobased epoxy monomers obtained from vanillin. Their thermo-mechanical properties were investigated and the effect of the monomer structure was discussed. The properties of the materials prepared were found to be comparable to the current industrial reference, indicating a potential replacement of petrosourced, bisphenol A-based epoxy thermosets by biosourced, vanillin-based ones. The tunability of the final properties was achieved through the choice of monomer and through a well-controlled oligomerization reaction of these monomers. This follows the same strategy than the one currently used in industry, which supports the potential of these vanillin-derived epoxy thermosets as substitutes of their petro-based counterparts.

Keywords: lignin, vanillin, epoxy, amine, carbonate

Procedia PDF Downloads 232
24902 Pyrroloquinoline Quinone Enhances the Mitochondrial Function by Increasing Beta-Oxidation and a Balanced Mitochondrial Recycling in Mice Granulosa Cells

Authors: Moustafa Elhamouly, Masayuki Shimada

Abstract:

The production of competent oocytes is essential for reproductivity in mammals. Maintenance of mitochondrial efficiency is required to supply the ATP necessary for granulosa cell proliferation during the follicular development process. Treatment with Pyrroloquinoline quinone (PQQ) has been reported to increase the number of ovulated oocytes and pups per delivery in mice by maintaining healthy mitochondrial function. This study aimed to elucidate how PQQ maintains mitochondrial function during ovarian follicle growth. To do this, both in vitro and in vivo experiments were performed with granulosa cells from superovulated immature (3-week-old) mice that were pretreated with or without PQQ. The effects of PQQ on beta-oxidation, mitochondrial function, mitophagy, and mitochondrial biogenesis were examined. PQQ increased beta-oxidation-related genes and CPT1 protein content in granulosa cells and this was associated with a decreased phosphorylation of P38 signaling protein. Using the fatty acid oxidation assay on the flux analyzer, PQQ increased the reliance of beta-oxidation on the endogenous fatty acids and was associated with a mild UCP-dependant mitochondrial uncoupling, ATP production, mitophagy, and mitochondrial biogenesis. PQQ also increased the expression of endogenous antioxidant enzymes. Thus, PQQ induced beta-oxidation in growing granulosa cells relying on endogenous fatty acids. And reduced the Reactive oxygen species (ROS) production by inducing a mild mitochondrial uncoupling with keeping high mitochondrial function. Damaged mitochondria were recycled by the induced mitophagy and replaced by the increased mitochondrial biogenesis. Collectively, PQQ may enhance reproductivity by maintaining the efficiency of mitochondria to produce enough ATP required for normal folliculogenesis.

Keywords: granulosa cells, mitochondrial uncoupling, mitophagy, pyrroloquinoline quinone (PQQ), reactive oxygen species (ROS).

Procedia PDF Downloads 81
24901 Effect of Sodium Hydroxide Treatment on the Mechanical Properties of Crushed and Uncrushed Luffa cylindrica Fibre Reinforced rLDPE Composites

Authors: Paschal A. Ubi, Salawu Abdul Rahman Asipita

Abstract:

The use of suitable engineering materials which poses less harm to ,an and the environment is sort for in recent times, thus giving rise to polymer composites filled with natural organic reinforcement which are biodegradable. Treatment of natural fibres is essential in improving matrix to filler adhesion, hence improving its mechanical properties. In this study, investigations were carried out to determine the effect of sodium hydroxide treatment on the tensile, flexural, impact and hardness properties of crushed and uncrushed luffa cylindrica fibre reinforced recycled low density polyethylene composites. The LC (Luffa Cylindrica) fibres were treated with 0%, 2%, 4%, 6%, 8%, and 10% wt. NaOH concentrations for a period of 24 hours under room temperature conditions. The compounding of the waste LDPE was done using a two roll mill at a temperature of 150 oC and cured in a hydraulic press at a temperature of 150oC for 3 minutes at 3 metric tonnes. A formulation of 20/80g (reinforcement to matrix ratio in grams) was maintained for all fabricated samples. Analysis of the results showed that the uncrushed luffa fibre samples gave better mechanical properties compared with the crushed luffa fibre samples. The uncrushed luffa fibre composites had optimum tensile and flexural strengths of 7.65MPa and 17.08Mpa respectively corresponding to a young modulus and flexural modulus of 21.08MPa and 232.22MPa for the 8% and 4%wt. NaOH concentration respectively. Results obtained in the research showed that NaOH treatment with the 8% NaOH concentration improves the mechanical properties of the LC fibre reinforced composites when compared with other NaOH treatment concentration values.

Keywords: LC fibres, NaOH concentration, LC/rLDPE composite, tensile strength, flexural strength

Procedia PDF Downloads 281
24900 Wood Decay Fungal Strains Useful for Bio-Composite Material Production

Authors: C. Girometta, S. Babbini, R. M. Baiguera, D. S. Branciforti, M. Cartabia, D. Dondi, M. Pellegrini, A. M. Picco, E. Savino

Abstract:

Interest on wood decay fungi (WDF) has been increasing in the last year's thanks to the potentiality of this kind of fungi; research on new WDF strains has increased as well thus pointing out the key role of the culture collections. One of the most recent biotechnological application of WDF is the development of novel materials from natural or recycled resources. Based on different combinations of fungal species, substrate, and processing treatment involved (e.g. heat pressing), it is possible to achieve a wide variety of materials with different features useful for many industrial applications: from packaging to thermal and acoustic insulation. In comparison with the conventional ones, these materials represent a 100% natural and compostable alternative involving low amounts of energy in the production process. The purpose of the present work was to isolate and select WDF strains able to colonize and degrade different plant wastes thus producing a fungal biomass shapeable to achieve bio-composite materials. Strains were selected within the mycological culture collection of Pavia University (MicUNIPV, over 300 strains of WDF). The selected strains have been investigated with regards their ability to colonize and degrade plant residues from the local major cultivations (e.g. poplar, alfalfa, maize, rice, and wheat) and produce the fungal biomass. The degradation of the substrate was assessed by Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). Chemical characterization confirmed that TGA and FTIR are complementary techniques able to provide quality-quantitative information on compositional and structural variation that occurs during the transformation from the substrate to the bio-composite material. This pilot study provides a fundamental step to tune further applications in fungus-residues composite biomaterials.

Keywords: bio-composite material, lignocellulosic residues, sustainable materials, wood decay fungi

Procedia PDF Downloads 141
24899 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier

Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari

Abstract:

Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.

Keywords: Cyanex 272, emulsion liquid membrane, MWCNT nanofluid, response surface methology, Samarium

Procedia PDF Downloads 424
24898 Stress-Controlled Senescence and Development in Arabidopsis thaliana by Root Associated Factor (RAF), a NAC Transcription Regulator

Authors: Iman Kamranfar, Gang-Ping Xue, Salma Balazadeh, Bernd Mueller-Roeber

Abstract:

Adverse environmental conditions such as salinity stress, high temperature and drought limit plant growth and typically lead to precocious tissue degeneration and leaf senescence, a process by which nutrients from photosynthetic organs are recycled for the formation of flowers and seeds to secure reaching the next generation under such harmful conditions. In addition, abiotic stress affects developmental patterns that help the plant to withstand unfavourable environmental conditions. We discovered an NAC (for NAM, ATAF1, 2, and CUC2) transcription factor (TF), called RAF in the following, which plays a central role in abiotic drought stress-triggered senescence and the control of developmental adaptations to stressful environments. RAF is an ABA-responsive TF; RAF overexpressors are hypersensitive to abscisic acid (ABA) and exhibit precocious senescence while knock-out mutants show delayed senescence. To explore the RAF gene regulatory network (GRN), we determined its preferred DNA binding sites by binding site selection assay (BSSA) and performed microarray-based expression profiling using inducible RAF overexpression lines and chromatin immunoprecipitation (ChIP)-PCR. Our studies identified several direct target genes, including those encoding for catabolic enzymes acting during stress-induced senescence. Furthermore, we identified various genes controlling drought stress-related developmental changes. Based on our results, we conclude that RAF functions as a central transcriptional regulator that coordinates developmental programs with stress-related inputs from the environment. To explore the potential agricultural applications of our findings, we are currently extending our studies towards crop species.

Keywords: abiotic stress, Arabidopsis, development, transcription factor

Procedia PDF Downloads 195
24897 Tree Dress and the Internet of Living Things

Authors: Vibeke Sorensen, Nagaraju Thummanapalli, J. Stephen Lansing

Abstract:

Inspired by the indigenous people of Borneo, Indonesia and their traditional bark cloth, artist and professor Vibeke Sorensen executed a “digital unwrapping” of several trees in Southeast Asia using a digital panorama camera and digitally “stitched” them together for printing onto sustainable silk and fashioning into the “Tree Dress”. This dress is a symbolic “un-wrapping” and “re-wrapping” of the tree’s bark onto a person as a second skin. The “digital bark” is directly responsive to the real tree through embedded and networked electronics that connect in real-time to sensors at the physical site of the living tree. LEDs and circuits inserted into the dress display the continuous measurement of the O2 / CO2, temperature, humidity, and light conditions at the tree. It is an “Internet of Living Things” (IOLT) textile that can be worn to track and interact with it. The computer system connecting the dress and the tree converts the gas emission data at the site of the real tree into sound and music as sonification. This communicates not only the scientific data but also translates it into a poetic representation. The wearer of the garment can symbolically identify with the tree, or “become one” with it by adorning its “skin.” In this way, the wearer also becomes a human agent for the tree, bringing its actual condition to direct perception of the wearer and others who may engage it. This project is an attempt to bring greater awareness to issues of deforestation by providing a direct access to living things separated by physical distance, and hopefully, to increase empathy for them by providing a way to sense individual trees and their daily existential condition through remote monitoring of data. Further extensions to this project and related issues of sustainability include the use of recycled and alternative plant materials such as bamboo and air plants, among others.

Keywords: IOLT, sonification, sustainability, tree, wearable technology

Procedia PDF Downloads 138
24896 Upgrading of Bio-Oil by Bio-Pd Catalyst

Authors: Sam Derakhshan Deilami, Iain N. Kings, Lynne E. Macaskie, Brajendra K. Sharma, Anthony V. Bridgwater, Joseph Wood

Abstract:

This paper reports the application of a bacteria-supported palladium catalyst to the hydrodeoxygenation (HDO) of pyrolysis bio-oil, towards producing an upgraded transport fuel. Biofuels are key to the timely replacement of fossil fuels in order to mitigate the emissions of greenhouse gases and depletion of non-renewable resources. The process is an essential step in the upgrading of bio-oils derived from industrial by-products such as agricultural and forestry wastes, the crude oil from pyrolysis containing a large amount of oxygen that requires to be removed in order to create a fuel resembling fossil-derived hydrocarbons. The bacteria supported catalyst manufacture is a means of utilizing recycled metals and second life bacteria, and the metal can also be easily recovered from the spent catalysts after use. Comparisons are made between bio-Pd, and a conventional activated carbon supported Pd/C catalyst. Bio-oil was produced by fast pyrolysis of beechwood at 500 C at a residence time below 2 seconds, provided by Aston University. 5 wt % BioPd/C was prepared under reducing conditions, exposing cells of E. coli MC4100 to a solution of sodium tetrachloropalladate (Na2PdCl4), followed by rinsing, drying and grinding to form a powder. Pd/C was procured from Sigma-Aldrich. The HDO experiments were carried out in a 100 mL Parr batch autoclave using ~20g bio-crude oil and 0.6 g bio-Pd/C catalyst. Experimental variables investigated for optimization included temperature (160-350C) and reaction times (up to 5 h) at a hydrogen pressure of 100 bar. Most of the experiments resulted in an aqueous phase (~40%) and an organic phase (~50-60%) as well as gas phase (<5%) and coke (<2%). Study of the temperature and time upon the process showed that the degree of deoxygenation increased (from ~20 % up to 60 %) at higher temperatures in the region of 350 C and longer residence times up to 5 h. However minimum viscosity (~0.035 Pa.s) occurred at 250 C and 3 h residence time, indicating that some polymerization of the oil product occurs at the higher temperatures. Bio-Pd showed a similar degree of deoxygenation (~20 %) to Pd/C at lower temperatures of 160 C, but did not rise as steeply with temperature. More coke was formed over bio-Pd/C than Pd/C at temperatures above 250 C, suggesting that bio-Pd/C may be more susceptible to coke formation than Pd/C. Reactions occurring during bio-oil upgrading include catalytic cracking, decarbonylation, decarboxylation, hydrocracking, hydrodeoxygenation and hydrogenation. In conclusion, it was shown that bio-Pd/C displays an acceptable rate of HDO, which increases with residence time and temperature. However some undesirable reactions also occur, leading to a deleterious increase in viscosity at higher temperatures. Comparisons are also drawn with earlier work on the HDO of Chlorella derived bio-oil manufactured from micro-algae via hydrothermal liquefaction. Future work will analyze the kinetics of the reaction and investigate the effect of bi-metallic catalysts.

Keywords: bio-oil, catalyst, palladium, upgrading

Procedia PDF Downloads 175
24895 A Structure-Based Approach for Adaptable Building System

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

Existing buildings are permanently subjected to change, continuously renovated and repaired in their long service life. Old buildings are destroyed and their material and components are recycled or reused for constructing new ones. In this process, importance of sustainability principles for building construction is obviously known and great significance must be attached to consumption of resources, resulting effects on the environment and economic costs. Utilization strategies for extending buildings service life and delay in destroying have positive effect on environment protection. In addition, simpler alterability or expandability of buildings’ structures and reducing energy and natural resources consumption have benefits for users, producers and environment. To solve these problems, by applying theories of open building, structural components of some conventional building systems have been analyzed and then, a new geometry adaptive building system is developed which can transform and support different imposed loads. In order to achieve this goal, various research methods and tools such as professional and scientific literatures review, comparative analysis, case study and computer simulation were applied and data interpretation was implemented using descriptive statistics and logical arguments. Therefore, hypothesis and proposed strategies were evaluated and an adaptable and reusable 2-dimensional building system was presented which can respond appropriately to dwellers and end-users needs and provide reusability of structural components of building system in new construction or function. Investigations showed that this incremental building system can be successfully applied in achieving the architectural design objectives and by small modifications on components and joints, it is easy to obtain different and adaptable load-optimized component alternatives for flexible spaces.

Keywords: adaptability, durability, open building, service life, structural building system

Procedia PDF Downloads 579
24894 Mechanical Properties Analysis of Masonry Residue Mortar as Cement Replacement

Authors: Camila Parodi, Viviana Letelier, Giacomo Moriconi

Abstract:

The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residues in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. Previous researches demonstrate the feasibility of using brick and rust residues, separately, as a cement replacement. This study analyses the variation in the mechanical properties of mortars by incorporating masonry residue composed of clay bricks and cement mortar. In order to improve the mechanical properties of masonry residue, this was subjected to a heat treatment of 650 ° C for four hours and its effect is analyzed in this study. Masonry residue was obtained from a demolition of masonry perimetral walls. The residues were crushed and sieved and the maximum size of particles used was 75 microns. The percentages of cement replaced by masonry residue were 0%, 10%, 20% and 30%. The effect of masonry residue addition and its heat treatment in the mechanical properties of mortars is evaluated through compressive and flexural strength tests after 7, 14 and 28 curing days. Results show that increasing the amount of masonry residue used increases the losses in compressive strength and flexural strength. However, the use of up to a 20% of masonry residue, when a heat treatment is applied, allows obtaining mortars with similar compressive strength to the control mortar. Masonry residues mortars without a heat treatment show losses in compressive strengths between 15% and 27% with respect to masonry residues with heat treatment, which demonstrates the effectiveness of the heat treatment. From this analysis it can be conclude that it is possible to use up to 20% of masonry residue with heat treatment as cement replacement without significant losses in mortars mechanical properties, reducing considerably the environmental impact of the final material.

Keywords: cement replacement, environmental impact, masonry residue, mechanical properties of recycled mortars

Procedia PDF Downloads 392
24893 Design and Development of High Strength Aluminium Alloy from Recycled 7xxx-Series Material Using Bayesian Optimisation

Authors: Alireza Vahid, Santu Rana, Sunil Gupta, Pratibha Vellanki, Svetha Venkatesh, Thomas Dorin

Abstract:

Aluminum is the preferred material for lightweight applications and its alloys are constantly improving. The high strength 7xxx alloys have been extensively used for structural components in aerospace and automobile industries for the past 50 years. In the next decade, a great number of airplanes will be retired, providing an obvious source of valuable used metals and great demand for cost-effective methods to re-use these alloys. The design of proper aerospace alloys is primarily based on optimizing strength and ductility, both of which can be improved by controlling the additional alloying elements as well as heat treatment conditions. In this project, we explore the design of high-performance alloys with 7xxx as a base material. These designed alloys have to be optimized and improved to compare with modern 7xxx-series alloys and to remain competitive for aircraft manufacturing. Aerospace alloys are extremely complex with multiple alloying elements and numerous processing steps making optimization often intensive and costly. In the present study, we used Bayesian optimization algorithm, a well-known adaptive design strategy, to optimize this multi-variable system. An Al alloy was proposed and the relevant heat treatment schedules were optimized, using the tensile yield strength as the output to maximize. The designed alloy has a maximum yield strength and ultimate tensile strength of more than 730 and 760 MPa, respectively, and is thus comparable to the modern high strength 7xxx-series alloys. The microstructure of this alloy is characterized by electron microscopy, indicating that the increased strength of the alloy is due to the presence of a high number density of refined precipitates.

Keywords: aluminum alloys, Bayesian optimization, heat treatment, tensile properties

Procedia PDF Downloads 119
24892 Synthesis of Low-Cost Porous Silicon Carbide Foams from Renewable Sources

Authors: M. A. Bayona, E. M. Cordoba, V. R. Guiza

Abstract:

Highly porous carbon-based foams are used in a wide range of industrial applications, which include absorption, catalyst supports, thermal insulation, and biomaterials, among others. Particularly, silicon carbide (SiC) based foams have shown exceptional potential for catalyst support applications, due to their chemical inertness, large frontal area, low resistance to flow, low-pressure drop, as well as high resistance to temperature and corrosion. These properties allow the use of SiC foams in harsh environments with high durability. Commonly, SiC foams are fabricated from polysiloxane, SiC powders and phenolic resins, which can be costly or highly toxic to the environment. In this work, we propose a low-cost method for the fabrication of highly porous, three-dimensional SiC foams via template replica, using recycled polymeric sponges as sacrificial templates. A sucrose-based resin combined with a Si-containing pre-ceramic polymer was used as the precursor. Polymeric templates were impregnated with the precursor solution, followed by thermal treatment at 1500 °C under an inert atmosphere. Several synthesis parameters, such as viscosity and composition of the precursor solution (Si: Sucrose molar ratio), and the porosity of the template, were evaluated in terms of their effect on the morphology, composition and mechanical resistance of the resulting SiC foams. The synthesized composite foams exhibited a highly porous (50-90%) and interconnected structure, containing 30-90% SiC with a mechanical compressive strength between 0.01-0.1 MPa. The methodology employed here allowed the fabrication of foams with a varied concentration of SiC and with morphological and mechanical properties that contribute to the development of materials of high relevance in the industry, while using low-cost, renewable sources such as table sugar, and providing a recycling alternative for polymeric sponges.

Keywords: catalyst support, polymer replica technique, reticulated porous ceramics, silicon carbide

Procedia PDF Downloads 123
24891 Adaptability of Steel-Framed Industrialized Building System

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

Existing buildings are permanently subjected to change, continuously renovated and repaired in their long service life. Old buildings are destroyed and their material and components are recycled or reused for constructing new ones. In this process, importance of sustainability principles for building construction is obviously known and great significance must be attached to consumption of resources, resulting effects on the environment and economic costs. Utilization strategies for extending buildings service life and delay in destroying have positive effect on environment protection. In addition, simpler alterability or expandability of buildings’ structures and reducing energy and natural resources consumption have benefits for users, producers and environment. To solve these problems, by applying theories of open building, structural components of some conventional building systems have been analyzed and then, a new geometry adaptive building system is developed which can transform and support different imposed loads. In order to achieve this goal, various research methods and tools such as professional and scientific literatures review, comparative analysis, case study and computer simulation were applied and data interpretation was implemented using descriptive statistics and logical arguments. Therefore, hypothesis and proposed strategies were evaluated and an adaptable and reusable 2-dimensional building system was presented which can respond appropriately to dwellers and end-users needs and provide reusability of structural components of building system in new construction or function. Investigations showed that this incremental building system can be successfully applied in achieving the architectural design objectives and by small modifications on components and joints, it is easy to obtain different and adaptable load-optimized component alternatives for flexible spaces.

Keywords: adaptability, durability, open building, service life, structural building system

Procedia PDF Downloads 364
24890 A Study of Industrial Symbiosis and Implementation of Indigenous Circular Economy Technique on an Indian Industrial Area

Authors: A. Gokulram

Abstract:

Industrial waste is often categorized as commercial and non-commercial waste by market value. In many Indian industries and other industrialized countries, the commercial value waste is capitalized and non-commercial waste is dumped to landfill. A lack of adequate research on industrial waste leads to the failure of effective resource management and the non-commercial waste are being considered as commercially non-viable residues. The term Industrial symbiosis refers to the direct inter-firm reuse or exchange of material and energy resource. The resource efficiency of commercial waste is mainly followed by an informal symbiosis in our research area. Some Industrial residues are reused within the facility where they are generated, others are reused directly nearby industrial facilities and some are recycled via the formal and informal market. The act of using industrial waste as a resource for another product faces challenges in India. This research study has observed a major negligence of trust and communication among several bodies to implement effective circular economy in India. This study applies interviewing process across researchers, government bodies, industrialist and designers to understand the challenges of circular economy in India. The study area encompasses an industrial estate in Ahmedabad in the state of Gujarat which comprises of 1200 industries. The research study primarily focuses on making industrial waste as commercial ready resource and implementing Indigenous sustainable practice in modern context to improve resource efficiency. This study attempted to initiate waste exchange platform among several industrialist and used varied methodologies from mail questionnaire to telephone survey. This study makes key suggestions to policy change and sustainable finance to improve circular economy in India.

Keywords: effective resource management, environmental policy, indigenous technique, industrial symbiosis, sustainable finance

Procedia PDF Downloads 135
24889 Synthetic Bis(2-Pyridylmethyl)Amino-Chloroacetyl Chloride- Ethylenediamine-Grafted Graphene Oxide Sheets Combined with Magnetic Nanoparticles: Remove Metal Ions and Catalytic Application

Authors: Laroussi Chaabane, Amel El Ghali, Emmanuel Beyou, Mohamed Hassen V. Baouab

Abstract:

In this research, the functionalization of graphene oxide sheets by ethylenediamine (EDA) was accomplished and followed by the grafting of bis(2-pyridylmethyl) amino group (BPED) onto the activated graphene oxide sheets in the presence of chloroacetylchloride (CAC) and then combined with magnetic nanoparticles (Fe₃O₄NPs) to produce a magnetic graphene-based composite [(Go-EDA-CAC)@Fe₃O₄NPs-BPED]. The physicochemical properties of [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] composites were investigated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA). Additionally, the catalysts can be easily recycled within ten seconds by using an external magnetic field. Moreover, [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] was used for removing Cu(II) ions from aqueous solutions using a batch process. The effect of pH, contact time and temperature on the metal ions adsorption were investigated, however weakly dependent on ionic strength. The maximum adsorption capacity values of Cu(II) on the [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] at the pH of 6 is 3.46 mmol.g⁻¹. To examine the underlying mechanism of the adsorption process, pseudo-first, pseudo-second-order, and intraparticle diffusion models were fitted to experimental kinetic data. Results showed that the pseudo-second-order equation was appropriate to describe the Cu (II) adsorption by [(Go-EDA-CAC)@Fe₃O₄NPs-BPED]. Adsorption data were further analyzed by the Langmuir, Freundlich, and Jossens adsorption approaches. Additionally, the adsorption properties of the [(Go-EDA-CAC)@Fe₃O₄NPs-BPED], their reusability (more than 6 cycles) and durability in the aqueous solutions open the path to removal of Cu(II) from water solution. Based on the results obtained, we report the activity of Cu(II) supported on [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] as a catalyst for the cross-coupling of symmetric alkynes.

Keywords: graphene, magnetic nanoparticles, adsorption kinetics/isotherms, cross coupling

Procedia PDF Downloads 139
24888 Influence of Digestate Fertilization on Soil Microbial Activity, Greenhouse Gas Emissions and Yield

Authors: M. Doyeni, S. Suproniene, V. Tilvikiene

Abstract:

Agricultural wastes contribute significantly to global climate change through greenhouse gas emissions if not adequately recycled and sustainably managed. A recurring agricultural waste is livestock wastes that have consistently served as feedstock for biogas systems. The objective of this study was to access the influence of digestate fertilization on soil microbial activity and greenhouse gas emissions in agricultural fields. Wheat (Triticum spp. L.) was fertilized with different types of animal wastes digestates (organic fertilizers) and mineral nitrogen (inorganic fertilizer) for three years. The 170 kg N ha⁻¹ presented in digestates were split fertilized at an application rate of 90 and 80 kg N ha⁻¹. The soil microorganism activity could be predicted significantly using the dehydrogenase activity and soil microbial biomass carbon. By combining the two different monitoring approaches, the different methods applied in this study were sensitive to enzymatic activities and organic carbon in the living component of the soil organic matter. The emissions of greenhouse gasses (carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) were monitored directly by a static chamber system. The soil and environmental variables were measured to determine their influence on greenhouse gas emissions. Emission peaks was observed in N₂O and CO₂ after the first application of fertilizers with the emissions flattening out over the cultivating season while CH₄ emission was negligible with no apparent patterns observed. Microbial biomass carbon and dehydrogenase activity were affected by the fertilized organic digestates. A significant difference was recorded between the control and the digestate treated soils for the microbial biomass carbon and dehydrogenase. Results also showed individual and cumulative emissions of CO₂, CH₄ and N₂O from the digestates were relatively low suggesting the digestate fertilization can be an efficient method for improving soil quality and reducing greenhouse gases from agricultural sources in temperate climate conditions.

Keywords: greenhouse gas emission, manure digestate, soil microbial activity, yield

Procedia PDF Downloads 137
24887 Adaptability of Steel-Framed Industrialized Building System In Post-Service Life

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

Existing buildings are permanently subjected to change, continuously renovated and repaired in their long service life. Old buildings are destroyed and their material and components are recycled or reused for constructing new ones. In this process, the importance of sustainability principles for building construction is obviously known and great significance must be attached to the consumption of resources, resulting effects on the environment and economic costs. Utilization strategies for extending buildings service life and delay in destroying have a positive effect on environment protection. In addition, simpler alterability or expandability of buildings’ structures and reducing energy and natural resources consumption have benefits for users, producers and the environment. To solve these problems, by applying theories of open building, structural components of some conventional building systems have been analyzed and then, a new geometry adaptive building system is developed which can transform and support different imposed loads. In order to achieve this goal, various research methods and tools such as professional and scientific literatures review, comparative analysis, case study and computer simulation were applied and data interpretation was implemented using descriptive statistics and logical arguments. Therefore, hypothesis and proposed strategies were evaluated and an adaptable and reusable 2-dimensional building system was presented which can respond appropriately to dwellers and end-users needs and provide reusability of structural components of building system in new construction or function. Investigations showed that this incremental building system can be successfully applied in achieving the architectural design objectives and by small modifications on components and joints, it is easy to obtain different and adaptable load-optimized component alternatives for flexible spaces.

Keywords: adaptability, durability, open building, service life, structural building system

Procedia PDF Downloads 433
24886 Effect of Mannitol on in Vitro Conservation of Local and Exotic Taro-Genotypes (Colocasia Esculenta Var Esculenta)

Authors: Benjamin Bonsu Bruce, Marian Dorcas Quain David Appiah-Kubi, Gertrude Osei-Diko, Harrison Kwame Dapaah

Abstract:

Taro [Colocasia esculenta (L.) Schott] is a major staple food and remains a significant crop to many cultural and agricultural customs worldwide. In Ghana, taro is mostly propagated using vegetative material, which is conserved in field collection and recycled from their farms to establish new fields. However, this practice promotes the accumulation of systemic pathogens. Prior exposure to pests and subsequent expression of disease symptoms can also be a huge constraint to sustainable conservation and utilization of taro genetic resources. In vitro, slow growth is one of the most promising techniques to be utilized for conservation. The objective of this study was to find a medium-term in vitro conservation protocol for local and exotic taro genotypes. The medium-term conservation study was conducted using actively growing shoots obtained from in vitro cultures. Explants were cultured to full strength in complete Murashige and Skoog medium supplemented with Mannitol at different concentrations (0g/l, 20g/l, 25g/l, and 30g/l). Another medium that was tested as an additional treatment is the White’s medium. The highest number of shoots (6.33) and leaves (22.67) occurred on medium containing 20 and 25g/l mannitol in genotype SAO 006 as compared to other genotypes, whereas 30g/l mannitol was the best to restrict growth for the entire 6 months period in terms of shoot height (22.50cm). The study reveals that mannitol supplemented culture media could reduce the growth of Colocasia plantlets, especially in stem height. Culture growth following 6 months of conservation, showed that healthy shoot cultures of Taro were obtained after 6 months of storage in a medium containing 20gl⁻¹ and 25gl⁻¹ mannitol.

Keywords: complete murashige, skoog medium, culture conditions, mannitol, slow growth conservation

Procedia PDF Downloads 168
24885 An Advanced Approach to Detect and Enumerate Soil-Transmitted Helminth Ova from Wastewater

Authors: Vivek B. Ravindran, Aravind Surapaneni, Rebecca Traub, Sarvesh K. Soni, Andrew S. Ball

Abstract:

Parasitic diseases have a devastating, long-term impact on human health and welfare. More than two billion people are infected with soil-transmitted helminths (STHs), including the roundworms (Ascaris), hookworms (Necator and Ancylostoma) and whipworm (Trichuris) with majority occurring in the tropical and subtropical regions of the world. Despite its low prevalence in developed countries, the removal of STHs from wastewater remains crucial to allow the safe use of sludge or recycled water in agriculture. Conventional methods such as incubation and optical microscopy are cumbersome; consequently, the results drastically vary from person-to-person observing the ova (eggs) under microscope. Although PCR-based methods are an alternative to conventional techniques, it lacks the ability to distinguish between viable and non-viable helminth ova. As a result, wastewater treatment industries are in major need for radically new and innovative tools to detect and quantify STHs eggs with precision, accuracy and being cost-effective. In our study, we focus on the following novel and innovative techniques: -Recombinase polymerase amplification and Surface enhanced Raman spectroscopy (RPA-SERS) based detection of helminth ova. -Use of metal nanoparticles and their relative nanozyme activity. -Colorimetric detection, differentiation and enumeration of genera of helminth ova using hydrolytic enzymes (chitinase and lipase). -Propidium monoazide (PMA)-qPCR to detect viable helminth ova. -Modified assay to recover and enumerate helminth eggs from fresh raw sewage. -Transcriptome analysis of ascaris ova in fresh raw sewage. The aforementioned techniques have the potential to replace current conventional and molecular methods thereby producing a standard protocol for the determination and enumeration of helminth ova in sewage sludge.

Keywords: colorimetry, helminth, PMA-QPCR, nanoparticles, RPA, viable

Procedia PDF Downloads 299
24884 Application of Functionalized Magnetic Particles as Demulsifier for Oil‐in‐Water Emulsions

Authors: Hamideh Hamedi, Nima Rezaei, Sohrab Zendehboudi

Abstract:

Separating emulsified oil contaminations from waste- or produced water is of interest to various industries. Magnetic particles (MPs) application for separating dispersed and emulsified oil from wastewater is becoming more popular. Stabilization of MPs is required through developing a coating layer on their surfaces to prevent their agglomeration and enhance their dispersibility. In this research, we study the effects of coating material, size, and concentration of iron oxide MPs on oil separation efficiency, using oil adsorption capacity measurements. We functionalize both micro-and nanoparticles of Fe3O4 using sodium dodecyl sulfate (SDS) as an anionic surfactant, cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, and stearic acid (SA). The chemical structures and morphologies of these particles are characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy Dispersive X-ray (EDX). The oil-water separation results indicate that a low dosage of the coated magnetic nanoparticle with CTAB (0.5 g/L MNP-CTAB) results the highest oil adsorption capacity (nearly 100%) for 1000 ppm dodecane-in-water emulsion, containing ultra-small droplets (250–300 nm). While separation efficiency of the same dosage of bare MNPs is around 57.5%. Demulsification results of magnetic microparticles (MMPs) also reveal that the functionalizing particles with CTAB increase oil removal efficiency from 86.3% for bare MMP to 92% for MMP-CTAB. Comparing the results of different coating materials implies that the major interaction reaction is an electrostatic attraction between negatively charged oil droplets and positively charged MNP-CTAB and MMP-CTAB. Furthermore, the synthesized nanoparticles could be recycled and reused; after ten cycles the oil adsorption capacity slightly decreases to near 95%. In conclusion, functionalized magnetic particles with high oil separation efficiency could be used effectively in treatment of oily wastewater. Finally, optimization of the adsorption process is required by considering the effective system variables, and fluid properties.

Keywords: oily wastewater treatment, emulsions, oil-water separation, adsorption, magnetic nanoparticles

Procedia PDF Downloads 107
24883 Design Transformation to Reduce Cost in Irrigation Using Value Engineering

Authors: F. S. Al-Anzi, M. Sarfraz, A. Elmi, A. R. Khan

Abstract:

Researchers are responding to the environmental challenges of Kuwait in localized, innovative, effective and economic ways. One of the vital and significant examples of the natural challenges is lack or water and desertification. In this research, the project team focuses on redesigning a prototype, using Value Engineering Methodology, which would provide similar functionalities to the well-known technology of Waterboxx kits while reducing the capital and operational costs and simplifying the process of manufacturing and usability by regular farmers. The design employs used tires and recycled plastic sheets as raw materials. Hence, this approach is going to help not just fighting desertification but also helping in getting rid of ever growing huge tire dumpsters in Kuwait, as well as helping in avoiding hazards of tire fires yielding in a safer and friendlier environment. Several alternatives for implementing the prototype have been considered. The best alternative in terms of value has been selected after thorough Function Analysis System Technique (FAST) exercise has been developed. A prototype has been fabricated and tested in a controlled simulated lab environment that is being followed by real environment field testing. Water and soil analysis conducted on the site of the experiment to cross compare between the composition of the soil before and after the experiment to insure that the prototype being tested is actually going to be environment safe. Experimentation shows that the design was equally as effective as, and may exceed, the original design with significant savings in cost. An estimated total cost reduction using the VE approach of 43.84% over the original design. This cost reduction does not consider the intangible costs of environmental issue of waste recycling which many further intensify the total savings of using the alternative VE design. This case study shows that Value Engineering Methodology can be an important tool in innovating new designs for reducing costs.

Keywords: desertification, functional analysis, scrap tires, value engineering, waste recycling, water irrigation rationing

Procedia PDF Downloads 200
24882 The Evolving Customer Experience Management Landscape: A Case Study on the Paper Machine Companies

Authors: Babak Mohajeri, Sen Bao, Timo Nyberg

Abstract:

Customer experience is increasingly the differentiator between successful companies and those who struggle. Currently, customer experiences become more dynamic; and they advance with each interaction between the company and a customer. Every customer conversation and any effort to evolve these conversations would be beneficial and should ultimately result in a positive customer experience. The aim of this paper is to analyze the evolving customer experience management landscape and the relevant challenges and opportunities. A case study on the “paper machine” companies is chosen. Hence, this paper analyzes the challenges and opportunities in customer experience management of paper machine companies for the case of “road to steel”. Road to steel shows the journey of steel from raw material to end product (i.e. paper machine in this paper). ALPHA (Steel company) and BETA (paper machine company), are chosen and their efforts to evolve the customer experiences are investigated. Semi-structured interviews are conducted with experts in those companies to identify the challenges and opportunities of the evolving customer experience management from their point of view. The findings of this paper contribute to the theory and business practices in the realm of the evolving customer experience management landscape.

Keywords: Customer Experience Management, Paper Machine , Value Chain Management, Risk Analysis

Procedia PDF Downloads 362
24881 Comparison of Cyclone Design Methods for Removal of Fine Particles from Plasma Generated Syngas

Authors: Mareli Hattingh, I. Jaco Van der Walt, Frans B. Waanders

Abstract:

A waste-to-energy plasma system was designed by Necsa for commercial use to create electricity from unsorted municipal waste. Fly ash particles must be removed from the syngas stream at operating temperatures of 1000 °C and recycled back into the reactor for complete combustion. A 2D2D high efficiency cyclone separator was chosen for this purpose. During this study, two cyclone design methods were explored: The Classic Empirical Method (smaller cyclone) and the Flow Characteristics Method (larger cyclone). These designs were optimized with regard to efficiency, so as to remove at minimum 90% of the fly ash particles of average size 10 μm by 50 μm. Wood was used as feed source at a concentration of 20 g/m3 syngas. The two designs were then compared at room temperature, using Perspex test units and three feed gases of different densities, namely nitrogen, helium and air. System conditions were imitated by adapting the gas feed velocity and particle load for each gas respectively. Helium, the least dense of the three gases, would simulate higher temperatures, whereas air, the densest gas, simulates a lower temperature. The average cyclone efficiencies ranged between 94.96% and 98.37%, reaching up to 99.89% in individual runs. The lowest efficiency attained was 94.00%. Furthermore, the design of the smaller cyclone proved to be more robust, while the larger cyclone demonstrated a stronger correlation between its separation efficiency and the feed temperatures. The larger cyclone can be assumed to achieve slightly higher efficiencies at elevated temperatures. However, both design methods led to good designs. At room temperature, the difference in efficiency between the two cyclones was almost negligible. At higher temperatures, however, these general tendencies are expected to be amplified so that the difference between the two design methods will become more obvious. Though the design specifications were met for both designs, the smaller cyclone is recommended as default particle separator for the plasma system due to its robust nature.

Keywords: Cyclone, design, plasma, renewable energy, solid separation, waste processing

Procedia PDF Downloads 214