Search results for: performance measurement framework
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19130

Search results for: performance measurement framework

18830 Sustainable Manufacturing Framework for Small and Medium Enterprises

Authors: Rajan Deglurkar

Abstract:

The research carried out in this piece of work is on 'Framework of Sustainable Manufacturing for Small and Medium Enterprises'. It consists of elucidation of concepts about sustainable manufacturing and sustainable product development with critical review performed on seven techniques of sustainable manufacturing. The work also covers the survey about critical review of awareness in the market with respect to the manufacturers and the consumers. The factors and challenges for sustainable manufacturing implementation are reviewed and simple framework is constructed for the small and medium enterprise for successful implementation of sustainable manufacturing and sustainable product.

Keywords: sustainable development, sustainable manufacturing, resource efficiency, framework for sustainable manufacturing

Procedia PDF Downloads 514
18829 Coevaluations Software among Students in Active Learning Methodology

Authors: Adriano Pinargote, Josue Mosquera, Eduardo Montero, Dalton Noboa, Jenny Venegas, Genesis Vasquez Escuela

Abstract:

In the framework of Pre University learning of the Polytechnic School of the Litoral, Guayaquil, Ecuador, the methodology of Active Learning (Flipped Classroom) has been implemented for applicants who wish to obtain a quota within the university. To complement the Active Learning cycle, it has been proposed that the respective students influence the qualification of their work groups, for which a web platform has been created that allows them to evaluate the performance of their peers through a digital coevaluation that measures through statistical methods, the group and individual performance score that can reflect in numbers a weighting score corresponding to the grade of each student. Their feedback provided by the group help to improve the performance of the activities carried out in classes because the note reflects the commitment with their classmates shown in the class, within this analysis we will determine if this implementation directly influences the performance of the grades obtained by the student.

Keywords: active learning, coevaluation, flipped classroom, pre university

Procedia PDF Downloads 139
18828 Illuminating Human Identity in Theology and Islamic Philosophy

Authors: Khan Shahid, Shahid Zakia

Abstract:

The article demonstrates how Theology and Islamic Philosophy can be illuminated and enhanced through the application of the SOUL framework (Sincere act, Optimization effort, Ultimate goal, Law compliance). The study explores historical development using a phenomenological approach and integrates the SOUL framework to enrich Theology and Islamic Philosophy. The proposed framework highlights the significance of these elements, ultimately leading to a deeper understanding of Theology and Islamic Philosophy.

Keywords: SOUL framework, illuminating human identity, theology, Islamic Philosophy, sincerity act, optimization effort, ultimate goals, law compliance

Procedia PDF Downloads 90
18827 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide

Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva

Abstract:

Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.

Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning

Procedia PDF Downloads 160
18826 Improving the Quality of Staff Performance with a Talent-Driven Approach: Case Study of SAIPA Automotive Manufacturing Company in Iran

Authors: Abdolmajid Mosleh, Afzal Ghasimi

Abstract:

The purpose of this research is to investigate and identify effective factors that can improve the quality of personal performance in industrial companies. In the present study, it was assumed that the hidden variables of talent management could be explained by an important part of the variance in improving the quality of employee performance. This research is targeted in terms of applied research. The statistical population of the research is SAIPA automobile company with a number (N=10291); the sample of 380 people was selected based on the Cochran formula in a random sampling method among employed people. The measurement tool in this research was a questionnaire of 33 items with a control questionnaire that included two talent management departments (talent identification and talent exploitation) and improvements in staff performance (enhancement of technical and specialized capabilities, managerial capability, organizational interaction, and communication). The reliability of the internal consistency method was confirmed by the Cronbach's alpha coefficient and the two half-ways. In order to determine the validity of the questionnaire structure, confirmatory factor analysis was used. Based on the results of the data analysis, the effect of talent management on improving the quality of staff performance was confirmed. Based on the results of inferential statistics and structural equations of the proposed model, it had high fitness.

Keywords: employee performance, talent management, performance improvement, SAIPA automobile manufacturing company

Procedia PDF Downloads 90
18825 Arterial Compliance Measurement Using Split Cylinder Sensor/Actuator

Authors: Swati Swati, Yuhang Chen, Robert Reuben

Abstract:

Coronary stents are devices resembling the shape of a tube which are placed in coronary arteries, to keep the arteries open in the treatment of coronary arterial diseases. Coronary stents are routinely deployed to clear atheromatous plaque. The stent essentially applies an internal pressure to the artery because its structure is cylindrically symmetrical and this may introduce some abnormalities in final arterial shape. The goal of the project is to develop segmented circumferential arterial compliance measuring devices which can be deployed (eventually) in vivo. The segmentation of the device will allow the mechanical asymmetry of any stenosis to be assessed. The purpose will be to assess the quality of arterial tissue for applications in tailored stents and in the assessment of aortic aneurism. Arterial distensibility measurement is of utmost importance to diagnose cardiovascular diseases and for prediction of future cardiac events or coronary artery diseases. In order to arrive at some generic outcomes, a preliminary experimental set-up has been devised to establish the measurement principles for the device at macro-scale. The measurement methodology consists of a strain gauge system monitored by LABVIEW software in a real-time fashion. This virtual instrument employs a balloon within a gelatine model contained in a split cylinder with strain gauges fixed on it. The instrument allows automated measurement of the effect of air-pressure on gelatine and measurement of strain with respect to time and pressure during inflation. Compliance simple creep model has been applied to the results for the purpose of extracting some measures of arterial compliance. The results obtained from the experiments have been used to study the effect of air pressure on strain at varying time intervals. The results clearly demonstrate that with decrease in arterial volume and increase in arterial pressure, arterial strain increases thereby decreasing the arterial compliance. The measurement system could lead to development of portable, inexpensive and small equipment and could prove to be an efficient automated compliance measurement device.

Keywords: arterial compliance, atheromatous plaque, mechanical symmetry, strain measurement

Procedia PDF Downloads 279
18824 A Conceptual Framework of Digital Twin for Homecare

Authors: Raja Omman Zafar, Yves Rybarczyk, Johan Borg

Abstract:

This article proposes a conceptual framework for the application of digital twin technology in home care. The main goal is to bridge the gap between advanced digital twin concepts and their practical implementation in home care. This study uses a literature review and thematic analysis approach to synthesize existing knowledge and proposes a structured framework suitable for homecare applications. The proposed framework integrates key components such as IoT sensors, data-driven models, cloud computing, and user interface design, highlighting the importance of personalized and predictive homecare solutions. This framework can significantly improve the efficiency, accuracy, and reliability of homecare services. It paves the way for the implementation of digital twins in home care, promoting real-time monitoring, early intervention, and better outcomes.

Keywords: digital twin, homecare, older adults, healthcare, IoT, artificial intelligence

Procedia PDF Downloads 71
18823 Evaluation of Reliability, Availability and Maintainability for Automotive Manufacturing Process

Authors: Hamzeh Soltanali, Abbas Rohani, A. H. S. Garmabaki, Mohammad Hossein Abbaspour-Fard, Adithya Thaduri

Abstract:

Toward continuous innovation and high complexity of technological systems, the automotive manufacturing industry is also under pressure to implement adequate management strategies regarding availability and productivity. In this context, evaluation of system’s performance by considering reliability, availability and maintainability (RAM) methodologies can constitute for resilient operation, identifying the bottlenecks of manufacturing process and optimization of maintenance actions. In this paper, RAM parameters are evaluated for improving the operational performance of the fluid filling process. To evaluate the RAM factors through the behavior of states defined for such process, a systematic decision framework was developed. The results of RAM analysis revealed that that the improving reliability and maintainability of main bottlenecks for each filling workstation need to be considered as a priority. The results could be useful to improve operational performance and sustainability of production process.

Keywords: automotive, performance, reliability, RAM, fluid filling process

Procedia PDF Downloads 353
18822 Performance of an Optical Readout Gas Chamber for Charged Particle Track

Authors: Jing Hu, Xiaoping Ouyang

Abstract:

We develop an optical readout gas chamber based on avalanche-induced scintillation for energetic charged particles track. The gas chamber is equipped with a Single Anode Wires (SAW) structure to produce intensive electric field when the measured particles are of low yield or even single. In the presence of an intensive electric field around the single anode, primary electrons, resulting from the incident charged particles when depositing the energy along the track, accelerate to the anode effectively and rapidly. For scintillation gasses, this avalanche of electrons induces multiplying photons comparing with the primary scintillation excited directly from particle energy loss. The electric field distribution for different shape of the SAW structure is analyzed, and finally, an optimal one is used to study the optical readout performance. Using CF4 gas and its mixture with the noble gas, the results indicate that the optical readout characteristics of the chamber are attractive for imaging. Moreover, images of particles track including single particle track from 5.485MeV alpha particles are successfully acquired. The track resolution is quite well for the reason that the electrons undergo less diffusion in the intensive electric field. With the simple and ingenious design, the optical readout gas chamber has a high sensitivity. Since neutrons can be converted to charged particles when scattering, this optical readout gas chamber can be applied to neutron measurement for dark matter, fusion research, and others.

Keywords: optical readout, gas chamber, charged particle track, avalanche-induced scintillation, neutron measurement

Procedia PDF Downloads 272
18821 Pavement Management for a Metropolitan Area: A Case Study of Montreal

Authors: Luis Amador Jimenez, Md. Shohel Amin

Abstract:

Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.

Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization

Procedia PDF Downloads 460
18820 A Framework for Rating Synchronous Video E-Learning Applications

Authors: Alex Vakaloudis, Juan Manuel Escano-Gonzalez

Abstract:

Setting up a system to broadcast live lectures on the web is a procedure which on the surface does not require any serious technical skills mainly due to the facilities provided by popular learning management systems and their plugins. Nevertheless, producing a system of outstanding quality is a multidisciplinary and by no means a straightforward task. This complicatedness may be responsible for the delivery of an overall poor experience to the learners, and it calls for a formal rating framework that takes into account the diverse aspects of an architecture for synchronous video e-learning systems. We discuss the specifications of such a framework which at its final stage employs fuzzy logic technique to transform from qualitative to quantitative results.

Keywords: synchronous video, fuzzy logic, rating framework, e-learning

Procedia PDF Downloads 560
18819 Beyond the Beep: Optimizing Flight Controller Performance for Reliable Ultrasonic Sensing

Authors: Raunak Munjal, Mohammad Akif Ali, Prithiv Raj

Abstract:

This study investigates the relative effectiveness of various flight controllers for drone obstacle avoidance. To assess ultrasonic sensors' performance in real-time obstacle detection, they are integrated with ESP32 and Arduino Nano controllers. The study determines which controller is most effective for this particular application by analyzing important parameters such as accuracy (mean absolute error), standard deviation, and mean distance range. Furthermore, the study explores the possibility of incorporating state-driven algorithms into the Arduino Nano configuration to potentially improve obstacle detection performance. The results offer significant perspectives for enhancing sensor integration, choosing the best flight controller for obstacle avoidance, and maybe enhancing drones' general environmental navigation ability.

Keywords: ultrasonic distance measurement, accuracy and consistency, flight controller comparisons, ESP32 vs arduino nano

Procedia PDF Downloads 58
18818 Aerodynamic Study of Formula 1 Car in Upsight Down Configuration

Authors: Hrishit Mitra, Saptarshi Mandal

Abstract:

The study of aerodynamics for Formula 1 cars is very crucial in determining their performance. In the current F1 industry, when each engine manufacturer exhibits a torque and peak speed that differ by less than 5%, the emphasis on maximizing performance is dependent heavily on the utilization of aerodynamics. This work examines the aerodynamic characteristics of an F1 car by utilizing computational fluid dynamics in order to substantiate the hypothesis that an F1 car can go upside down in a tunnel without any external assistance, only due to the downforce it produces. In addition to this, this study also suggests the implementation of a 'flexi-wing' front in F1 cars to optimize downforce and reduce drag. Furthermore, this paper provides a concise overview of the historical development of aerodynamics in F1, with a specific emphasis on the progression of aerodynamics and the impact of downforce on the dynamics of vehicles. Next, an examination of wings has been provided, comparing the performance of the suggested wing at high speeds and low speeds. Three simulations have been conducted: one to test the complete aerodynamics and validate the hypothesis discussed above, and two specifically focused on the flexi wing, one at high speed and one at low speed. The collected results have been examined to analyze the performance of the front flexi wing. Performance analysis was conducted from the measurement of downforce and drag coefficient, as well as the pressure and velocity distributions.

Keywords: high speed flexi wing, low speed flexi wing, F1 car aerodynamics, F1 car drag reduction

Procedia PDF Downloads 12
18817 Identifying Enablers and Barriers of Healthcare Knowledge Transfer: A Systematic Review

Authors: Yousuf Nasser Al Khamisi

Abstract:

Purpose: This paper presents a Knowledge Transfer (KT) Framework in healthcare sectors by applying a systematic literature review process to the healthcare organizations domain to identify enablers and barriers of KT in Healthcare. Methods: The paper conducted a systematic literature search of peer-reviewed papers that described key elements of KT using four databases (Medline, Cinahl, Scopus, and Proquest) for a 10-year period (1/1/2008–16/10/2017). The results of the literature review were used to build a conceptual framework of KT in healthcare organizations. The author used a systematic review of the literature, as described by Barbara Kitchenham in Procedures for Performing Systematic Reviews. Findings: The paper highlighted the impacts of using Knowledge Management (KM) concept at a healthcare organization in controlling infectious diseases in hospitals, improving family medicine performance and enhancing quality improvement practices. Moreover, it found that good-coding performance is analytically linked with a knowledge sharing network structure rich in brokerage and hierarchy rather than in density. The unavailability or ignored of the latest evidence on more cost-effective or more efficient delivery approaches leads to increase the healthcare costs and may lead to unintended results. Originality: Search procedure produced 12,093 results, of which 3523 were general articles about KM and KT. The titles and abstracts of these articles had been screened to segregate what is related and what is not. 94 articles identified by the researchers for full-text assessment. The total number of eligible articles after removing un-related articles was 22 articles.

Keywords: healthcare organisation, knowledge management, knowledge transfer, KT framework

Procedia PDF Downloads 138
18816 Fundamentals of Performance Management in the World of Public Service Organizations

Authors: Daniella Kucsma

Abstract:

The examination of the Privat Service Organization’s performance evaluation includes several steps that help Public organizations to develop a more efficient system. Public sector organizations have different characteristics than the competitive sector, so it can be stated that other/new elements become more important in their performance processes. The literature in this area is diverse, so highlighting an indicator system can be useful for introducing a system, but it is also worthwhile to measure the specific elements of the organization. In the case of a public service organization, due to the service obligation, it is usually possible to talk about a high number of users, so compliance is more difficult. For the organization, it is an important target to place great emphasis on the increase of service standards and the development of related processes. In this research, the health sector is given a prominent role, as it is a sensitive area where both organizational and individual performance is important for all participants. As a primary step, the content of the strategy is decisive, as this is important for the efficient structure of the process. When designing any system, it is important to review the expectations of the stakeholders, as this is primary when considering the design. The goal of this paper is to build the foundations of a performance management and indexing framework that can help a hospital to provide effective feedback and a direction that is important in assessing and developing a service and can become a management philosophy.

Keywords: health sector, public sector, performance management, strategy

Procedia PDF Downloads 193
18815 A Systematic Review on Measuring the Physical Activity Level and Pattern in Persons with Chronic Fatigue Syndrome

Authors: Kuni Vergauwen, Ivan P. J. Huijnen, Astrid Depuydt, Jasmine Van Regenmortel, Mira Meeus

Abstract:

A lower activity level and imbalanced activity pattern are frequently observed in persons with chronic fatigue syndrome (CFS) / myalgic encephalomyelitis (ME) due to debilitating fatigue and post-exertional malaise (PEM). Identification of measurement instruments to evaluate the activity level and pattern is therefore important. The objective is to identify measurement instruments suited to evaluate the activity level and/or pattern in patients with CFS/ME and review their psychometric properties. A systematic literature search was performed in the electronic databases PubMed and Web of Science until 12 October 2016. Articles including relevant measurement instruments were identified and included for further analysis. The psychometric properties of relevant measurement instruments were extracted from the included articles and rated based on the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. The review was performed and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. A total of 49 articles and 15 unique measurement instruments were found, but only three instruments were evaluated in patients with CFS/ME: the Chronic Fatigue Syndrome-Activity Questionnaire (CFS-AQ), Activity Pattern Interview (API) and International Physical Activity Questionnaire-Short Form (IPAQ-SF), three self-report instruments measuring the physical activity level. The IPAQ-SF, CFS-AQ and API are all equally capable of evaluating the physical activity level, but none of the three measurement instruments are optimal to use. No studies about the psychometric properties of activity monitors in patients with CFS/ME were found, although they are often used as the gold standard to measure the physical activity pattern. More research is needed to evaluate the psychometric properties of existing instruments, including the use of activity monitors.

Keywords: chronic fatigue syndrome, data collection, physical activity, psychometrics

Procedia PDF Downloads 227
18814 The AI Arena: A Framework for Distributed Multi-Agent Reinforcement Learning

Authors: Edward W. Staley, Corban G. Rivera, Ashley J. Llorens

Abstract:

Advances in reinforcement learning (RL) have resulted in recent breakthroughs in the application of artificial intelligence (AI) across many different domains. An emerging landscape of development environments is making powerful RL techniques more accessible for a growing community of researchers. However, most existing frameworks do not directly address the problem of learning in complex operating environments, such as dense urban settings or defense-related scenarios, that incorporate distributed, heterogeneous teams of agents. To help enable AI research for this important class of applications, we introduce the AI Arena: a scalable framework with flexible abstractions for distributed multi-agent reinforcement learning. The AI Arena extends the OpenAI Gym interface to allow greater flexibility in learning control policies across multiple agents with heterogeneous learning strategies and localized views of the environment. To illustrate the utility of our framework, we present experimental results that demonstrate performance gains due to a distributed multi-agent learning approach over commonly-used RL techniques in several different learning environments.

Keywords: reinforcement learning, multi-agent, deep learning, artificial intelligence

Procedia PDF Downloads 158
18813 Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model

Authors: Pitsanu Tongkhow, Pichet Jiraprasertwong

Abstract:

This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6.

Keywords: defective autoparts products, Bayesian framework, generalized linear mixed model (GLMM), risk factors

Procedia PDF Downloads 570
18812 A Gauge Repeatability and Reproducibility Study for Multivariate Measurement Systems

Authors: Jeh-Nan Pan, Chung-I Li

Abstract:

Measurement system analysis (MSA) plays an important role in helping organizations to improve their product quality. Generally speaking, the gauge repeatability and reproducibility (GRR) study is performed according to the MSA handbook stated in QS9000 standards. Usually, GRR study for assessing the adequacy of gauge variation needs to be conducted prior to the process capability analysis. Traditional MSA only considers a single quality characteristic. With the advent of modern technology, industrial products have become very sophisticated with more than one quality characteristic. Thus, it becomes necessary to perform multivariate GRR analysis for a measurement system when collecting data with multiple responses. In this paper, we take the correlation coefficients among tolerances into account to revise the multivariate precision-to-tolerance (P/T) ratio as proposed by Majeske (2008). We then compare the performance of our revised P/T ratio with that of the existing ratios. The simulation results show that our revised P/T ratio outperforms others in terms of robustness and proximity to the actual value. Moreover, the optimal allocation of several parameters such as the number of quality characteristics (v), sample size of parts (p), number of operators (o) and replicate measurements (r) is discussed using the confidence interval of the revised P/T ratio. Finally, a standard operating procedure (S.O.P.) to perform the GRR study for multivariate measurement systems is proposed based on the research results. Hopefully, it can be served as a useful reference for quality practitioners when conducting such study in industries. Measurement system analysis (MSA) plays an important role in helping organizations to improve their product quality. Generally speaking, the gauge repeatability and reproducibility (GRR) study is performed according to the MSA handbook stated in QS9000 standards. Usually, GRR study for assessing the adequacy of gauge variation needs to be conducted prior to the process capability analysis. Traditional MSA only considers a single quality characteristic. With the advent of modern technology, industrial products have become very sophisticated with more than one quality characteristic. Thus, it becomes necessary to perform multivariate GRR analysis for a measurement system when collecting data with multiple responses. In this paper, we take the correlation coefficients among tolerances into account to revise the multivariate precision-to-tolerance (P/T) ratio as proposed by Majeske (2008). We then compare the performance of our revised P/T ratio with that of the existing ratios. The simulation results show that our revised P/T ratio outperforms others in terms of robustness and proximity to the actual value. Moreover, the optimal allocation of several parameters such as the number of quality characteristics (v), sample size of parts (p), number of operators (o) and replicate measurements (r) is discussed using the confidence interval of the revised P/T ratio. Finally, a standard operating procedure (S.O.P.) to perform the GRR study for multivariate measurement systems is proposed based on the research results. Hopefully, it can be served as a useful reference for quality practitioners when conducting such study in industries.

Keywords: gauge repeatability and reproducibility, multivariate measurement system analysis, precision-to-tolerance ratio, Gauge repeatability

Procedia PDF Downloads 262
18811 Radical Technological Innovation - Comparison of a Critical Success Factors Framework with Existing Literature

Authors: Florian Wohlfeil, Orestis Terzidis, Louisa Hellmann

Abstract:

Radical technological innovations enable companies to reach strong market positions and are thus desirable. On the other hand, the innovation process is related to significant costs and risks. Hence, the knowledge of the factors that influence success is crucial for technology driven companies. In a previous study, we have developed a conceptual framework of 25 Critical Success Factors for radical technological innovations and mapped them to four main categories: Technology, Organization, Market, and Process. We refer to it as the Technology-Organization-Market-Process (TOMP) framework. Taking the TOMP framework as a reference model, we conducted a structured and focused literature review of eleven standard books on the topic of radical technological innovation. With this approach, we aim to evaluate, expand, and clarify the set of Critical Success Factors detailed in the TOMP framework. Overall, the set of factors and their allocation to the main categories of the TOMP framework could be confirmed. However, the factor organizational home is not emphasized and discussed in most of the reviewed literature. On the other hand, an additional factor that has not been part of the TOMP framework is described to be important – strategy fit. Furthermore, the factors strategic alliances and platform strategy appear in the literature but in a different context compared to the reference model.

Keywords: Critical Success Factors, radical technological innovation, TOMP framework, innovation process

Procedia PDF Downloads 659
18810 A Modular Framework for Enabling Analysis for Educators with Different Levels of Data Mining Skills

Authors: Kyle De Freitas, Margaret Bernard

Abstract:

Enabling data mining analysis among a wider audience of educators is an active area of research within the educational data mining (EDM) community. The paper proposes a framework for developing an environment that caters for educators who have little technical data mining skills as well as for more advanced users with some data mining expertise. This framework architecture was developed through the review of the strengths and weaknesses of existing models in the literature. The proposed framework provides a modular architecture for future researchers to focus on the development of specific areas within the EDM process. Finally, the paper also highlights a strategy of enabling analysis through either the use of predefined questions or a guided data mining process and highlights how the developed questions and analysis conducted can be reused and extended over time.

Keywords: educational data mining, learning management system, learning analytics, EDM framework

Procedia PDF Downloads 326
18809 A Framework for Green Use and Disposal of Information Communication Technology Devices

Authors: Frezer Alem Kebede

Abstract:

The notion of viewing ICT as merely support for the business process has shifted towards viewing ICT as a critical business enabler. As such, the need for ICT devices has increased, contributing to high electronic equipment acquisition and disposal. Hence, its use and disposal must be seen in light of environmental sustainability, i.e., in terms of green use and disposal. However, there are limited studies on green Use and Disposal framework to be used as guiding lens by organizations in developing countries. And this study endeavors to address that need taking one of the largest multinational ICT intensive company in the country. The design and development of this framework passed through several stages, initially factors affecting green use and disposal were identified after quantitative and qualitative data analysis then there were multiple brainstorming sessions for the design enhancement as participative modelling was employed. Given the difference in scope and magnitude of the challenges identified, the proposed framework approaches green use and disposal in four imperatives; strategically, tactically, operationally and through continuous improvement.

Keywords: energy efficiency, green disposal, green ICT, green use, green use and disposal framework, sustainability

Procedia PDF Downloads 210
18808 An Application of Extreme Value Theory as a Risk Measurement Approach in Frontier Markets

Authors: Dany Ng Cheong Vee, Preethee Nunkoo Gonpot, Noor Sookia

Abstract:

In this paper, we consider the application of Extreme Value Theory as a risk measurement tool. The Value at Risk, for a set of indices, from six Stock Exchanges of Frontier markets is calculated using the Peaks over Threshold method and the performance of the model index-wise is evaluated using coverage tests and loss functions. Our results show that 'fat-tailedness' alone of the data is not enough to justify the use of EVT as a VaR approach. The structure of the returns dynamics is also a determining factor. This approach works fine in markets which have had extremes occurring in the past thus making the model capable of coping with extremes coming up (Colombo, Tunisia and Zagreb Stock Exchanges). On the other hand, we find that indices with lower past than present volatility fail to adequately deal with future extremes (Mauritius and Kazakhstan). We also conclude that using EVT alone produces quite static VaR figures not reflecting the actual dynamics of the data.

Keywords: extreme value theory, financial crisis 2008, value at risk, frontier markets

Procedia PDF Downloads 276
18807 Electric Arc Furnaces as a Source of Voltage Fluctuations in the Power System

Authors: Zbigniew Olczykowski

Abstract:

The paper presents the impact of work on the electric arc furnace power grid. The arc furnace operating will be modeled at different power conditions of steelworks. The paper will describe how to determine the increase in voltage fluctuations caused by working in parallel arc furnaces. The analysis of indicators characterizing the quality of electricity recorded during several cycles of measurement made at the same time at three points grid, with different power and different short-circuit rated voltage, will be carried out. The measurements analysis presented in this paper were conducted in the mains of one of the Polish steel. The indicators characterizing the quality of electricity was recorded during several cycles of measurement while making measurements at three points of different power network short-circuit power and various voltage ratings. Measurements of power quality indices included the one-week measurement cycles in accordance with the EN-50160. Data analysis will include the results obtained during the simultaneous measurement of three-point grid. This will determine the actual propagation of interference generated by the device. Based on the model studies and measurements of quality indices of electricity we will establish the effect of a specific arc on the mains. The short-circuit power network’s minimum value will also be estimated, this is necessary to limit the voltage fluctuations generated by arc furnaces.

Keywords: arc furnaces, long-term flicker, measurement and modeling of power quality, voltage fluctuations

Procedia PDF Downloads 289
18806 A Machine Learning Decision Support Framework for Industrial Engineering Purposes

Authors: Anli Du Preez, James Bekker

Abstract:

Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.

Keywords: Data analytics, Industrial engineering, Machine learning, Value creation

Procedia PDF Downloads 168
18805 EMI Radiation Prediction and Final Measurement Process Optimization by Neural Network

Authors: Hussam Elias, Ninovic Perez, Holger Hirsch

Abstract:

The completion of the EMC regulations worldwide is growing steadily as the usage of electronics in our daily lives is increasing more than ever. In this paper, we introduce a novel method to perform the final phase of Electromagnetic compatibility (EMC) measurement and to reduce the required test time according to the norm EN 55032 by using a developed tool and the conventional neural network(CNN). The neural network was trained using real EMC measurements, which were performed in the Semi Anechoic Chamber (SAC) by CETECOM GmbH in Essen, Germany. To implement our proposed method, we wrote software to perform the radiated electromagnetic interference (EMI) measurements and use the CNN to predict and determine the position of the turntable that meets the maximum radiation value.

Keywords: conventional neural network, electromagnetic compatibility measurement, mean absolute error, position error

Procedia PDF Downloads 200
18804 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents

Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Abstract:

With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.

Keywords: document processing, framework, formal definition, machine learning

Procedia PDF Downloads 216
18803 Measurement of Acoustic Loss in Nano-Layered Coating Developed for Thermal Noise Reduction

Authors: E. Cesarini, M. Lorenzini, R. Cardarelli, S. Chao, E. Coccia, V. Fafone, Y. Minenkow, I. Nardecchia, I. M. Pinto, A. Rocchi, V. Sequino, C. Taranto

Abstract:

Structural relaxation processes in optical coatings represent a fundamental limit to the sensitivity of gravitational waves detectors, MEMS, optical metrology and entangled state experiments. To face this problem, many research lines are now active, in particular the characterization of new materials and novel solutions to be employed as coatings in future gravitational wave detectors. Nano-layered coating deposition is among the most promising techniques. We report on the measurement of acoustic loss of nm-layered composites (Ti2O/SiO2), performed with the GeNS nodal suspension, compared with sputtered λ/4 thin films nowadays employed.

Keywords: mechanical measurement, nanomaterials, optical coating, thermal noise

Procedia PDF Downloads 423
18802 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks

Authors: Radhika Ranjan Roy

Abstract:

Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.

Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve

Procedia PDF Downloads 78
18801 Subpixel Corner Detection for Monocular Camera Linear Model Research

Authors: Guorong Sui, Xingwei Jia, Fei Tong, Xiumin Gao

Abstract:

Camera calibration is a fundamental issue of high precision noncontact measurement. And it is necessary to analyze and study the reliability and application range of its linear model which is often used in the camera calibration. According to the imaging features of monocular cameras, a camera model which is based on the image pixel coordinates and three dimensional space coordinates is built. Using our own customized template, the image pixel coordinate is obtained by the subpixel corner detection method. Without considering the aberration of the optical system, the feature extraction and linearity analysis of the line segment in the template are performed. Moreover, the experiment is repeated 11 times by constantly varying the measuring distance. At last, the linearity of the camera is achieved by fitting 11 groups of data. The camera model measurement results show that the relative error does not exceed 1%, and the repeated measurement error is not more than 0.1 mm magnitude. Meanwhile, it is found that the model has some measurement differences in the different region and object distance. The experiment results show this linear model is simple and practical, and have good linearity within a certain object distance. These experiment results provide a powerful basis for establishment of the linear model of camera. These works will have potential value to the actual engineering measurement.

Keywords: camera linear model, geometric imaging relationship, image pixel coordinates, three dimensional space coordinates, sub-pixel corner detection

Procedia PDF Downloads 277