Search results for: electrical machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4657

Search results for: electrical machine

4357 Reliability Improvement of Power System Networks Using Adaptive Genetic Algorithm

Authors: Alireza Alesaadi

Abstract:

Reliability analysis is a powerful method for determining the weak points of the electrical networks. In designing of electrical network, it is tried to design the most reliable network with minimal system shutting down, but it is usually associated with increasing the cost. In this paper, using adaptive genetic algorithm, a method was presented that provides the most reliable system with a certain economical cost. Finally, the proposed method is applied to a sample network and results will be analyzed.

Keywords: reliability, adaptive genetic algorithm, electrical network, communication engineering

Procedia PDF Downloads 486
4356 Review on Implementation of Artificial Intelligence and Machine Learning for Controlling Traffic and Avoiding Accidents

Authors: Neha Singh, Shristi Singh

Abstract:

Accidents involving motor vehicles are more likely to cause serious injuries and fatalities. It also has a host of other perpetual issues, such as the regular loss of life and goods in accidents. To solve these issues, appropriate measures must be implemented, such as establishing an autonomous incident detection system that makes use of machine learning and artificial intelligence. In order to reduce traffic accidents, this article examines the overview of artificial intelligence and machine learning in autonomous event detection systems. The paper explores the major issues, prospective solutions, and use of artificial intelligence and machine learning in road transportation systems for minimising traffic accidents. There is a lot of discussion on additional, fresh, and developing approaches that less frequent accidents in the transportation industry. The study structured the following subtopics specifically: traffic management using machine learning and artificial intelligence and an incident detector with these two technologies. The internet of vehicles and vehicle ad hoc networks, as well as the use of wireless communication technologies like 5G wireless networks and the use of machine learning and artificial intelligence for the planning of road transportation systems, are elaborated. In addition, safety is the primary concern of road transportation. Route optimization, cargo volume forecasting, predictive fleet maintenance, real-time vehicle tracking, and traffic management, according to the review's key conclusions, are essential for ensuring the safety of road transportation networks. In addition to highlighting research trends, unanswered problems, and key research conclusions, the study also discusses the difficulties in applying artificial intelligence to road transport systems. Planning and managing the road transportation system might use the work as a resource.

Keywords: artificial intelligence, machine learning, incident detector, road transport systems, traffic management, automatic incident detection, deep learning

Procedia PDF Downloads 92
4355 Analysis of Roll-Forming for High-Density Wire of Reed

Authors: Yujeong Shin, Seong Jin Cho, Jin Ho Kim

Abstract:

In the textile-weaving machine, the reed is the core component to separate thousands of strands of yarn and to produce the fabric in a continuous high-speed movement. In addition, the reed affects the quality of the fiber. Therefore, the wire forming analysis of the main raw materials of the reed needs to be considered. Roll-forming is a key technology among the manufacturing process of reed wire using textile machine. A simulation of roll-forming line in accordance with the reduction rate is performed using LS-DYNA. The upper roller, fixed roller and reed wire are modeled by finite element. The roller is set to be rigid body and the wire of SUS430 is set to be flexible body. We predict the variation of the cross-sectional shape of the wire depending on the reduction ratio.

Keywords: textile machine, reed, rolling, reduction ratio, wire

Procedia PDF Downloads 363
4354 Experimental Parameters’ Effects on the Electrical Discharge Machining Performances (µEDM)

Authors: Asmae Tafraouti, Yasmina Layouni, Pascal Kleimann

Abstract:

The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, the initial gap, has been studied. This analysis helps to improve the machining performances, such: the workpiece surface condition and the lateral crater's gap.

Keywords: craters, electrical discharges, micro-electrical discharge machining (µEDM), microsystems

Procedia PDF Downloads 85
4353 Single Machine Scheduling Problem to Minimize the Number of Tardy Jobs

Authors: Ali Allahverdi, Harun Aydilek, Asiye Aydilek

Abstract:

Minimizing the number of tardy jobs is an important factor to consider while making scheduling decisions. This is because on-time shipments are vital for lowering cost and increasing customers’ satisfaction. This paper addresses the single machine scheduling problem with the objective of minimizing the number of tardy jobs. The only known information is the lower and upper bounds for processing times, and deterministic job due dates. A dominance relation is established, and an algorithm is proposed. Several heuristics are generated from the proposed algorithm. Computational analysis indicates that the performance of one of the heuristics is very close to the optimal solution, i.e., on average, less than 1.5 % from the optimal solution.

Keywords: single machine scheduling, number of tardy jobs, heuristi, lower and upper bounds

Procedia PDF Downloads 547
4352 A Design System for Complex Profiles of Machine Members Using a Synthetic Curve

Authors: N. Sateesh, C. S. P. Rao, K. Satyanarayana, C. Rajashekar

Abstract:

This paper proposes a development of a CAD/CAM system for complex profiles of various machine members using a synthetic curve i.e. B-spline. Conventional methods in designing and manufacturing of complex profiles are tedious and time consuming. Even programming those on a computer numerical control (CNC) machine can be a difficult job because of the complexity of the profiles. The system developed provides graphical and numerical representation B-spline profile for any given input. In this paper, the system is applicable to represent a cam profile with B-spline and attempt is made to improve the follower motion.

Keywords: plate-cams, cam profile, b-spline, computer numerical control (CNC), computer aided design and computer aided manufacturing (CAD/CAM), R-D-R-D (rise-dwell-return-dwell)

Procedia PDF Downloads 597
4351 Reliability Assessment and Failure Detection in a Complex Human-Machine System Using Agent-Based and Human Decision-Making Modeling

Authors: Sanjal Gavande, Thomas Mazzuchi, Shahram Sarkani

Abstract:

In a complex aerospace operational environment, identifying failures in a procedure involving multiple human-machine interactions are difficult. These failures could lead to accidents causing loss of hardware or human life. The likelihood of failure further increases if operational procedures are tested for a novel system with multiple human-machine interfaces and with no prior performance data. The existing approach in the literature of reviewing complex operational tasks in a flowchart or tabular form doesn’t provide any insight into potential system failures due to human decision-making ability. To address these challenges, this research explores an agent-based simulation approach for reliability assessment and fault detection in complex human-machine systems while utilizing a human decision-making model. The simulation will predict the emergent behavior of the system due to the interaction between humans and their decision-making capability with the varying states of the machine and vice-versa. Overall system reliability will be evaluated based on a defined set of success-criteria conditions and the number of recorded failures over an assigned limit of Monte Carlo runs. The study also aims at identifying high-likelihood failure locations for the system. The research concludes that system reliability and failures can be effectively calculated when individual human and machine agent states are clearly defined. This research is limited to the operations phase of a system lifecycle process in an aerospace environment only. Further exploration of the proposed agent-based and human decision-making model will be required to allow for a greater understanding of this topic for application outside of the operations domain.

Keywords: agent-based model, complex human-machine system, human decision-making model, system reliability assessment

Procedia PDF Downloads 156
4350 Unseen Classes: The Paradigm Shift in Machine Learning

Authors: Vani Singhal, Jitendra Parmar, Satyendra Singh Chouhan

Abstract:

Unseen class discovery has now become an important part of a machine-learning algorithm to judge new classes. Unseen classes are the classes on which the machine learning model is not trained on. With the advancement in technology and AI replacing humans, the amount of data has increased to the next level. So while implementing a model on real-world examples, we come across unseen new classes. Our aim is to find the number of unseen classes by using a hierarchical-based active learning algorithm. The algorithm is based on hierarchical clustering as well as active sampling. The number of clusters that we will get in the end will give the number of unseen classes. The total clusters will also contain some clusters that have unseen classes. Instead of first discovering unseen classes and then finding their number, we directly calculated the number by applying the algorithm. The dataset used is for intent classification. The target data is the intent of the corresponding query. We conclude that when the machine learning model will encounter real-world data, it will automatically find the number of unseen classes. In the future, our next work would be to label these unseen classes correctly.

Keywords: active sampling, hierarchical clustering, open world learning, unseen class discovery

Procedia PDF Downloads 158
4349 DeClEx-Processing Pipeline for Tumor Classification

Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba

Abstract:

Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline that ensures that data mirrors real-world settings by incorporating Gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification, and explainability in a single pipeline called DeClEx.

Keywords: machine learning, healthcare, classification, explainability

Procedia PDF Downloads 28
4348 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets

Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson

Abstract:

Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.

Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime

Procedia PDF Downloads 80
4347 Developed Text-Independent Speaker Verification System

Authors: Mohammed Arif, Abdessalam Kifouche

Abstract:

Speech is a very convenient way of communication between people and machines. It conveys information about the identity of the talker. Since speaker recognition technology is increasingly securing our everyday lives, the objective of this paper is to develop two automatic text-independent speaker verification systems (TI SV) using low-level spectral features and machine learning methods. (i) The first system is based on a support vector machine (SVM), which was widely used in voice signal processing with the aim of speaker recognition involving verifying the identity of the speaker based on its voice characteristics, and (ii) the second is based on Gaussian Mixture Model (GMM) and Universal Background Model (UBM) to combine different functions from different resources to implement the SVM based.

Keywords: speaker verification, text-independent, support vector machine, Gaussian mixture model, cepstral analysis

Procedia PDF Downloads 35
4346 A Systematic Review Investigating the Use of EEG Measures in Neuromarketing

Authors: A. M. Byrne, E. Bonfiglio, C. Rigby, N. Edelstyn

Abstract:

Introduction: Neuromarketing employs numerous methodologies when investigating products and advertisement effectiveness. Electroencephalography (EEG), a non-invasive measure of electrical activity from the brain, is commonly used in neuromarketing. EEG data can be considered using time-frequency (TF) analysis, where changes in the frequency of brainwaves are calculated to infer participant’s mental states, or event-related potential (ERP) analysis, where changes in amplitude are observed in direct response to a stimulus. This presentation discusses the findings of a systematic review of EEG measures in neuromarketing. A systematic review summarises evidence on a research question, using explicit measures to identify, select, and critically appraise relevant research papers. Thissystematic review identifies which EEG measures are the most robust predictor of customer preference and purchase intention. Methods: Search terms identified174 papers that used EEG in combination with marketing-related stimuli. Publications were excluded if they were written in a language other than English or were not published as journal articles (e.g., book chapters). The review investigated which TF effect (e.g., theta-band power) and ERP component (e.g., N400) most consistently reflected preference and purchase intention. Machine-learning prediction was also investigated, along with the use of EEG combined with physiological measures such as eye-tracking. Results: Frontal alpha asymmetry was the most reliable TF signal, where an increase in activity over the left side of the frontal lobe indexed a positive response to marketing stimuli, while an increase in activity over the right side indexed a negative response. The late positive potential, a positive amplitude increase around 600 ms after stimulus presentation, was the most reliable ERP component, reflecting the conscious emotional evaluation of marketing stimuli. However, each measure showed mixed results when related to preference and purchase behaviour. Predictive accuracy was greatly improved through machine-learning algorithms such as deep neural networks, especially when combined with eye-tracking or facial expression analyses. Discussion: This systematic review provides a novel catalogue of the most effective use of each EEG measure commonly used in neuromarketing. Exciting findings to emerge are the identification of the frontal alpha asymmetry and late positive potential as markers of preferential responses to marketing stimuli. Predictive accuracy using machine-learning algorithms achieved predictive accuracies as high as 97%, and future research should therefore focus on machine-learning prediction when using EEG measures in neuromarketing.

Keywords: EEG, ERP, neuromarketing, machine-learning, systematic review, time-frequency

Procedia PDF Downloads 101
4345 Uplink Throughput Prediction in Cellular Mobile Networks

Authors: Engin Eyceyurt, Josko Zec

Abstract:

The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.

Keywords: drive test, LTE, machine learning, uplink throughput prediction

Procedia PDF Downloads 145
4344 Black-Box-Optimization Approach for High Precision Multi-Axes Forward-Feed Design

Authors: Sebastian Kehne, Alexander Epple, Werner Herfs

Abstract:

A new method for optimal selection of components for multi-axes forward-feed drive systems is proposed in which the choice of motors, gear boxes and ball screw drives is optimized. Essential is here the synchronization of electrical and mechanical frequency behavior of all axes because even advanced controls (like H∞-controls) can only control a small part of the mechanical modes – namely only those of observable and controllable states whose value can be derived from the positions of extern linear length measurement systems and/or rotary encoders on the motor or gear box shafts. Further problems are the unknown processing forces like cutting forces in machine tools during normal operation which make the estimation and control via an observer even more difficult. To start with, the open source Modelica Feed Drive Library which was developed at the Laboratory for Machine Tools, and Production Engineering (WZL) is extended from one axis design to the multi axes design. It is capable to simulate the mechanical, electrical and thermal behavior of permanent magnet synchronous machines with inverters, different gear boxes and ball screw drives in a mechanical system. To keep the calculation time down analytical equations are used for field and torque producing equivalent circuit, heat dissipation and mechanical torque at the shaft. As a first step, a small machine tool with a working area of 635 x 315 x 420 mm is taken apart, and the mechanical transfer behavior is measured with an impulse hammer and acceleration sensors. With the frequency transfer functions, a mechanical finite element model is built up which is reduced with substructure coupling to a mass-damper system which models the most important modes of the axes. The model is modelled with Modelica Feed Drive Library and validated by further relative measurements between machine table and spindle holder with a piezo actor and acceleration sensors. In a next step, the choice of possible components in motor catalogues is limited by derived analytical formulas which are based on well-known metrics to gain effective power and torque of the components. The simulation in Modelica is run with different permanent magnet synchronous motors, gear boxes and ball screw drives from different suppliers. To speed up the optimization different black-box optimization methods (Surrogate-based, gradient-based and evolutionary) are tested on the case. The objective that was chosen is to minimize the integral of the deviations if a step is given on the position controls of the different axes. Small values are good measures for a high dynamic axes. In each iteration (evaluation of one set of components) the control variables are adjusted automatically to have an overshoot less than 1%. It is obtained that the order of the components in optimization problem has a deep impact on the speed of the black-box optimization. An approach to do efficient black-box optimization for multi-axes design is presented in the last part. The authors would like to thank the German Research Foundation DFG for financial support of the project “Optimierung des mechatronischen Entwurfs von mehrachsigen Antriebssystemen (HE 5386/14-1 | 6954/4-1)” (English: Optimization of the Mechatronic Design of Multi-Axes Drive Systems).

Keywords: ball screw drive design, discrete optimization, forward feed drives, gear box design, linear drives, machine tools, motor design, multi-axes design

Procedia PDF Downloads 273
4343 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: computational social science, movie preference, machine learning, SVM

Procedia PDF Downloads 249
4342 Sensitivity of the Estimated Output Energy of the Induction Motor to both the Asymmetry Supply Voltage and the Machine Parameters

Authors: Eyhab El-Kharashi, Maher El-Dessouki

Abstract:

The paper is dedicated to precise assessment of the induction motor output energy during the unbalanced operation. Since many years ago and until now the voltage complex unbalance factor (CVUF) is used only to assess the output energy of the induction motor while this output energy for asymmetry supply voltage does not depend on the value of unbalanced voltage only but also on the machine parameters. The paper illustrates the variation of the two unbalance factors, complex voltage unbalance factor (CVUF) and impedance unbalance factor (IUF), with positive sequence voltage component, reveals that degree and manner of unbalance in supply voltage. From this point of view the paper delineates the current unbalance factor (CUF) to exactly reflect the output energy during unbalanced operation. The paper proceeds to illustrate the importance of using this factor in the multi-machine system to precise prediction of the output energy during the unbalanced operation. The use of the proposed unbalance factor (CUF) avoids the accumulation of the error due to more than one machine in the system which is expected if only the complex voltage unbalance factor (CVUF) is used.

Keywords: induction motor, electromagnetic torque, voltage unbalance, energy conversion

Procedia PDF Downloads 548
4341 Design and Performance Evaluation of Synchronous Reluctance Machine (SynRM)

Authors: Hadi Aghazadeh, Mohammadreza Naeimi, Seyed Ebrahim Afjei, Alireza Siadatan

Abstract:

Torque ripple, maximum torque and high efficiency are important issues in synchronous reluctance machine (SynRM). This paper presents a view on design of a high efficiency, low torque ripple and high torque density SynRM. To achieve this goal SynRM parameters is calculated (such as insulation ratios in the d-and q-axes and the rotor slot pitch), while the torque ripple can be minimized by determining the best rotor slot pitch in the d-axis. The presented analytical-finite element method (FEM) approach gives the optimum distribution of air gap and iron portion for the maximizing torque density with minimum torque ripple.

Keywords: torque ripple, efficiency, insulation ratio, FEM, synchronous reluctance machine (SynRM), induction motor (IM)

Procedia PDF Downloads 210
4340 The Effect of Mgo and Rubber Nanofillers on Electrical Treeing Characteristic of XLPE Based Nanocomposites

Authors: Nur Amira nor Arifin, Tashia Marie Anthony, Mohd Ruzlin Mokhtar, Huzainie Shafi Abd Halim

Abstract:

Cross-linked polyethylene (XLPE) material is being used as the cable insulation for the past decades due to its higher working temperature of 90 ˚C and some other advantages. However, the use of XLPE as an insulating material for underground distribution cables may have subjected to the unforeseeable weather and uncontrollable environmental condition. These unfavorable condition when combine with high electric field may lead to the initiation and growth of water tree in XLPE insulation. There are several studies on numerous nanofillers incorporate into polymer matrix to hinder the growth of tree propagation. Hence, in this study aims to investigate the effect of MgO and rubber nanofillers at different concentration on the electrical tree of XLPE. The nanofillers and XLPE were mixed and later extruded. After extrusion, the material were then fabricated into the desired shape for experimental purposes. The result shows that the electrical tree propagation of XLPE filled with optimize concentration of nanofillers were much slower compared to pure XLPE. In this paper, the effect of nanofillers towards electrical treeing characteristic will be discussed.

Keywords: electrical trees, nanofillers, polymer nanocomposites, XLPE

Procedia PDF Downloads 129
4339 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning

Authors: Melody Yin

Abstract:

Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.

Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time

Procedia PDF Downloads 156
4338 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors

Authors: Sudhir Kumar Singh, Debashish Chakravarty

Abstract:

Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.

Keywords: finite element method, geotechnical engineering, machine learning, slope stability

Procedia PDF Downloads 91
4337 Practical Model of Regenerative Braking Using DC Machine and Boost Converter

Authors: Shah Krupa Rajendra, Amit Kumar

Abstract:

Increasing use of traditional vehicles driven by internal combustion engine is responsible for the environmental pollution. Further, it leads to depletion of limited energy resources. Therefore, it is required to explore alternative energy sources for the transportation. The promising solution is to use electric vehicle. However, it suffers from limited driving range. Regenerative braking increases the range of the electric vehicle to a certain extent. In this paper, a novel methodology utilizing regenerative braking is described. The model comprising of DC machine, feedback based boost converter and micro-controller is proposed. The suggested method is very simple and reliable. The proposed model successfully shows the energy being saved into during regenerative braking process.

Keywords: boost converter, DC machine, electric vehicle, micro-controller, regenerative braking

Procedia PDF Downloads 262
4336 Characteristics of Double-Stator Inner-Rotor Axial Flux Permanent Magnet Machine with Rotor Eccentricity

Authors: Dawoon Choi, Jian Li, Yunhyun Cho

Abstract:

Axial Flux Permanent Magnet (AFPM) machines have been widely used in various applications due to their important merits, such as compact structure, high efficiency and high torque density. This paper presents one of the most important characteristics in the design process of the AFPM device, which is a recent issue. To design AFPM machine, the predicting electromagnetic forces between the permanent magnets and stator is important. Because of the magnitude of electromagnetic force affects many characteristics such as machine size, noise, vibration, and quality of output power. Theoretically, this force is canceled by the equilibrium of force when it is in the middle of the gap, but it is inevitable to deviate due to manufacturing problems in actual machine. Such as large scale wind generator, because of the huge attractive force between rotor and stator disks, this is more serious in getting large power applications such as large. This paper represents the characteristics of Double-Stator Inner –Rotor AFPM machines when it has rotor eccentricity. And, unbalanced air-gap and inclined air-gap condition which is caused by rotor offset and tilt in a double-stator single inner-rotor AFPM machine are each studied in electromagnetic and mechanical aspects. The output voltage and cogging torque under un-normal air-gap condition of AF machines are firstly calculated using a combined analytical and numerical methods, followed by a structure analysis to study the effect to mechanical stress, deformation and bending forces on bearings. Results and conclusions given in this paper are instructive for the successful development of AFPM machines.

Keywords: axial flux permanent magnet machine, inclined air gap, unbalanced air gap, rotor eccentricity

Procedia PDF Downloads 202
4335 Machine Learning Data Architecture

Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap

Abstract:

Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.

Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning

Procedia PDF Downloads 51
4334 Machine Learning for Classifying Risks of Death and Length of Stay of Patients in Intensive Unit Care Beds

Authors: Itamir de Morais Barroca Filho, Cephas A. S. Barreto, Ramon Malaquias, Cezar Miranda Paula de Souza, Arthur Costa Gorgônio, João C. Xavier-Júnior, Mateus Firmino, Fellipe Matheus Costa Barbosa

Abstract:

Information and Communication Technologies (ICT) in healthcare are crucial for efficiently delivering medical healthcare services to patients. These ICTs are also known as e-health and comprise technologies such as electronic record systems, telemedicine systems, and personalized devices for diagnosis. The focus of e-health is to improve the quality of health information, strengthen national health systems, and ensure accessible, high-quality health care for all. All the data gathered by these technologies make it possible to help clinical staff with automated decisions using machine learning. In this context, we collected patient data, such as heart rate, oxygen saturation (SpO2), blood pressure, respiration, and others. With this data, we were able to develop machine learning models for patients’ risk of death and estimate the length of stay in ICU beds. Thus, this paper presents the methodology for applying machine learning techniques to develop these models. As a result, although we implemented these models on an IoT healthcare platform, helping clinical staff in healthcare in an ICU, it is essential to create a robust clinical validation process and monitoring of the proposed models.

Keywords: ICT, e-health, machine learning, ICU, healthcare

Procedia PDF Downloads 86
4333 Microwave Assisted Growth of Varied Phases and Morphologies of Vanadium Oxides Nanostructures: Structural and Optoelectronic Properties

Authors: Issam Derkaoui, Mohammed Khenfouch, Bakang M. Mothudi, Malik Maaza, Izeddine Zorkani, Anouar Jorio

Abstract:

Transition metal oxides nanoparticles with different morphologies have attracted a lot of attention recently owning to their distinctive geometries, and demonstrated promising electrical properties for various applications. In this paper, we discuss the time and annealing effects on the structural and electrical properties of vanadium oxides nanoparticles (VO-NPs) prepared by microwave method. In this sense, transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman Spectroscopy, Ultraviolet-visible absorbance spectra (Uv-Vis) and electrical conductivity were investigated. Hence, the annealing state and the time are two crucial parameters for the improvement of the optoelectronic properties. The use of these nanostructures is promising way for the development of technological applications especially for energy storage devices.

Keywords: Vanadium oxide, Microwave, Electrical conductivity, Optoelectronic properties

Procedia PDF Downloads 182
4332 How Is a Machine-Translated Literary Text Organized in Coherence? An Analysis Based upon Theme-Rheme Structure

Authors: Jiang Niu, Yue Jiang

Abstract:

With the ultimate goal to automatically generate translated texts with high quality, machine translation has made tremendous improvements. However, its translations of literary works are still plagued with problems in coherence, esp. the translation between distant language pairs. One of the causes of the problems is probably the lack of linguistic knowledge to be incorporated into the training of machine translation systems. In order to enable readers to better understand the problems of machine translation in coherence, to seek out the potential knowledge to be incorporated, and thus to improve the quality of machine translation products, this study applies Theme-Rheme structure to examine how a machine-translated literary text is organized and developed in terms of coherence. Theme-Rheme structure in Systemic Functional Linguistics is a useful tool for analysis of textual coherence. Theme is the departure point of a clause and Rheme is the rest of the clause. In a text, as Themes and Rhemes may be connected with each other in meaning, they form thematic and rhematic progressions throughout the text. Based on this structure, we can look into how a text is organized and developed in terms of coherence. Methodologically, we chose Chinese and English as the language pair to be studied. Specifically, we built a comparable corpus with two modes of English translations, viz. machine translation (MT) and human translation (HT) of one Chinese literary source text. The translated texts were annotated with Themes, Rhemes and their progressions throughout the texts. The annotated texts were analyzed from two respects, the different types of Themes functioning differently in achieving coherence, and the different types of thematic and rhematic progressions functioning differently in constructing texts. By analyzing and contrasting the two modes of translations, it is found that compared with the HT, 1) the MT features “pseudo-coherence”, with lots of ill-connected fragments of information using “and”; 2) the MT system produces a static and less interconnected text that reads like a list; these two points, in turn, lead to the less coherent organization and development of the MT than that of the HT; 3) novel to traditional and previous studies, Rhemes do contribute to textual connection and coherence though less than Themes do and thus are worthy of notice in further studies. Hence, the findings suggest that Theme-Rheme structure be applied to measuring and assessing the coherence of machine translation, to being incorporated into the training of the machine translation system, and Rheme be taken into account when studying the textual coherence of both MT and HT.

Keywords: coherence, corpus-based, literary translation, machine translation, Theme-Rheme structure

Procedia PDF Downloads 190
4331 Effect of Tool Size and Cavity Depth on Response Characteristics during Electric Discharge Machining on Superalloy Metal - An Experimental Investigation

Authors: Sudhanshu Kumar

Abstract:

Electrical discharge machining, also known as EDM, process is one of the most applicable machining process for removal of material in hard to machine materials like superalloy metals. EDM process utilizes electrical energy into sparks to erode the metals in presence of dielectric medium. In the present investigation, superalloy, Inconel 718 has been selected as workpiece and electrolytic copper as tool electrode. Attempt has been made to understand the effect of size of tool with varying cavity depth during drilling of hole through EDM process. In order to systematic investigate, tool size in terms of tool diameter and cavity depth along with other important electrical parameters namely, peak current, pulse-on time and servo voltage have been varied at three different values and the experiments has been designed using fractional factorial (Taguchi) method. Each experiment has been repeated twice under the same condition in order to understand the variability within the experiments. The effect of variations in parameters has been evaluated in terms of material removal rate, tool wear rate and surface roughness. Results revel that change in tool diameter during machining affects the response characteristics significantly. Larger tool diameter yielded 13% more material removal rate than smaller tool diameter. Analysis of the effect of variation in cavity depth is notable. There is no significant effect of cavity depth on material removal rate, tool wear rate and surface quality. This indicates that number of experiments can be performed to analyze other parameters effect even at smaller depth of cavity which can reduce the cost and time of experiments. Further, statistical analysis has been carried out to identify the interaction effect between parameters.

Keywords: EDM, Inconel 718, material removal rate, roughness, tool wear, tool size

Procedia PDF Downloads 197
4330 The Solution of the Direct Problem of Electrical Prospecting with Direct Current Under Conditions of Ground Surface Relief

Authors: Balgaisha Mukanova, Tolkyn Mirgalikyzy

Abstract:

Theory of interpretation of electromagnetic fields studied in the electrical prospecting with direct current is mainly developed for the case of a horizontal surface observation. However in practice we often have to work in difficult terrain surface. Conducting interpretation without the influence of topography can cause non-existent anomalies on sections. This raises the problem of studying the impact of different shapes of ground surface relief on the results of electrical prospecting's research. This research examines the numerical solutions of the direct problem of electrical prospecting for two-dimensional and three-dimensional media, taking into account the terrain. The problem is solved using the method of integral equations. The density of secondary currents on the relief surface is obtained.

Keywords: ground surface relief, method of integral equations, numerical method, electromagnetic

Procedia PDF Downloads 355
4329 Intelligent Tooling Embedded Sensors for Monitoring the Wear of Cutting Tools in Turning Applications

Authors: Hatim Laalej, Jon Stammers

Abstract:

In machining, monitoring of tool wear is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Currently, the task of monitoring the wear on the cutting tool is carried out by the operator who performs manual inspections of the cutting tool, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from loss of productivity. The cutting tool consumable costs may also be higher than necessary when tools are changed before the end of their useful life. Furthermore, damage can be caused to the workpiece when tools are not changed soon enough leading to a significant increase in the costs of manufacturing. The present study is concerned with the development of break sensor printed on the flank surface of poly-crystalline diamond (PCD) cutting to perform on-line condition monitoring of the cutting tool used to machine Titanium Ti-6al-4v bar. The results clearly show that there is a strong correlation between the break sensor measurements and the amount of wear in the cutting tool. These findings are significant in that they help the user/operator of the machine tool to determine the condition of the cutting tool without the need of performing manual inspection, thereby reducing the manufacturing costs such as the machine down time.

Keywords: machining, manufacturing, tool wear, signal processing

Procedia PDF Downloads 230
4328 Alternative Approach to the Machine Vision System Operating for Solving Industrial Control Issue

Authors: M. S. Nikitenko, S. A. Kizilov, D. Y. Khudonogov

Abstract:

The paper considers an approach to a machine vision operating system combined with using a grid of light markers. This approach is used to solve several scientific and technical problems, such as measuring the capability of an apron feeder delivering coal from a lining return port to a conveyor in the technology of mining high coal releasing to a conveyor and prototyping an autonomous vehicle obstacle detection system. Primary verification of a method of calculating bulk material volume using three-dimensional modeling and validation in laboratory conditions with relative errors calculation were carried out. A method of calculating the capability of an apron feeder based on a machine vision system and a simplifying technology of a three-dimensional modelled examined measuring area with machine vision was offered. The proposed method allows measuring the volume of rock mass moved by an apron feeder using machine vision. This approach solves the volume control issue of coal produced by a feeder while working off high coal by lava complexes with release to a conveyor with accuracy applied for practical application. The developed mathematical apparatus for measuring feeder productivity in kg/s uses only basic mathematical functions such as addition, subtraction, multiplication, and division. Thus, this fact simplifies software development, and this fact expands the variety of microcontrollers and microcomputers suitable for performing tasks of calculating feeder capability. A feature of an obstacle detection issue is to correct distortions of the laser grid, which simplifies their detection. The paper presents algorithms for video camera image processing and autonomous vehicle model control based on obstacle detection machine vision systems. A sample fragment of obstacle detection at the moment of distortion with the laser grid is demonstrated.

Keywords: machine vision, machine vision operating system, light markers, measuring capability, obstacle detection system, autonomous transport

Procedia PDF Downloads 101