Search results for: correlation and prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5938

Search results for: correlation and prediction

5638 Retrieval of Aerosol Optical Depth and Correlation Analysis of PM2.5 Based on GF-1 Wide Field of View Images

Authors: Bo Wang

Abstract:

This paper proposes a method that can estimate PM2.5 by the images of GF-1 Satellite that called WFOV images (Wide Field of View). AOD (Aerosol Optical Depth) over land surfaces was retrieved in Shanghai area based on DDV (Dark Dense Vegetation) method. PM2.5 information, gathered from ground monitoring stations hourly, was fitted with AOD using different polynomial coefficients, and then the correlation coefficient between them was calculated. The results showed that, the GF-1 WFOV images can meet the requirement of retrieving AOD, and the correlation coefficient between the retrieved AOD and PM2.5 was high. If more detailed and comprehensive data is provided, the accuracy could be improved and the parameters can be more precise in the future.

Keywords: remote sensing retrieve, PM 2.5, GF-1, aerosol optical depth

Procedia PDF Downloads 244
5637 Correlation between Clinical Measurements of Static Foot Posture in Young Adults

Authors: Phornchanok Motantasut, Torkamol Hunsawong, Lugkana Mato, Wanida Donpunha

Abstract:

Identifying abnormal foot posture is important for prescribing appropriate management in patients with lower limb disorders and chronic non-specific low back pain. The normalized navicular height truncated (NNHt) and the foot posture index-6 (FPI-6) have been recommended as the common, simple, valid, and reliable static measures for clinical application. The NNHt is a single plane measure while the FPI-6 is a triple plane measure. At present, there is inadequate information about the correlation between the NNHt and the FPI-6 for categorizing foot posture that leads to a difficulty of choosing the appropriate assessment. Therefore, the present study aimed to determine the correlation between the NNHt and the FPI-6 measures in adult participants with asymptomatic feet. Methods: A cross-sectional descriptive study was conducted in 47 asymptomatic individuals (23 males and 24 females) aged 28.89 ± 7.67 years with body mass index 21.73 ± 1.76 kg/m². The right foot was measured twice by the experienced rater using the NNHt and the FPI-6. A sequence of the measures was randomly arranged for each participant with a 10-minute rest between the tests. The Pearson’s correlation coefficient (r) was used to determine the relationship between the measures. Results: The mean NNHt score was 0.23 ± 0.04 (ranged from 0.15 to 0.36) and the mean FPI-6 score was 4.42 ± 4.36 (ranged from -6 to +11). The Pearson’s correlation coefficient among the NNHt score and the FPI-6 score was -0.872 (p < 0.01). Conclusion: The present finding demonstrates the strong correlation between the NNHt and FPI-6 in adult feet and implies that both measures could be substituted for each other in identifying foot posture.

Keywords: foot posture index, foot type, measurement of foot posture, navicular height

Procedia PDF Downloads 138
5636 An Improved Single Point Closure Model Based on Dissipation Anisotropy for Geophysical Turbulent Flows

Authors: A. P. Joshi, H. V. Warrior, J. P. Panda

Abstract:

This paper is a continuation of the work carried out by various turbulence modelers in Oceanography on the topic of oceanic turbulent mixing. It evaluates the evolution of ocean water temperature and salinity by the appropriate modeling of turbulent mixing utilizing proper prescription of eddy viscosity. Many modelers in past have suggested including terms like shear, buoyancy and vorticity to be the parameters that decide the slow pressure strain correlation. We add to it the fact that dissipation anisotropy also modifies the correlation through eddy viscosity parameterization. This recalibrates the established correlation constants slightly and gives improved results. This anisotropization of dissipation implies that the critical Richardson’s number increases much beyond unity (to 1.66) to accommodate enhanced mixing, as is seen in reality. The model is run for a couple of test cases in the General Ocean Turbulence Model (GOTM) and the results are presented here.

Keywords: Anisotropy, GOTM, pressure-strain correlation, Richardson critical number

Procedia PDF Downloads 167
5635 On-Line Data-Driven Multivariate Statistical Prediction Approach to Production Monitoring

Authors: Hyun-Woo Cho

Abstract:

Detection of incipient abnormal events in production processes is important to improve safety and reliability of manufacturing operations and reduce losses caused by failures. The construction of calibration models for predicting faulty conditions is quite essential in making decisions on when to perform preventive maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of process measurement data. The calibration model is used to predict faulty conditions from historical reference data. This approach utilizes variable selection techniques, and the predictive performance of several prediction methods are evaluated using real data. The results shows that the calibration model based on supervised probabilistic model yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.

Keywords: calibration model, monitoring, quality improvement, feature selection

Procedia PDF Downloads 355
5634 A Pilot Study on the Predictors of Child-Parent Relationship

Authors: Selen Demirtas-Zorbaz

Abstract:

This study aimed to determine if there is any relation between child–parent relationships and parental self-efficacy. The participants of this study are 208 parents, and 82,5% of them are mothers. The children’s age range are differed from 4 to 13 (x̄=7,8). The results showed that there is a significant positive correlation between positive relationship with parents and parental self-efficacy (r=0.52, p < .01); and significant negative correlation between conflict with parents and parental self-efficacy (r=-0.28, p < .01). Also, findings reveal that there was no significant correlation between the time spent with the child and conflict with parents (r=-0.08, p>.05). It was also found that there was no significant correlation between the time spends with the child and positive relationship with parents (r=0.08, p > 0.5). In addition to this; regression analysis’ results indicated that parental self-efficacy is significant predictors of conflict (β=-.268, t=-4.002, p < .001) and positive relationship with parents (β =.519, t= 8.733, p < .001) whereas time spent with children is not (β =-.070, t=-1,045, p > .05 for conflict; β =.061, t=1.023, p > .05 for positive relationship with parents).

Keywords: child-parent relationship, conflict with parents, positive relationship with parents, parental efficacy

Procedia PDF Downloads 299
5633 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 231
5632 Impact of Air Pollution and Climate on the Incidence of Emergency Interventions in Slavonski Brod

Authors: Renata Josipovic, Ante Cvitkovic

Abstract:

Particulate matter belongs to pollutants that can lead to respiratory problems or premature death due to exposure (long-term, short-term) to these substances, all depending on the severity of the effects. The importance of the study is to determine whether the existing climatic conditions in the period from January 1st to August 31st, 2018 increased the number of emergency interventions in Slavonski Brod with regard to pollutants hydrogen sulfide and particles less than 10 µm (PM10) and less than 2.5 µm (PM2.5). Analytical data of the concentration of pollutants are collected from the Croatian Meteorological and Hydrological Service, which monitors the operation of two meteorological stations in Slavonski Brod, as well as climatic conditions. Statistics data of emergency interventions were collected from the Emergency Medicine Department of Slavonski Brod. All data were compared (air pollution, emergency interventions) according to climatic conditions (air humidity and air temperature) and statistically processed. Statistical significance, although weak positive correlation PM2.5 (correlation coefficient 0.147; p = 0.036), determined PM10 (correlation coefficient 0.122; p = 0.048), hydrogen sulfide (correlation coefficient 0.141; p = 0.035) with max. temperature (correlation coefficient 0.202; p = 0.002) with number of interventions. The association between mean air humidity was significant but negative (correlation coefficient - 0.172; p = 0.007). The values of the influence of air pressure are not determined. As the problem of air pollution is very complex, coordinated action at many levels is needed to reduce air pollution in Slavonski Brod and consequences that can affect human health.

Keywords: emergency interventions, human health, hydrogen sulfide, particulate matter

Procedia PDF Downloads 165
5631 Fracture and Fatigue Crack Growth Analysis and Modeling

Authors: Volkmar Nolting

Abstract:

Fatigue crack growth prediction has become an important topic in both engineering and non-destructive evaluation. Crack propagation is influenced by the mechanical properties of the material and is conveniently modelled by the Paris-Erdogan equation. The critical crack size and the total number of load cycles are calculated. From a Larson-Miller plot the maximum operational temperature can for a given stress level be determined so that failure does not occur within a given time interval t. The study is used to determine a reasonable inspection cycle and thus enhances operational safety and reduces costs.

Keywords: fracturemechanics, crack growth prediction, lifetime of a component, structural health monitoring

Procedia PDF Downloads 49
5630 Implication of the Exchange-Correlation on Electromagnetic Wave Propagation in Single-Wall Carbon Nanotubes

Authors: A. Abdikian

Abstract:

Using the linearized quantum hydrodynamic model (QHD) and by considering the role of quantum parameter (Bohm’s potential) and electron exchange-correlation potential in conjunction with Maxwell’s equations, electromagnetic wave propagation in a single-walled carbon nanotubes was studied. The electronic excitations are described. By solving the mentioned equations with appropriate boundary conditions and by assuming the low-frequency electromagnetic waves, two general expressions of dispersion relations are derived for the transverse magnetic (TM) and transverse electric (TE) modes, respectively. The dispersion relations are analyzed numerically and it was found that the dependency of dispersion curves with the exchange-correlation effects (which have been ignored in previous works) in the low frequency would be limited. Moreover, it has been realized that asymptotic behaviors of the TE and TM modes are similar in single wall carbon nanotubes (SWCNTs). The results show that by adding the function of electron exchange-correlation potential lead to the phenomena and make to extend the validity range of QHD model. The results can be important in the study of collective phenomena in nanostructures.

Keywords: transverse magnetic, transverse electric, quantum hydrodynamic model, electron exchange-correlation potential, single-wall carbon nanotubes

Procedia PDF Downloads 450
5629 Prediction of Wind Speed by Artificial Neural Networks for Energy Application

Authors: S. Adjiri-Bailiche, S. M. Boudia, H. Daaou, S. Hadouche, A. Benzaoui

Abstract:

In this work the study of changes in the wind speed depending on the altitude is calculated and described by the model of the neural networks, the use of measured data, the speed and direction of wind, temperature and the humidity at 10 m are used as input data and as data targets at 50m above sea level. Comparing predict wind speeds and extrapolated at 50 m above sea level is performed. The results show that the prediction by the method of artificial neural networks is very accurate.

Keywords: MATLAB, neural network, power low, vertical extrapolation, wind energy, wind speed

Procedia PDF Downloads 692
5628 A High Content Screening Platform for the Accurate Prediction of Nephrotoxicity

Authors: Sijing Xiong, Ran Su, Lit-Hsin Loo, Daniele Zink

Abstract:

The kidney is a major target for toxic effects of drugs, industrial and environmental chemicals and other compounds. Typically, nephrotoxicity is detected late during drug development, and regulatory animal models could not solve this problem. Validated or accepted in silico or in vitro methods for the prediction of nephrotoxicity are not available. We have established the first and currently only pre-validated in vitro models for the accurate prediction of nephrotoxicity in humans and the first predictive platforms based on renal cells derived from human pluripotent stem cells. In order to further improve the efficiency of our predictive models, we recently developed a high content screening (HCS) platform. This platform employed automated imaging in combination with automated quantitative phenotypic profiling and machine learning methods. 129 image-based phenotypic features were analyzed with respect to their predictive performance in combination with 44 compounds with different chemical structures that included drugs, environmental and industrial chemicals and herbal and fungal compounds. The nephrotoxicity of these compounds in humans is well characterized. A combination of chromatin and cytoskeletal features resulted in high predictivity with respect to nephrotoxicity in humans. Test balanced accuracies of 82% or 89% were obtained with human primary or immortalized renal proximal tubular cells, respectively. Furthermore, our results revealed that a DNA damage response is commonly induced by different PTC-toxicants with diverse chemical structures and injury mechanisms. Together, the results show that the automated HCS platform allows efficient and accurate nephrotoxicity prediction for compounds with diverse chemical structures.

Keywords: high content screening, in vitro models, nephrotoxicity, toxicity prediction

Procedia PDF Downloads 312
5627 Hard Disk Failure Predictions in Supercomputing System Based on CNN-LSTM and Oversampling Technique

Authors: Yingkun Huang, Li Guo, Zekang Lan, Kai Tian

Abstract:

Hard disk drives (HDD) failure of the exascale supercomputing system may lead to service interruption and invalidate previous calculations, and it will cause permanent data loss. Therefore, initiating corrective actions before hard drive failures materialize is critical to the continued operation of jobs. In this paper, a highly accurate analysis model based on CNN-LSTM and oversampling technique was proposed, which can correctly predict the necessity of a disk replacement even ten days in advance. Generally, the learning-based method performs poorly on a training dataset with long-tail distribution, especially fault prediction is a very classic situation as the scarcity of failure data. To overcome the puzzle, a new oversampling was employed to augment the data, and then, an improved CNN-LSTM with the shortcut was built to learn more effective features. The shortcut transmits the results of the previous layer of CNN and is used as the input of the LSTM model after weighted fusion with the output of the next layer. Finally, a detailed, empirical comparison of 6 prediction methods is presented and discussed on a public dataset for evaluation. The experiments indicate that the proposed method predicts disk failure with 0.91 Precision, 0.91 Recall, 0.91 F-measure, and 0.90 MCC for 10 days prediction horizon. Thus, the proposed algorithm is an efficient algorithm for predicting HDD failure in supercomputing.

Keywords: HDD replacement, failure, CNN-LSTM, oversampling, prediction

Procedia PDF Downloads 79
5626 Efficient Antenna Array Beamforming with Robustness against Random Steering Mismatch

Authors: Ju-Hong Lee, Ching-Wei Liao, Kun-Che Lee

Abstract:

This paper deals with the problem of using antenna sensors for adaptive beamforming in the presence of random steering mismatch. We present an efficient adaptive array beamformer with robustness to deal with the considered problem. The robustness of the proposed beamformer comes from the efficient designation of the steering vector. Using the received array data vector, we construct an appropriate correlation matrix associated with the received array data vector and a correlation matrix associated with signal sources. Then, the eigenvector associated with the largest eigenvalue of the constructed signal correlation matrix is designated as an appropriate estimate of the steering vector. Finally, the adaptive weight vector required for adaptive beamforming is obtained by using the estimated steering vector and the constructed correlation matrix of the array data vector. Simulation results confirm the effectiveness of the proposed method.

Keywords: adaptive beamforming, antenna array, linearly constrained minimum variance, robustness, steering vector

Procedia PDF Downloads 199
5625 Unsupervised Text Mining Approach to Early Warning System

Authors: Ichihan Tai, Bill Olson, Paul Blessner

Abstract:

Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.

Keywords: early warning system, knowledge management, market prediction, topic modeling.

Procedia PDF Downloads 338
5624 Relationship between Body Composition and Balance in Young Adults

Authors: Ferruh Taspinar, Gulce K. Seyyar, Gamze Kurt, Eda O. Okur, Emrah Afsar, Ismail Saracoglu, Betul Taspinar

Abstract:

Overweight and obesity has been associated with postural balance. The aim of this study was to investigate the relationship between body composition and balance. One hundred and thirty two young adults (58 male, 74 female) were included in the study. Mean age of participants were found as 21.21±1.51 years. Body composition (body mass index, total body fat ratio, total body muscle ratio) and balance (right anterior, right postero-medial, right postero-lateral, left anterior, left postero-medial, left postero-lateral) were evaluated by Tanita BC-418 and Y balance test, respectively. Pearson correlation analysis was used to evaluate the correlation between the parameters. Significance level in statistical analysis was accepted as 0.05. According to results, no correlation was found between body mass index and balance parameters. There was negative correlation between total body fat ratio and balance parameters (r=0.419-0.509, p˂0.05). On the other hand, positive correlation was found between total body muscle ratio and balance parameters (r=0.390-0.494, p˂0.05). This study demonstrated that body fat and muscle ratio affects the balance. Body composition should be considered in rehabilitation programs including postural balance training.

Keywords: balance, body composition, body mass, young adults

Procedia PDF Downloads 374
5623 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction

Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga

Abstract:

Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.

Keywords: genetic algorithm, neural networks, word prediction, machine learning

Procedia PDF Downloads 194
5622 The Study of the Correlation of Future-Oriented Thinking and Retirement Planning: The Analysis of Two Professions

Authors: Ya-Hui Lee, Ching-Yi Lu, Chien Hung, Hsieh

Abstract:

The purpose of this study is to explore the difference between state-owned-enterprise employees and the civil servants regarding their future-oriented thinking and retirement planning. The researchers investigated 687 middle age and older adults (345 state-owned-enterprise employees and 342 civil servants) through survey research, to understand the relevance between and the prediction of their future-oriented thinking and retirement planning. The findings of this study are: 1.There are significant differences between these two professions regarding future-oriented thinking but not retirement planning. The results of the future-oriented thinking of civil servants are overall higher than that of the state-owned-enterprise employees. 2. There are significant differences both in the aspects of future-oriented thinking and retirement planning among civil servants of different ages. The future-oriented thinking and retirement planning of ages 55 and above are more significant than those of ages 45 or under. For the state-owned-enterprise employees, however, there is no significance found in their future-oriented thinking, but in their retirement planning. Moreover, retirement planning is higher at ages 55 or above than at other ages. 3. With regard to education, there is no correlation to future-oriented thinking or retirement planning for civil servants. For state-owned-enterprise employees, however, their levels of education directly affect their future-oriented thinking. Those with a master degree or above have greater future-oriented thinking than those with other educational degrees. As for retirement planning, there is no correlation. 4. Self-assessment of economic status significantly affects the future-oriented thinking and retirement planning of both civil servants and state-owned-enterprise employees. Those who assess themselves more affluently are more inclined to future-oriented thinking and retirement planning. 5. For civil servants, there are significant differences between their monthly income and retirement planning, but none with future-oriented thinking. As for state-owned-enterprise employees, there are significant differences between their monthly income and retirement planning as well as future-oriented thinking. State-owned-enterprise employees who have significantly higher monthly incomes (1,960 euros and above) have more significant future-oriented thinking and retirement planning than those with lower monthly incomes (1,469 euros and below). 6. The middle age and older adults of both professions have positive correlations with future-oriented thinking and retirement planning. Through stepwise multiple regression analysis, the results indicate that future-oriented thinking and retirement planning have positive predictions. The authors then present the findings of this study for state-owned-enterprises, public authorities, and older adult educational program designs in Taiwan as references.

Keywords: state-owned-enterprise employees, civil servants, future-oriented thinking, retirement planning

Procedia PDF Downloads 366
5621 Comparison of Nutritional Status and Tendency of Depression and Orthorexia Nervosa in Vegan Vegetarian and Omnivorous

Authors: E. Yeşil, M. Özgök, M. Özdemir, B. Köse

Abstract:

The aim of the present study was to compare nutritional status, tendency of depression and orthorexia nervosa in vegan, vegetarian and omnivorous. The sample consisted of 150 individuals (126 women, 24 men) who agreed to participate in the study between February and May of the year 2018. Fifty vegan, fifty vegetarian and fifty omnivore diet pattern were compared. In the first part, each participant was interviewed using a structured questionnaire to obtain demographic information about education, occupation and health conditions. In the second part Beck Depression Inventory (BDI) was used. In the third part ORTO-11 was used. In the fourth part, 24 Hours Dietary Record was used in order to determine the nutritional status of individuals. The vegans and vegetarians were interviewed about their diets. The mean body mass index of the vegan, vegetarian and omnivore were, 21,24 ± 3,25; 22,2 ± 4,1 and 22,8 ± 4,3 respectively (p > 0,05). The daily energy intakes of the vegan, vegetarian and omnivore diet were 1792,57 ± 784,8 kcal; 1691,9 ± 742,2 kcal and 1697,9 ± 695,6 kcal (p > 0.05). The mean BDI of the vegan, vegetarian and omnivore diet were 6,2 ± 6,2, 9,8 ± 10,1 and 8,8 ± 8,1, respectively (p > 0,05). The mean ORTO-11 of the vegan, vegetarian and omnivore diet were 25,9 ± 4,2, 27,2 ± 5,9 and 26,4 ± 5,3 (p > 0,05). There was a statistically significant correlation between BDI and ORTO-11 in vegan diet group (p: 0,01 r: 0,333). There was a positive correlation between BMI and BDI in the vegetarian group (p: 0,01 r: 0,363). Also in the vegetarian group; there was a negative correlation between age and ORTO-11 (p: 0,01 r: -0,316). A statistically significant negative correlation was found between waist circumference and ORTO-11 (p: 0,05 r: -0,316) in the omnivore diet group. Also there was a negative correlation between age and BDI (p: 0,05 r: -0,338) in this group. As a conclusion, positive correlation was found between BDI and ORTO-11 score of vegan participants. There were no differences between three groups in BDI or ORTO-11 score.

Keywords: depression, orthorexia nervosa, vegan, vegetarian

Procedia PDF Downloads 145
5620 Climate Changes in Albania and Their Effect on Cereal Yield

Authors: Lule Basha, Eralda Gjika

Abstract:

This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine-learning methods, such as random forest, are used to predict cereal yield responses to climacteric and other variables. Random Forest showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the Random Forest method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods.

Keywords: cereal yield, climate change, machine learning, multiple regression model, random forest

Procedia PDF Downloads 91
5619 Global Developmental Delay and Its Association with Risk Factors: Validation by Structural Equation Modelling

Authors: Bavneet Kaur Sidhu, Manoj Tiwari

Abstract:

Global Developmental Delay (GDD) is a common pediatric condition. Etiologies of GDD might, however, differ in developing countries. In the last decade, sporadic families are being reported in various countries. As to the author’s best knowledge, many risk factors and their correlation with the prevalence of GDD have been studied but its statistical correlation has not been done. Thus we propose the present study by targeting the risk factor, prevalence and their statistical correlation with GDD. FMR1 gene was studied to confirm the disease and its penetrance. A complete questionnaire-based performance was designed for the statistical studies having a personal, past and present medical history along with their socio-economic status as well. Methods: We distributed the children’s age in 4 different age groups having 5-year intervals and applied structural equation modeling (SEM) techniques, Spearman’s rank correlation coefficient, Karl Pearson correlation coefficient, and chi-square test.Result: A total of 1100 families were enrolled for this study; among them, 330 were clinically and biologically confirmed (radiological studies) for the disease, 204 were males (61.8%), 126 were females (38.18%). We found that 27.87% were genetic and 72.12 were sporadic, out of 72.12 %, 43.277% cases from urban and 56.72% from the rural locality, the mothers' literacy rate was 32.12% and working women numbers were 41.21%. Conclusions: There is a significant association between mothers' age and GDD prevalence, which is also followed by mothers' literacy rate and mothers' occupation, whereas there was no association between fathers' age and GDD.

Keywords: global developmental delay, FMR1 gene, spearman’ rank correlation coefficient, structural equation modeling

Procedia PDF Downloads 134
5618 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements

Authors: Henok Hailemariam, Frank Wuttke

Abstract:

Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.

Keywords: collapsible soil, dielectric permittivity, moisture content, relative subsidence

Procedia PDF Downloads 363
5617 Sunspot Cycles: Illuminating Humanity's Mysteries

Authors: Aghamusa Azizov

Abstract:

This study investigates the correlation between solar activity and sentiment in news media coverage, using a large-scale dataset of solar activity since 1750 and over 15 million articles from "The New York Times" dating from 1851 onwards. Employing Pearson's correlation coefficient and multiple Natural Language Processing (NLP) tools—TextBlob, Vader, and DistillBERT—the research examines the extent to which fluctuations in solar phenomena are reflected in the sentiment of historical news narratives. The findings reveal that the correlation between solar activity and media sentiment is generally negligible, suggesting a weak influence of solar patterns on the portrayal of events in news media. Notably, a moderate positive correlation was observed between the sentiments derived from TextBlob and Vader, indicating consistency across NLP tools. The analysis provides insights into the historical impact of solar activity on human affairs and highlights the importance of using multiple analytical methods to understand complex relationships in large datasets. The study contributes to the broader understanding of how extraterrestrial factors may intersect with media-reported events and underlines the intricate nature of interdisciplinary research in the data science and historical domains.

Keywords: solar activity correlation, media sentiment analysis, natural language processing, historical event patterns

Procedia PDF Downloads 77
5616 FT-NIR Method to Determine Moisture in Gluten Free Rice-Based Pasta during Drying

Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra

Abstract:

Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000 cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.

Keywords: FT-NIR, pasta, moisture determination, food engineering

Procedia PDF Downloads 258
5615 Status of the Laboratory Tools and Equipment of the Bachelor of Science in Hotel and Restaurant Technology Program of Eastern Visayas State University

Authors: Dale Daniel G. Bodo

Abstract:

This study investigated the status of the Laboratory Tools and Equipment of the BSHRT Program of Eastern Visayas State University, Tacloban City Campus. Descriptive-correlation method was used which Variables include profile age, gender, acquired NC II, competencies in HRT and the status of the laboratory facilities, tools, and equipment of the BSHRT program. The study also identified significant correlation between the profile of the respondents and the implementation of the BSHRT Program in terms of laboratory tools and equipment. A self-structured survey questionnaire was used to gather relevant data among eighty-seven (87) BSHRT-OJT students. To test the correlations of variables, Pearson Product Moment Coefficient Correlation or Pearson r was used. As a result, the study revealed very interesting results and various significant correlations among the paired variables and as to the implementation of the BSHRT Program. Hence, this study was done to update the status of laboratory tools and equipment of the program.

Keywords: status, BSHRT Program, laboratory tools and equipment, descriptive-correlation

Procedia PDF Downloads 187
5614 Assessment of Pre-Processing Influence on Near-Infrared Spectra for Predicting the Mechanical Properties of Wood

Authors: Aasheesh Raturi, Vimal Kothiyal, P. D. Semalty

Abstract:

We studied mechanical properties of Eucalyptus tereticornis using FT-NIR spectroscopy. Firstly, spectra were pre-processed to eliminate useless information. Then, prediction model was constructed by partial least squares regression. To study the influence of pre-processing on prediction of mechanical properties for NIR analysis of wood samples, we applied various pretreatment methods like straight line subtraction, constant offset elimination, vector-normalization, min-max normalization, multiple scattering. Correction, first derivative, second derivatives and their combination with other treatment such as First derivative + straight line subtraction, First derivative+ vector normalization and First derivative+ multiplicative scattering correction. The data processing methods in combination of preprocessing with different NIR regions, RMSECV, RMSEP and optimum factors/rank were obtained by optimization process of model development. More than 350 combinations were obtained during optimization process. More than one pre-processing method gave good calibration/cross-validation and prediction/test models, but only the best calibration/cross-validation and prediction/test models are reported here. The results show that one can safely use NIR region between 4000 to 7500 cm-1 with straight line subtraction, constant offset elimination, first derivative and second derivative preprocessing method which were found to be most appropriate for models development.

Keywords: FT-NIR, mechanical properties, pre-processing, PLS

Procedia PDF Downloads 359
5613 Detectability of Malfunction in Turboprop Engine

Authors: Tomas Vampola, Michael Valášek

Abstract:

On the basis of simulation-generated failure states of structural elements of a turboprop engine suitable for the busy-jet class of aircraft, an algorithm for early prediction of damage or reduction in functionality of structural elements of the engine is designed and verified with real data obtained at dynamometric testing facilities of aircraft engines. Based on an expanding database of experimentally determined data from temperature and pressure sensors during the operation of turboprop engines, this strategy is constantly modified with the aim of using the minimum number of sensors to detect an inadmissible or deteriorated operating mode of specific structural elements of an aircraft engine. The assembled algorithm for the early prediction of reduced functionality of the aircraft engine significantly contributes to the safety of air traffic and to a large extent, contributes to the economy of operation with positive effects on the reduction of the energy demand of operation and the elimination of adverse effects on the environment.

Keywords: detectability of malfunction, dynamometric testing, prediction of damage, turboprop engine

Procedia PDF Downloads 94
5612 Modified Naive Bayes-Based Prediction Modeling for Crop Yield Prediction

Authors: Kefaya Qaddoum

Abstract:

Most of greenhouse growers desire a determined amount of yields in order to accurately meet market requirements. The purpose of this paper is to model a simple but often satisfactory supervised classification method. The original naive Bayes have a serious weakness, which is producing redundant predictors. In this paper, utilized regularization technique was used to obtain a computationally efficient classifier based on naive Bayes. The suggested construction, utilized L1-penalty, is capable of clearing redundant predictors, where a modification of the LARS algorithm is devised to solve this problem, making this method applicable to a wide range of data. In the experimental section, a study conducted to examine the effect of redundant and irrelevant predictors, and test the method on WSG data set for tomato yields, where there are many more predictors than data, and the urge need to predict weekly yield is the goal of this approach. Finally, the modified approach is compared with several naive Bayes variants and other classification algorithms (SVM and kNN), and is shown to be fairly good.

Keywords: tomato yield prediction, naive Bayes, redundancy, WSG

Procedia PDF Downloads 233
5611 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach

Authors: Riznaldi Akbar

Abstract:

In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.

Keywords: debt crisis, external debt, artificial neural network, ANN

Procedia PDF Downloads 438
5610 Analysis and Prediction of Fine Particulate Matter in the Air Environment for 2007-2020 in Bangkok Thailand

Authors: Phawichsak Prapassornpitaya, Wanida Jinsart

Abstract:

Daily monitoring PM₁₀ and PM₂.₅ data from 2007 to 2017 were analyzed to provide baseline data for prediction of the air pollution in Bangkok in the period of 2018 -2020. Two statistical models, Autoregressive Integrated Moving Average model (ARIMA) were used to evaluate the trends of pollutions. The prediction concentrations were tested by root means square error (RMSE) and index of agreement (IOA). This evaluation of the traffic PM₂.₅ and PM₁₀ were studied in association with the regulatory control and emission standard changes. The emission factors of particulate matter from diesel vehicles were decreased when applied higher number of euro standard. The trends of ambient air pollutions were expected to decrease. However, the Bangkok smog episode in February 2018 with temperature inversion caused high concentration of PM₂.₅ in the air environment of Bangkok. The impact of traffic pollutants was depended upon the emission sources, temperature variations, and metrological conditions.

Keywords: fine particulate matter, ARIMA, RMSE, Bangkok

Procedia PDF Downloads 277
5609 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements

Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva

Abstract:

The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% at 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes have been designed, three as conventional concretes for three grades under discussion and fifteen as HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines i.e. IS: 10262. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave One Out Validation (LOOV) methods.

Keywords: high performance concrete, fly ash, concrete mixes, compressive strength, strength prediction models, linear regression, ANN

Procedia PDF Downloads 442