Search results for: 5) genetic algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4751

Search results for: 5) genetic algorithm

4451 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning

Procedia PDF Downloads 549
4450 A Comparative Study of GTC and PSP Algorithms for Mining Sequential Patterns Embedded in Database with Time Constraints

Authors: Safa Adi

Abstract:

This paper will consider the problem of sequential mining patterns embedded in a database by handling the time constraints as defined in the GSP algorithm (level wise algorithms). We will compare two previous approaches GTC and PSP, that resumes the general principles of GSP. Furthermore this paper will discuss PG-hybrid algorithm, that using PSP and GTC. The results show that PSP and GTC are more efficient than GSP. On the other hand, the GTC algorithm performs better than PSP. The PG-hybrid algorithm use PSP algorithm for the two first passes on the database, and GTC approach for the following scans. Experiments show that the hybrid approach is very efficient for short, frequent sequences.

Keywords: database, GTC algorithm, PSP algorithm, sequential patterns, time constraints

Procedia PDF Downloads 387
4449 A Multi-Objective Programming Model to Supplier Selection and Order Allocation Problem in Stochastic Environment

Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh

Abstract:

This paper aims at developing a multi-objective model for supplier selection and order allocation problem in stochastic environment, where purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. In this regard, dependent chance programming is used which maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. The abovementioned stochastic multi-objective programming problem is then transformed into a stochastic single objective programming problem using minimum deviation method. In the next step, the further problem is solved applying a genetic algorithm, which performs a simulation process in order to calculate the stochastic objective function as its fitness function. Finally, the impact of stochastic parameters on the given solution is examined via a sensitivity analysis exploiting coefficient of variation. The results show that whatever stochastic parameters have greater coefficients of variation, the value of the objective function in the stochastic single objective programming problem is deteriorated.

Keywords: supplier selection, order allocation, dependent chance programming, genetic algorithm

Procedia PDF Downloads 311
4448 Predicting Trapezoidal Weir Discharge Coefficient Using Evolutionary Algorithm

Authors: K. Roushanger, A. Soleymanzadeh

Abstract:

Weirs are structures often used in irrigation techniques, sewer networks and flood protection. However, the hydraulic behavior of this type of weir is complex and difficult to predict accurately. An accurate flow prediction over a weir mainly depends on the proper estimation of discharge coefficient. In this study, the Genetic Expression Programming (GEP) approach was used for predicting trapezoidal and rectangular sharp-crested side weirs discharge coefficient. Three different performance indexes are used as comparing criteria for the evaluation of the model’s performances. The obtained results approved capability of GEP in prediction of trapezoidal and rectangular side weirs discharge coefficient. The results also revealed the influence of downstream Froude number for trapezoidal weir and upstream Froude number for rectangular weir in prediction of the discharge coefficient for both of side weirs.

Keywords: discharge coefficient, genetic expression programming, trapezoidal weir

Procedia PDF Downloads 386
4447 Orthogonal Basis Extreme Learning Algorithm and Function Approximation

Authors: Ying Li, Yan Li

Abstract:

A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.

Keywords: neural network, orthogonal basis extreme learning, function approximation

Procedia PDF Downloads 533
4446 Assessment Power and Oscillation Damping Using the POD Controller and Proposed FOD Controller

Authors: Tohid Rahimi, Yahya Naderi, Babak Yousefi, Seyed Hossein Hoseini

Abstract:

Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. However, FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. However, Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper, firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. Therefore, FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.

Keywords: power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA)

Procedia PDF Downloads 474
4445 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples

Authors: Wullapa Wongsinlatam

Abstract:

Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.

Keywords: artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization

Procedia PDF Downloads 151
4444 Investigation of Genetic Diversity in Bread Wheat by RAPD and SSR Markers

Authors: Mohammad Sadegh Khavarinejad

Abstract:

In this study, genetic diversity of 10 bread wheat genotypes by SSR and RAPD markers was evaluated. 11 primers were used included 6 RAPD primers and 5 SSR primers. RAPDs and SSRs could find 33 and 17 polymorphism respectively. In RAPDs, primers UBC 350 and UBC 109 and in SSRs, Primers Xgwm 469-6D and Xgwm120-2B showed genetic diversity among genotypes more than others.

Keywords: wheat, molecular markers, SSR, RAPD

Procedia PDF Downloads 431
4443 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils

Authors: Muqdad Al-Juboori, Bithin Datta

Abstract:

Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.

Keywords: artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis

Procedia PDF Downloads 222
4442 Development of Microsatellite Markers for Genetic Variation Analysis in House Cricket, Acheta domesticus

Authors: Yash M. Gupta, Kittisak Buddhachat, Surin Peyachoknagul, Somjit Homchan

Abstract:

The house cricket, Acheta domesticus is one of the commonly found species of field crickets. Although it is very commonly used as food and feed, the genomic information of house cricket is still missing for genetic investigation. DNA sequencing technology has evolved over the decades, and it has also revolutionized the molecular marker development for genetic analysis. In the present study, we have sequenced the whole genome of A. domesticus using illumina platform based HiSeq X Ten sequencing technology for searching simple sequence repeats (SSRs) in DNA to develop polymorphic microsatellite markers for population genetic analysis. A total of 112,157 SSRs with primer pairs were identified, 91 randomly selected SSRs used to check DNA amplification, of which nine primers were polymorphic. These microsatellite markers have shown cross-amplification with other three species of crickets which are Gryllus bimaculatus, Gryllus testaceus and Brachytrupes portentosus. These nine polymorphic microsatellite markers were used to check genetic variation for forty-five individuals of A. domesticus, Phitsanulok population, Thailand. For nine loci, the number of alleles was ranging from 5 to 15. The observed heterozygosity was ranged from 0.4091 to 0.7556. These microsatellite markers will facilitate population genetic analysis for future studies of A. domesticus populations. Moreover, the transferability of these SSR makers would also enable researchers to conduct genetic studies for other closely related species.

Keywords: cross-amplification, microsatellite markers, observed heterozygosity, population genetic, simple sequence repeats

Procedia PDF Downloads 137
4441 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: decision tree, genetic algorithm, machine learning, software defect prediction

Procedia PDF Downloads 328
4440 Artificial Intelligence for Generative Modelling

Authors: Shryas Bhurat, Aryan Vashistha, Sampreet Dinakar Nayak, Ayush Gupta

Abstract:

As the technology is advancing more towards high computational resources, there is a paradigm shift in the usage of these resources to optimize the design process. This paper discusses the usage of ‘Generative Design using Artificial Intelligence’ to build better models that adapt the operations like selection, mutation, and crossover to generate results. The human mind thinks of the simplest approach while designing an object, but the intelligence learns from the past & designs the complex optimized CAD Models. Generative Design takes the boundary conditions and comes up with multiple solutions with iterations to come up with a sturdy design with the most optimal parameter that is given, saving huge amounts of time & resources. The new production techniques that are at our disposal allow us to use additive manufacturing, 3D printing, and other innovative manufacturing techniques to save resources and design artistically engineered CAD Models. Also, this paper discusses the Genetic Algorithm, the Non-Domination technique to choose the right results using biomimicry that has evolved for current habitation for millions of years. The computer uses parametric models to generate newer models using an iterative approach & uses cloud computing to store these iterative designs. The later part of the paper compares the topology optimization technology with Generative Design that is previously being used to generate CAD Models. Finally, this paper shows the performance of algorithms and how these algorithms help in designing resource-efficient models.

Keywords: genetic algorithm, bio mimicry, generative modeling, non-dominant techniques

Procedia PDF Downloads 147
4439 An Optimized RDP Algorithm for Curve Approximation

Authors: Jean-Pierre Lomaliza, Kwang-Seok Moon, Hanhoon Park

Abstract:

It is well-known that Ramer Douglas Peucker (RDP) algorithm greatly depends on the method of choosing starting points. Therefore, this paper focuses on finding such starting points that will optimize the results of RDP algorithm. Specifically, this paper proposes a curve approximation algorithm that finds flat points, called essential points, of an input curve, divides the curve into corner-like sub-curves using the essential points, and applies the RDP algorithm to the sub-curves. The number of essential points play a role on optimizing the approximation results by balancing the degree of shape information loss and the amount of data reduction. Through experiments with curves of various types and complexities of shape, we compared the performance of the proposed algorithm with three other methods, i.e., the RDP algorithm itself and its variants. As a result, the proposed algorithm outperformed the others in term of maintaining the original shapes of the input curve, which is important in various applications like pattern recognition.

Keywords: curve approximation, essential point, RDP algorithm

Procedia PDF Downloads 532
4438 A New Dual Forward Affine Projection Adaptive Algorithm for Speech Enhancement in Airplane Cockpits

Authors: Djendi Mohmaed

Abstract:

In this paper, we propose a dual adaptive algorithm, which is based on the combination between the forward blind source separation (FBSS) structure and the affine projection algorithm (APA). This proposed algorithm combines the advantages of the source separation properties of the FBSS structure and the fast convergence characteristics of the APA algorithm. The proposed algorithm needs two noisy observations to provide an enhanced speech signal. This process is done in a blind manner without the need for ant priori information about the source signals. The proposed dual forward blind source separation affine projection algorithm is denoted (DFAPA) and used for the first time in an airplane cockpit context to enhance the communication from- and to- the airplane. Intensive experiments were carried out in this sense to evaluate the performance of the proposed DFAPA algorithm.

Keywords: adaptive algorithm, speech enhancement, system mismatch, SNR

Procedia PDF Downloads 133
4437 A High-Level Co-Evolutionary Hybrid Algorithm for the Multi-Objective Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a hybrid distributed algorithm has been suggested for the multi-objective job shop scheduling problem. Many new approaches are used at design steps of the distributed algorithm. Co-evolutionary structure of the algorithm and competition between different communicated hybrid algorithms, which are executed simultaneously, causes to efficient search. Using several machines for distributing the algorithms, at the iteration and solution levels, increases computational speed. The proposed algorithm is able to find the Pareto solutions of the big problems in shorter time than other algorithm in the literature. Apache Spark and Hadoop platforms have been used for the distribution of the algorithm. The suggested algorithm and implementations have been compared with results of the successful algorithms in the literature. Results prove the efficiency and high speed of the algorithm.

Keywords: distributed algorithms, Apache Spark, Hadoop, job shop scheduling, multi-objective optimization

Procedia PDF Downloads 361
4436 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification

Authors: Cemil Turan, Mohammad Shukri Salman

Abstract:

The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.

Keywords: adaptive filtering, sparse system identification, TD-LMS algorithm, VSSLMS algorithm

Procedia PDF Downloads 358
4435 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.

Keywords: multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations

Procedia PDF Downloads 429
4434 A Hybrid Based Algorithm to Solve the Multi-objective Minimum Spanning Tree Problem

Authors: Boumesbah Asma, Chergui Mohamed El-amine

Abstract:

Since it has been shown that the multi-objective minimum spanning tree problem (MOST) is NP-hard even with two criteria, we propose in this study a hybrid NSGA-II algorithm with an exact mutation operator, which is only used with low probability, to find an approximation to the Pareto front of the problem. In a connected graph G, a spanning tree T of G being a connected and cycle-free graph, if k edges of G\T are added to T, we obtain a partial graph H of G inducing a reduced size multi-objective spanning tree problem compared to the initial one. With a weak probability for the mutation operator, an exact method for solving the reduced MOST problem considering the graph H is then used to give birth to several mutated solutions from a spanning tree T. Then, the selection operator of NSGA-II is activated to obtain the Pareto front approximation. Finally, an adaptation of the VNS metaheuristic is called for further improvements on this front. It allows finding good individuals to counterbalance the diversification and the intensification during the optimization search process. Experimental comparison studies with an exact method show promising results and indicate that the proposed algorithm is efficient.

Keywords: minimum spanning tree, multiple objective linear optimization, combinatorial optimization, non-sorting genetic algorithm, variable neighborhood search

Procedia PDF Downloads 90
4433 An Algorithm for Herding Cows by a Swarm of Quadcopters

Authors: Jeryes Danial, Yosi Ben Asher

Abstract:

Algorithms for controlling a swarm of robots is an active research field, out of which cattle herding is one of the most complex problems to solve. In this paper, we derive an independent herding algorithm that is specifically designed for a swarm of quadcopters. The algorithm works by devising flight trajectories that cause the cows to run-away in the desired direction and hence herd cows that are distributed in a given field towards a common gathering point. Unlike previously proposed swarm herding algorithms, this algorithm does not use a flocking model but rather stars each cow separately. The effectiveness of this algorithm is verified experimentally using a simulator. We use a special set of experiments attempting to demonstrate that the herding times of this algorithm correspond to field diameter small constant regardless of the number of cows in the field. This is an optimal result indicating that the algorithm groups the cows into intermediate groups and herd them as one forming ever closing bigger groups.

Keywords: swarm, independent, distributed, algorithm

Procedia PDF Downloads 174
4432 Optimum Design of Grillage Systems Using Firefly Algorithm Optimization Method

Authors: F. Erdal, E. Dogan, F. E. Uz

Abstract:

In this study, firefly optimization based optimum design algorithm is presented for the grillage systems. Naming of the algorithm is derived from the fireflies, whose sense of movement is taken as a model in the development of the algorithm. Fireflies’ being unisex and attraction between each other constitute the basis of the algorithm. The design algorithm considers the displacement and strength constraints which are implemented from LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Construction). It selects the appropriate W (Wide Flange)-sections for the transverse and longitudinal beams of the grillage system among 272 discrete W-section designations given in LRFD-AISC so that the design limitations described in LRFD are satisfied and the weight of the system is confined to be minimal. Number of design examples is considered to demonstrate the efficiency of the algorithm presented.

Keywords: firefly algorithm, steel grillage systems, optimum design, stochastic search techniques

Procedia PDF Downloads 431
4431 Development of Evolutionary Algorithm by Combining Optimization and Imitation Approach for Machine Learning in Gaming

Authors: Rohit Mittal, Bright Keswani, Amit Mithal

Abstract:

This paper provides a sense about the application of computational intelligence techniques used to develop computer games, especially car racing. For the deep sense and knowledge of artificial intelligence, this paper is divided into various sections that is optimization, imitation, innovation and combining approach of optimization and imitation. This paper is mainly concerned with combining approach which tells different aspects of using fitness measures and supervised learning techniques used to imitate aspects of behavior. The main achievement of this paper is based on modelling player behaviour and evolving new game content such as racing tracks as single car racing on single track.

Keywords: evolution algorithm, genetic, optimization, imitation, racing, innovation, gaming

Procedia PDF Downloads 645
4430 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack

Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo

Abstract:

The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.

Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications

Procedia PDF Downloads 122
4429 Study of University Course Scheduling for Crowd Gathering Risk Prevention and Control in the Context of Routine Epidemic Prevention

Authors: Yuzhen Hu, Sirui Wang

Abstract:

As a training base for intellectual talents, universities have a large number of students. Teaching is a primary activity in universities, and during the teaching process, a large number of people gather both inside and outside the teaching buildings, posing a strong risk of close contact. The class schedule is the fundamental basis for teaching activities in universities and plays a crucial role in the management of teaching order. Different class schedules can lead to varying degrees of indoor gatherings and trajectories of class attendees. In recent years, highly contagious diseases have frequently occurred worldwide, and how to reduce the risk of infection has always been a hot issue related to public safety. "Reducing gatherings" is one of the core measures in epidemic prevention and control, and it can be controlled through scientific scheduling in specific environments. Therefore, the scientific prevention and control goal can be achieved by considering the reduction of the risk of excessive gathering of people during the course schedule arrangement. Firstly, we address the issue of personnel gathering in various pathways on campus, with the goal of minimizing congestion and maximizing teaching effectiveness, establishing a nonlinear mathematical model. Next, we design an improved genetic algorithm, incorporating real-time evacuation operations based on tracking search and multidimensional positive gradient cross-mutation operations, considering the characteristics of outdoor crowd evacuation. Finally, we apply undergraduate course data from a university in Harbin to conduct a case study. It compares and analyzes the effects of algorithm improvement and optimization of gathering situations and explores the impact of path blocking on the degree of gathering of individuals on other pathways.

Keywords: the university timetabling problem, risk prevention, genetic algorithm, risk control

Procedia PDF Downloads 88
4428 Applications of AFM in 4D to Optimize the Design of Genetic Nanoparticles

Authors: Hosam Abdelhady

Abstract:

Filming the behaviors of individual DNA molecules in their environment when they interact with individual medicinal nano-polymers in a molecular scale has opened the door to understand the effect of the molecular shape, size, and incubation time with nanocarriers on optimizing the design of robust genetic Nano molecules able to resist the enzymatic degradation, enter the cell, reach to the nucleus and kill individual cancer cells in their environment. To this end, we will show how we applied the 4D AFM as a guide to finetune the design of genetic nanoparticles and to film the effects of these nanoparticles on the nanomechanical and morphological profiles of individual cancer cells.

Keywords: AFM, dendrimers, nanoparticles, DNA, gene therapy, imaging

Procedia PDF Downloads 72
4427 Nurse’s Role in Early Detection of Breast Cancer through Mammography and Genetic Screening and Its Impact on Patient's Outcome

Authors: Salwa Hagag Abdelaziz, Dorria Salem, Hoda Zaki, Suzan Atteya

Abstract:

Early detection of breast cancer saves many thousands of lives each year via application of mammography and genetic screening and many more lives could be saved if nurses are involved in breast care screening practices. So, the aim of the study was to identify nurse's role in early detection of breast cancer through mammography and genetic screening and its impact on patient's outcome. In order to achieve this aim, 400 women above 40 years, asymptomatic were recruited for mammography and genetic screening. In addition, 50 nurses and 6 technologists were involved in the study. A descriptive analytical design was used. Five tools were utilized: sociodemographic, mammographic examination and risk factors, women's before, during and after mammography, items relaying to technologists, and items related to nurses were also obtained. The study finding revealed that 3% of women detected for malignancy and 7.25% for fibroadenoma. Statistically, significant differences were found between mammography results and age, family history, genetic screening, exposure to smoke, and using contraceptive pills. Nurses have insufficient knowledge about screening tests. Based on these findings the present study recommended involvement of nurses in breast care which is very important to in force population about screening practices.

Keywords: mammography, early detection, genetic screening, breast cancer

Procedia PDF Downloads 561
4426 Computational Analyses of Persian Walnut Genetic Data: Notes on Genetic Diversity and Cultivar Phylogeny

Authors: Masoud Sheidaei, Melica Tabasi, Fahimeh Koohdar, Mona Sheidaei

Abstract:

Juglans regia L. is an economically important species of edible nuts. Iran is known as a center of origin of genetically rich walnut germplasm and expected to be found a large diversity within Iranian walnut populations. A detailed population genetic of local populations is useful for developing an optimal strategy for in situ conservation and can assist the breeders in crop improvement programs. Different phylogenetic studies have been carried out in this genus, but none has been concerned with genetic changes associated with geographical divergence and the identification of adaptive SNPs. Therefore, we carried out the present study to identify discriminating ITS nucleotides among Juglans species and also reveal association between ITS SNPs and geographical variables. We used different computations approaches like DAPC, CCA, and RDA analyses for the above-mentioned tasks. We also performed population genetics analyses for population effective size changes associated with the species expansion. The results obtained suggest that latitudinal distribution has a more profound effect on the species genetic changes. Similarly, multiple analytical approaches utilized for the identification of both discriminating DNA nucleotides/ SNPs almost produced congruent results. The SNPs with different phylogenetic importance were also identified by using a parsimony approach.

Keywords: Persian walnut, adaptive SNPs, data analyses, genetic diversity

Procedia PDF Downloads 125
4425 A Weighted Sum Particle Swarm Approach (WPSO) Combined with a Novel Feasibility-Based Ranking Strategy for Constrained Multi-Objective Optimization of Compact Heat Exchangers

Authors: Milad Yousefi, Moslem Yousefi, Ricarpo Poley, Amer Nordin Darus

Abstract:

Design optimization of heat exchangers is a very complicated task that has been traditionally carried out based on a trial-and-error procedure. To overcome the difficulties of the conventional design approaches especially when a large number of variables, constraints and objectives are involved, a new method based on a well-stablished evolutionary algorithm, particle swarm optimization (PSO), weighted sum approach and a novel constraint handling strategy is presented in this study. Since, the conventional constraint handling strategies are not effective and easy-to-implement in multi-objective algorithms, a novel feasibility-based ranking strategy is introduced which is both extremely user-friendly and effective. A case study from industry has been investigated to illustrate the performance of the presented approach. The results show that the proposed algorithm can find the near pareto-optimal with higher accuracy when it is compared to conventional non-dominated sorting genetic algorithm II (NSGA-II). Moreover, the difficulties of a trial-and-error process for setting the penalty parameters is solved in this algorithm.

Keywords: Heat exchanger, Multi-objective optimization, Particle swarm optimization, NSGA-II Constraints handling.

Procedia PDF Downloads 554
4424 Genetic-Environment Influences on the Cognitive Abilities of 6-to-8 Years Old Twins

Authors: Annu Panghal, Bimla Dhanda

Abstract:

This research paper aims to determine the genetic-environment influences on the cognitive abilities of twins. Using the 100 pairs of twins from two districts, namely: Bhiwani (N = 90) and Hisar (N = 110) of Haryana State, genetic and environmental influences were assessed in twin study design. The cognitive abilities of twins were measured using the Wechsler Intelligence Scale for Children (WISC-R). Home Observation for Measurement of the Environment (HOME) Inventory was taken to examine the home environment of twins. Heritability estimate was used to analyze the genes contributing to shape the cognitive abilities of twins. The heritability estimates for cognitive abilities of 6-7 years old twins in Hisar district were 74% and in Bhiwani District 76%. Further the heritability estimates were 64% in the twins of Hisar district and 60 in Bhiwani district % in the age group of 7-8 years. The remaining variations in the cognitive abilities of twins were due to environmental factors namely: provision for Active Stimulation, paternal involvement, safe physical environment. The findings provide robust evidence that the cognitive abilities were more influenced by genes than the environmental factors and also revealed that the influence of genetic was more in the age group 6-7 years than the age group 7-8 years. The conclusion of the heritability estimates indicates that the genetic influence was more in the age group of 6-7 years than the age group of 7-8 years. As the age increases the genetic influence decreases and environment influence increases. Mother education was strongly associated with the cognitive abilities of twins.

Keywords: genetics, heritability, twins, environment, cognitive abilities

Procedia PDF Downloads 137
4423 Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid

Authors: Roshanak Khodabakhsh Jolfaei, Javad Akbari Torkestani

Abstract:

As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm.

Keywords: computational grid, job scheduling, learning automata, dynamic scheduling

Procedia PDF Downloads 342
4422 Arabic Lexicon Learning to Analyze Sentiment in Microblogs

Authors: Mahmoud B. Rokaya

Abstract:

The study of opinion mining and sentiment analysis includes analysis of opinions, sentiments, evaluations, attitudes, and emotions. The rapid growth of social media, social networks, reviews, forum discussions, microblogs, and Twitter, leads to a parallel growth in the field of sentiment analysis. The field of sentiment analysis tries to develop effective tools to make it possible to capture the trends of people. There are two approaches in the field, lexicon-based and corpus-based methods. A lexicon-based method uses a sentiment lexicon which includes sentiment words and phrases with assigned numeric scores. These scores reveal if sentiment phrases are positive or negative, their intensity, and/or their emotional orientations. Creation of manual lexicons is hard. This brings the need for adaptive automated methods for generating a lexicon. The proposed method generates dynamic lexicons based on the corpus and then classifies text using these lexicons. In the proposed method, different approaches are combined to generate lexicons from text. The proposed method classifies the tweets into 5 classes instead of +ve or –ve classes. The sentiment classification problem is written as an optimization problem, finding optimum sentiment lexicons are the goal of the optimization process. The solution was produced based on mathematical programming approaches to find the best lexicon to classify texts. A genetic algorithm was written to find the optimal lexicon. Then, extraction of a meta-level feature was done based on the optimal lexicon. The experiments were conducted on several datasets. Results, in terms of accuracy, recall and F measure, outperformed the state-of-the-art methods proposed in the literature in some of the datasets. A better understanding of the Arabic language and culture of Arab Twitter users and sentiment orientation of words in different contexts can be achieved based on the sentiment lexicons proposed by the algorithm.

Keywords: social media, Twitter sentiment, sentiment analysis, lexicon, genetic algorithm, evolutionary computation

Procedia PDF Downloads 188