Search results for: mathematical equations.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3334

Search results for: mathematical equations.

184 Developing A Third Degree Of Freedom For Opinion Dynamics Models Using Scales

Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle

Abstract:

Opinion dynamics models use an agent-based modeling approach to model people’s opinions. Model's properties are usually explored by testing the two 'degrees of freedom': the interaction rule and the network topology. The latter defines the connection, and thus the possible interaction, among agents. The interaction rule, instead, determines how agents select each other and update their own opinion. Here we show the existence of the third degree of freedom. This can be used for turning one model into each other or to change the model’s output up to 100% of its initial value. Opinion dynamics models represent the evolution of real-world opinions parsimoniously. Thus, it is fundamental to know how real-world opinion (e.g., supporting a candidate) could be turned into a number. Specifically, we want to know if, by choosing a different opinion-to-number transformation, the model’s dynamics would be preserved. This transformation is typically not addressed in opinion dynamics literature. However, it has already been studied in psychometrics, a branch of psychology. In this field, real-world opinions are converted into numbers using abstract objects called 'scales.' These scales can be converted one into the other, in the same way as we convert meters to feet. Thus, in our work, we analyze how this scale transformation may affect opinion dynamics models. We perform our analysis both using mathematical modeling and validating it via agent-based simulations. To distinguish between scale transformation and measurement error, we first analyze the case of perfect scales (i.e., no error or noise). Here we show that a scale transformation may change the model’s dynamics up to a qualitative level. Meaning that a researcher may reach a totally different conclusion, even using the same dataset just by slightly changing the way data are pre-processed. Indeed, we quantify that this effect may alter the model’s output by 100%. By using two models from the standard literature, we show that a scale transformation can transform one model into the other. This transformation is exact, and it holds for every result. Lastly, we also test the case of using real-world data (i.e., finite precision). We perform this test using a 7-points Likert scale, showing how even a small scale change may result in different predictions or a number of opinion clusters. Because of this, we think that scale transformation should be considered as a third-degree of freedom for opinion dynamics. Indeed, its properties have a strong impact both on theoretical models and for their application to real-world data.

Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics

Procedia PDF Downloads 155
183 Consumers and Voters’ Choice: Two Different Contexts with a Powerful Behavioural Parallel

Authors: Valentina Dolmova

Abstract:

What consumers choose to buy and who voters select on election days are two questions that have captivated the interest of both academics and practitioners for many decades. The importance of understanding what influences the behavior of those groups and whether or not we can predict or control it fuels a steady stream of research in a range of fields. By looking only at the past 40 years, more than 70 thousand scientific papers have been published in each field – consumer behavior and political psychology, respectively. From marketing, economics, and the science of persuasion to political and cognitive psychology - we have all remained heavily engaged. The ever-evolving technology, inevitable socio-cultural shifts, global economic conditions, and much more play an important role in choice-equations regardless of context. On one hand, this makes the research efforts always relevant and needed. On the other, the relatively low number of cross-field collaborations, which seem to be picking up only in more in recent years, makes the existing findings isolated into framed bubbles. By performing systematic research across both areas of psychology and building a parallel between theories and factors of influence, however, we find that there is not only a definitive common ground between the behaviors of consumers and voters but that we are moving towards a global model of choice. This means that the lines between contexts are fading which has a direct implication on what we should focus on when predicting or navigating buyers and voters’ behavior. Internal and external factors in four main categories determine the choices we make as consumers and as voters. Together, personal, psychological, social, and cultural create a holistic framework through which all stimuli in relation to a particular product or a political party get filtered. The analogy “consumer-voter” solidifies further. Leading academics suggest that this fundamental parallel is the key to managing successfully political and consumer brands alike. However, we distinguish additional four key stimuli that relate to those factor categories (1/ opportunity costs; 2/the memory of the past; 3/recognisable figures/faces and 4/conflict) arguing that the level of expertise a person has determines the prevalence of factors or specific stimuli. Our efforts take into account global trends such as the establishment of “celebrity politics” and the image of “ethically concerned consumer brands” which bridge the gap between contexts to an even greater extent. Scientists and practitioners are pushed to accept the transformative nature of both fields in social psychology. Existing blind spots as well as the limited number of research conducted outside the American and European societies open up space for more collaborative efforts in this highly demanding and lucrative field. A mixed method of research tests three main hypotheses, the first two of which are focused on the level of irrelevance of context when comparing voting or consumer behavior – both from the factors and stimuli lenses, the third on determining whether or not the level of expertise in any field skews the weight of what prism we are more likely to choose when evaluating options.

Keywords: buyers’ behaviour, decision-making, voters’ behaviour, social psychology

Procedia PDF Downloads 154
182 Numerical Analysis of CO₂ Storage as Clathrates in Depleted Natural Gas Hydrate Formation

Authors: Sheraz Ahmad, Li Yiming, Li XiangFang, Xia Wei, Zeen Chen

Abstract:

Holding CO₂ at massive scale in the enclathrated solid matter called hydrate can be perceived as one of the most reliable methods for CO₂ sequestration to take greenhouse gases emission control measures and global warming preventive actions. In this study, a dynamically coupled mass and heat transfer mathematical model is developed which elaborates the unsteady behavior of CO₂ flowing into a porous medium and converting itself into hydrates. The combined numerical model solution by implicit finite difference method is explained and through coupling the mass, momentum and heat conservation relations, an integrated model can be established to analyze the CO₂ hydrate growth within P-T equilibrium conditions. CO₂ phase transition, effect of hydrate nucleation by exothermic heat release and variations of thermo-physical properties has been studied during hydrate nucleation. The results illustrate that formation pressure distribution becomes stable at the early stage of hydrate nucleation process and always remains stable afterward, but formation temperature is unable to keep stable and varies during CO₂ injection and hydrate nucleation process. Initially, the temperature drops due to cold high-pressure CO₂ injection since when the massive hydrate growth triggers and temperature increases under the influence of exothermic heat evolution. Intermittently, it surpasses the initial formation temperature before CO₂ injection initiates. The hydrate growth rate increases by increasing injection pressure in the long formation and it also expands overall hydrate covered length in the same induction period. The results also show that the injection pressure conditions and hydrate growth rate affect other parameters like CO₂ velocity, CO₂ permeability, CO₂ density, CO₂ and H₂O saturation inside the porous medium. In order to enhance the hydrate growth rate and expand hydrate covered length, the injection temperature is reduced, but it did not give satisfactory outcomes. Hence, CO₂ injection in vacated natural gas hydrate porous sediment may form hydrate under low temperature and high-pressure conditions, but it seems very challenging on a huge scale in lengthy formations.

Keywords: CO₂ hydrates, CO₂ injection, CO₂ Phase transition, CO₂ sequestration

Procedia PDF Downloads 135
181 Drone Swarm Routing and Scheduling for Off-shore Wind Turbine Blades Inspection

Authors: Mohanad Al-Behadili, Xiang Song, Djamila Ouelhadj, Alex Fraess-Ehrfeld

Abstract:

In off-shore wind farms, turbine blade inspection accessibility under various sea states is very challenging and greatly affects the downtime of wind turbines. Maintenance of any offshore system is not an easy task due to the restricted logistics and accessibility. The multirotor unmanned helicopter is of increasing interest in inspection applications due to its manoeuvrability and payload capacity. These advantages increase when many of them are deployed simultaneously in a swarm. Hence this paper proposes a drone swarm framework for inspecting offshore wind turbine blades and nacelles so as to reduce downtime. One of the big challenges of this task is that when operating a drone swarm, an individual drone may not have enough power to fly and communicate during missions and it has no capability of refueling due to its small size. Once the drone power is drained, there are no signals transmitted and the links become intermittent. Vessels equipped with 5G masts and small power units are utilised as platforms for drones to recharge/swap batteries. The research work aims at designing a smart energy management system, which provides automated vessel and drone routing and recharging plans. To achieve this goal, a novel mathematical optimisation model is developed with the main objective of minimising the number of drones and vessels, which carry the charging stations, and the downtime of the wind turbines. There are a number of constraints to be considered, such as each wind turbine must be inspected once and only once by one drone; each drone can inspect at most one wind turbine after recharging, then fly back to the charging station; collision should be avoided during the drone flying; all wind turbines in the wind farm should be inspected within the given time window. We have developed a real-time Ant Colony Optimisation (ACO) algorithm to generate real-time and near-optimal solutions to the drone swarm routing problem. The schedule will generate efficient and real-time solutions to indicate the inspection tasks, time windows, and the optimal routes of the drones to access the turbines. Experiments are conducted to evaluate the quality of the solutions generated by ACO.

Keywords: drone swarm, routing, scheduling, optimisation model, ant colony optimisation

Procedia PDF Downloads 264
180 Potential of High Performance Ring Spinning Based on Superconducting Magnetic Bearing

Authors: M. Hossain, A. Abdkader, C. Cherif, A. Berger, M. Sparing, R. Hühne, L. Schultz, K. Nielsch

Abstract:

Due to the best quality of yarn and the flexibility of the machine, the ring spinning process is the most widely used spinning method for short staple yarn production. However, the productivity of these machines is still much lower in comparison to other spinning systems such as rotor or air-jet spinning process. The main reason for this limitation lies on the twisting mechanism of the ring spinning process. In the ring/traveler twisting system, each rotation of the traveler along with the ring inserts twist in the yarn. The rotation of the traveler at higher speed includes strong frictional forces, which in turn generates heat. Different ring/traveler systems concerning with its geometries, material combinations and coatings have already been implemented to solve the frictional problem. However, such developments can neither completely solve the frictional problem nor increase the productivity. The friction free superconducting magnetic bearing (SMB) system can be a right alternative replacing the existing ring/traveler system. The unique concept of SMB bearings is that they possess a self-stabilizing behavior, i.e. they remain fully passive without any necessity for expensive position sensing and control. Within the framework of a research project funded by German research foundation (DFG), suitable concepts of the SMB-system have been designed, developed, and integrated as a twisting device of ring spinning replacing the existing ring/traveler system. With the help of the developed mathematical model and experimental investigation, the physical limitations of this innovative twisting device in the spinning process have been determined. The interaction among the parameters of the spinning process and the superconducting twisting element has been further evaluated, which derives the concrete information regarding the new spinning process. Moreover, the influence of the implemented SMB twisting system on the yarn quality has been analyzed with respect to different process parameters. The presented work reveals the enormous potential of the innovative twisting mechanism, so that the productivity of the ring spinning process especially in case of thermoplastic materials can be at least doubled for the first time in a hundred years. The SMB ring spinning tester has also been presented in the international fair “International Textile Machinery Association (ITMA) 2015”.

Keywords: ring spinning, superconducting magnetic bearing, yarn properties, productivity

Procedia PDF Downloads 237
179 Adsorptive Media Selection for Bilirubin Removal: An Adsorption Equilibrium Study

Authors: Vincenzo Piemonte

Abstract:

The liver is a complex, large-scale biochemical reactor which plays a unique role in the human physiology. When liver ceases to perform its physiological activity, a functional replacement is required. Actually, liver transplantation is the only clinically effective method of treating severe liver disease. Anyway, the aforementioned therapeutic approach is hampered by the disparity between organ availability and the number of patients on the waiting list. In order to overcome this critical issue, research activities focused on liver support device systems (LSDs) designed to bridging patients to transplantation or to keep them alive until the recovery of native liver function. In recirculating albumin dialysis devices, such as MARS (Molecular Adsorbed Recirculating System), adsorption is one of the fundamental steps in albumin-dialysate regeneration. Among the albumin-bound toxins that must be removed from blood during liver-failure therapy, bilirubin and tryptophan can be considered as representative of two different toxin classes. The first one, not water soluble at physiological blood pH and strongly bounded to albumin, the second one, loosely albumin bound and partially water soluble at pH 7.4. Fixed bed units are normally used for this task, and the design of such units requires information both on toxin adsorption equilibrium and kinetics. The most common adsorptive media used in LSDs are activated carbon, non-ionic polymeric resins and anionic resins. In this paper, bilirubin adsorption isotherms on different adsorptive media, such as polymeric resin, albumin-coated resin, anionic resin, activated carbon and alginate beads with entrapped albumin are presented. By comparing all the results, it can be stated that the adsorption capacity for bilirubin of the five different media increases in the following order: Alginate beads < Polymeric resin < Albumin-coated resin < Activated carbon < Anionic resin. The main focus of this paper is to provide useful guidelines for the optimization of liver support devices which implement adsorption columns to remove albumin-bound toxins from albumin dialysate solutions.

Keywords: adsorptive media, adsorption equilibrium, artificial liver devices, bilirubin, mathematical modelling

Procedia PDF Downloads 256
178 Development and Validation of First Derivative Method and Artificial Neural Network for Simultaneous Spectrophotometric Determination of Two Closely Related Antioxidant Nutraceuticals in Their Binary Mixture”

Authors: Mohamed Korany, Azza Gazy, Essam Khamis, Marwa Adel, Miranda Fawzy

Abstract:

Background: Two new, simple and specific methods; First, a Zero-crossing first-derivative technique and second, a chemometric-assisted spectrophotometric artificial neural network (ANN) were developed and validated in accordance with ICH guidelines. Both methods were used for the simultaneous estimation of the two closely related antioxidant nutraceuticals ; Coenzyme Q10 (Q) ; also known as Ubidecarenone or Ubiquinone-10, and Vitamin E (E); alpha-tocopherol acetate, in their pharmaceutical binary mixture. Results: For first method: By applying the first derivative, both Q and E were alternatively determined; each at the zero-crossing of the other. The D1 amplitudes of Q and E, at 285 nm and 235 nm respectively, were recorded and correlated to their concentrations. The calibration curve is linear over the concentration range of 10-60 and 5.6-70 μg mL-1 for Q and E, respectively. For second method: ANN (as a multivariate calibration method) was developed and applied for the simultaneous determination of both analytes. A training set (or a concentration set) of 90 different synthetic mixtures containing Q and E, in wide concentration ranges between 0-100 µg/mL and 0-556 µg/mL respectively, were prepared in ethanol. The absorption spectra of the training sets were recorded in the spectral region of 230–300 nm. A Gradient Descend Back Propagation ANN chemometric calibration was computed by relating the concentration sets (x-block) to their corresponding absorption data (y-block). Another set of 45 synthetic mixtures of the two drugs, in defined range, was used to validate the proposed network. Neither chemical separation, preparation stage nor mathematical graphical treatment were required. Conclusions: The proposed methods were successfully applied for the assay of Q and E in laboratory prepared mixtures and combined pharmaceutical tablet with excellent recoveries. The ANN method was superior over the derivative technique as the former determined both drugs in the non-linear experimental conditions. It also offers rapidity, high accuracy, effort and money saving. Moreover, no need for an analyst for its application. Although the ANN technique needed a large training set, it is the method of choice in the routine analysis of Q and E tablet. No interference was observed from common pharmaceutical additives. The results of the two methods were compared together

Keywords: coenzyme Q10, vitamin E, chemometry, quantitative analysis, first derivative spectrophotometry, artificial neural network

Procedia PDF Downloads 446
177 Application of Discrete-Event Simulation in Health Technology Assessment: A Cost-Effectiveness Analysis of Alzheimer’s Disease Treatment Using Real-World Evidence in Thailand

Authors: Khachen Kongpakwattana, Nathorn Chaiyakunapruk

Abstract:

Background: Decision-analytic models for Alzheimer’s disease (AD) have been advanced to discrete-event simulation (DES), in which individual-level modelling of disease progression across continuous severity spectra and incorporation of key parameters such as treatment persistence into the model become feasible. This study aimed to apply the DES to perform a cost-effectiveness analysis of treatment for AD in Thailand. Methods: A dataset of Thai patients with AD, representing unique demographic and clinical characteristics, was bootstrapped to generate a baseline cohort of patients. Each patient was cloned and assigned to donepezil, galantamine, rivastigmine, memantine or no treatment. Throughout the simulation period, the model randomly assigned each patient to discrete events including hospital visits, treatment discontinuation and death. Correlated changes in cognitive and behavioral status over time were developed using patient-level data. Treatment effects were obtained from the most recent network meta-analysis. Treatment persistence, mortality and predictive equations for functional status, costs (Thai baht (THB) in 2017) and quality-adjusted life year (QALY) were derived from country-specific real-world data. The time horizon was 10 years, with a discount rate of 3% per annum. Cost-effectiveness was evaluated based on the willingness-to-pay (WTP) threshold of 160,000 THB/QALY gained (4,994 US$/QALY gained) in Thailand. Results: Under a societal perspective, only was the prescription of donepezil to AD patients with all disease-severity levels found to be cost-effective. Compared to untreated patients, although the patients receiving donepezil incurred a discounted additional costs of 2,161 THB, they experienced a discounted gain in QALY of 0.021, resulting in an incremental cost-effectiveness ratio (ICER) of 138,524 THB/QALY (4,062 US$/QALY). Besides, providing early treatment with donepezil to mild AD patients further reduced the ICER to 61,652 THB/QALY (1,808 US$/QALY). However, the dominance of donepezil appeared to wane when delayed treatment was given to a subgroup of moderate and severe AD patients [ICER: 284,388 THB/QALY (8,340 US$/QALY)]. Introduction of a treatment stopping rule when the Mini-Mental State Exam (MMSE) score goes below 10 to a mild AD cohort did not deteriorate the cost-effectiveness of donepezil at the current treatment persistence level. On the other hand, none of the AD medications was cost-effective when being considered under a healthcare perspective. Conclusions: The DES greatly enhances real-world representativeness of decision-analytic models for AD. Under a societal perspective, treatment with donepezil improves patient’s quality of life and is considered cost-effective when used to treat AD patients with all disease-severity levels in Thailand. The optimal treatment benefits are observed when donepezil is prescribed since the early course of AD. With healthcare budget constraints in Thailand, the implementation of donepezil coverage may be most likely possible when being considered starting with mild AD patients, along with the stopping rule introduced.

Keywords: Alzheimer's disease, cost-effectiveness analysis, discrete event simulation, health technology assessment

Procedia PDF Downloads 129
176 Mathematical Study of CO₂ Dispersion in Carbonated Water Injection Enhanced Oil Recovery Using Non-Equilibrium 2D Simulator

Authors: Ahmed Abdulrahman, Jalal Foroozesh

Abstract:

CO₂ based enhanced oil recovery (EOR) techniques have gained massive attention from major oil firms since they resolve the industry's two main concerns of CO₂ contribution to the greenhouse effect and the declined oil production. Carbonated water injection (CWI) is a promising EOR technique that promotes safe and economic CO₂ storage; moreover, it mitigates the pitfalls of CO₂ injection, which include low sweep efficiency, early CO₂ breakthrough, and the risk of CO₂ leakage in fractured formations. One of the main challenges that hinder the wide adoption of this EOR technique is the complexity of accurate modeling of the kinetics of CO₂ mass transfer. The mechanisms of CO₂ mass transfer during CWI include the slow and gradual cross-phase CO₂ diffusion from carbonated water (CW) to the oil phase and the CO₂ dispersion (within phase diffusion and mechanical mixing), which affects the oil physical properties and the spatial spreading of CO₂ inside the reservoir. A 2D non-equilibrium compositional simulator has been developed using a fully implicit finite difference approximation. The material balance term (k) was added to the governing equation to account for the slow cross-phase diffusion of CO₂ from CW to the oil within the gird cell. Also, longitudinal and transverse dispersion coefficients have been added to account for CO₂ spatial distribution inside the oil phase. The CO₂-oil diffusion coefficient was calculated using the Sigmund correlation, while a scale-dependent dispersivity was used to calculate CO₂ mechanical mixing. It was found that the CO₂-oil diffusion mechanism has a minor impact on oil recovery, but it tends to increase the amount of CO₂ stored inside the formation and slightly alters the residual oil properties. On the other hand, the mechanical mixing mechanism has a huge impact on CO₂ spatial spreading (accurate prediction of CO₂ production) and the noticeable change in oil physical properties tends to increase the recovery factor. A sensitivity analysis has been done to investigate the effect of formation heterogeneity (porosity, permeability) and injection rate, it was found that the formation heterogeneity tends to increase CO₂ dispersion coefficients, and a low injection rate should be implemented during CWI.

Keywords: CO₂ mass transfer, carbonated water injection, CO₂ dispersion, CO₂ diffusion, cross phase CO₂ diffusion, within phase CO2 diffusion, CO₂ mechanical mixing, non-equilibrium simulation

Procedia PDF Downloads 176
175 Cost Overruns in Mega Projects: Project Progress Prediction with Probabilistic Methods

Authors: Yasaman Ashrafi, Stephen Kajewski, Annastiina Silvennoinen, Madhav Nepal

Abstract:

Mega projects either in construction, urban development or energy sectors are one of the key drivers that build the foundation of wealth and modern civilizations in regions and nations. Such projects require economic justification and substantial capital investment, often derived from individual and corporate investors as well as governments. Cost overruns and time delays in these mega projects demands a new approach to more accurately predict project costs and establish realistic financial plans. The significance of this paper is that the cost efficiency of megaprojects will improve and decrease cost overruns. This research will assist Project Managers (PMs) to make timely and appropriate decisions about both cost and outcomes of ongoing projects. This research, therefore, examines the oil and gas industry where most mega projects apply the classic methods of Cost Performance Index (CPI) and Schedule Performance Index (SPI) and rely on project data to forecast cost and time. Because these projects are always overrun in cost and time even at the early phase of the project, the probabilistic methods of Monte Carlo Simulation (MCS) and Bayesian Adaptive Forecasting method were used to predict project cost at completion of projects. The current theoretical and mathematical models which forecast the total expected cost and project completion date, during the execution phase of an ongoing project will be evaluated. Earned Value Management (EVM) method is unable to predict cost at completion of a project accurately due to the lack of enough detailed project information especially in the early phase of the project. During the project execution phase, the Bayesian adaptive forecasting method incorporates predictions into the actual performance data from earned value management and revises pre-project cost estimates, making full use of the available information. The outcome of this research is to improve the accuracy of both cost prediction and final duration. This research will provide a warning method to identify when current project performance deviates from planned performance and crates an unacceptable gap between preliminary planning and actual performance. This warning method will support project managers to take corrective actions on time.

Keywords: cost forecasting, earned value management, project control, project management, risk analysis, simulation

Procedia PDF Downloads 403
174 Reduced General Dispersion Model in Cylindrical Coordinates and Isotope Transient Kinetic Analysis in Laminar Flow

Authors: Masood Otarod, Ronald M. Supkowski

Abstract:

This abstract discusses a method that reduces the general dispersion model in cylindrical coordinates to a second order linear ordinary differential equation with constant coefficients so that it can be utilized to conduct kinetic studies in packed bed tubular catalytic reactors at a broad range of Reynolds numbers. The model was tested by 13CO isotope transient tracing of the CO adsorption of Boudouard reaction in a differential reactor at an average Reynolds number of 0.2 over Pd-Al2O3 catalyst. Detailed experimental results have provided evidence for the validity of the theoretical framing of the model and the estimated parameters are consistent with the literature. The solution of the general dispersion model requires the knowledge of the radial distribution of axial velocity. This is not always known. Hence, up until now, the implementation of the dispersion model has been largely restricted to the plug-flow regime. But, ideal plug-flow is impossible to achieve and flow regimes approximating plug-flow leave much room for debate as to the validity of the results. The reduction of the general dispersion model transpires as a result of the application of a factorization theorem. Factorization theorem is derived from the observation that a cross section of a catalytic bed consists of a solid phase across which the reaction takes place and a void or porous phase across which no significant measure of reaction occurs. The disparity in flow and the heterogeneity of the catalytic bed cause the concentration of reacting compounds to fluctuate radially. These variabilities signify the existence of radial positions at which the radial gradient of concentration is zero. Succinctly, factorization theorem states that a concentration function of axial and radial coordinates in a catalytic bed is factorable as the product of the mean radial cup-mixing function and a contingent dimensionless function. The concentration of adsorbed compounds are also factorable since they are piecewise continuous functions and suffer the same variability but in the reverse order of the concentration of mobile phase compounds. Factorability is a property of packed beds which transforms the general dispersion model to an equation in terms of the measurable mean radial cup-mixing concentration of the mobile phase compounds and mean cross-sectional concentration of adsorbed species. The reduced model does not require the knowledge of the radial distribution of the axial velocity. Instead, it is characterized by new transport parameters so denoted by Ωc, Ωa, Ωc, and which are respectively denominated convection coefficient cofactor, axial dispersion coefficient cofactor, and radial dispersion coefficient cofactor. These cofactors adjust the dispersion equation as compensation for the unavailability of the radial distribution of the axial velocity. Together with the rest of the kinetic parameters they can be determined from experimental data via an optimization procedure. Our data showed that the estimated parameters Ωc, Ωa Ωr, are monotonically correlated with the Reynolds number. This is expected to be the case based on the theoretical construct of the model. Computer generated simulations of methanation reaction on nickel provide additional support for the utility of the newly conceptualized dispersion model.

Keywords: factorization, general dispersion model, isotope transient kinetic, partial differential equations

Procedia PDF Downloads 269
173 Numerical Analysis of the Computational Fluid Dynamics of Co-Digestion in a Large-Scale Continuous Stirred Tank Reactor

Authors: Sylvana A. Vega, Cesar E. Huilinir, Carlos J. Gonzalez

Abstract:

Co-digestion in anaerobic biodigesters is a technology improving hydrolysis by increasing methane generation. In the present study, the dimensional computational fluid dynamics (CFD) is numerically analyzed using Ansys Fluent software for agitation in a full-scale Continuous Stirred Tank Reactor (CSTR) biodigester during the co-digestion process. For this, a rheological study of the substrate is carried out, establishing rotation speeds of the stirrers depending on the microbial activity and energy ranges. The substrate is organic waste from industrial sources of sanitary water, butcher, fishmonger, and dairy. Once the rheological behavior curves have been obtained, it is obtained that it is a non-Newtonian fluid of the pseudoplastic type, with a solids rate of 12%. In the simulation, the rheological results of the fluid are considered, and the full-scale CSTR biodigester is modeled. It was coupling the second-order continuity differential equations, the three-dimensional Navier Stokes, the power-law model for non-Newtonian fluids, and three turbulence models: k-ε RNG, k-ε Realizable, and RMS (Reynolds Stress Model), for a 45° tilt vane impeller. It is simulated for three minutes since it is desired to study an intermittent mixture with a saving benefit of energy consumed. The results show that the absolute errors of the power number associated with the k-ε RNG, k-ε Realizable, and RMS models were 7.62%, 1.85%, and 5.05%, respectively, the numbers of power obtained from the analytical-experimental equation of Nagata. The results of the generalized Reynolds number show that the fluid dynamics have a transition-turbulent flow regime. Concerning the Froude number, the result indicates there is no need to implement baffles in the biodigester design, and the power number provides a steady trend close to 1.5. It is observed that the levels of design speeds within the biodigester are approximately 0.1 m/s, which are speeds suitable for the microbial community, where they can coexist and feed on the substrate in co-digestion. It is concluded that the model that more accurately predicts the behavior of fluid dynamics within the reactor is the k-ε Realizable model. The flow paths obtained are consistent with what is stated in the referenced literature, where the 45° inclination PBT impeller is the right type of agitator to keep particles in suspension and, in turn, increase the dispersion of gas in the liquid phase. If a 24/7 complete mix is considered under stirred agitation, with a plant factor of 80%, 51,840 kWh/year are estimated. On the contrary, if intermittent agitations of 3 min every 15 min are used under the same design conditions, reduce almost 80% of energy costs. It is a feasible solution to predict the energy expenditure of an anaerobic biodigester CSTR. It is recommended to use high mixing intensities, at the beginning and end of the joint phase acetogenesis/methanogenesis. This high intensity of mixing, in the beginning, produces the activation of the bacteria, and once reaching the end of the Hydraulic Retention Time period, it produces another increase in the mixing agitations, favoring the final dispersion of the biogas that may be trapped in the biodigester bottom.

Keywords: anaerobic co-digestion, computational fluid dynamics, CFD, net power, organic waste

Procedia PDF Downloads 114
172 Alphabet Recognition Using Pixel Probability Distribution

Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay

Abstract:

Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.

Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix

Procedia PDF Downloads 389
171 Dynamic Change of Floods Disaster Monitoring for River Central Bar by Remote Sensing Time-Series Images

Authors: Zuoji Huang, Jinyan Sun, Chunlin Wang, Haiming Qian, Nan Xu

Abstract:

The spatial extent and area of central river bars can always vary due to the impact of water level, sediment supply and human activities. In 2016, a catastrophic flood disaster caused by sustained and heavy rainfall happened in the middle and lower Yangtze River. The flood led to the most serious economic and social loss since 1954, and strongly affected the central river bar. It is essential to continuously monitor the dynamics change of central bars because it can avoid frequent field measurements in central bars before and after the flood disaster and is helpful for flood warning. This paper focused on the dynamic change of central bars of Phoenix bar and Changsha bar in the Yangtze River in 2016. In this study, GF-1 (GaoFen-1) WFV(wide field view) data was employed owing to its high temporal frequency and high spatial resolution. A simple NDWI (Normalized Difference Water Index) method was utilized for river central bar mapping. Human-checking was then performed to ensure the mapping quality. The relationship between the area of central bars and the measured water level was estimated using four mathematical models. Furthermore, a risk assessment index was proposed to map the spatial pattern of inundation risk of central bars. The results indicate a good ability of the GF-1 WFV imagery with a 16-m spatial resolution to characterize the seasonal variation of central river bars and to capture the impact of a flood disaster on the area of central bars. This paper observed a significant negative but nonlinear relationship between the water level and the area of central bars, and found that the cubic function fits best among four models (R² = 0.9839, P < 0.000001, RMSE = 0.4395). The maximum of the inundated area of central bars appeared during the rainy season on July 8, 2016, and the minimum occurred during the dry season on December 28, 2016, which are consistent with the water level measured by the hydrological station. The results derived from GF-1 data could provide a useful reference for decision-making of real-time disaster early warning and post-disaster reconstruction.

Keywords: central bars, dynamic change, water level, the Yangtze river

Procedia PDF Downloads 242
170 A Four-Step Ortho-Rectification Procedure for Geo-Referencing Video Streams from a Low-Cost UAV

Authors: B. O. Olawale, C. R. Chatwin, R. C. D. Young, P. M. Birch, F. O. Faithpraise, A. O. Olukiran

Abstract:

Ortho-rectification is the process of geometrically correcting an aerial image such that the scale is uniform. The ortho-image formed from the process is corrected for lens distortion, topographic relief, and camera tilt. This can be used to measure true distances, because it is an accurate representation of the Earth’s surface. Ortho-rectification and geo-referencing are essential to pin point the exact location of targets in video imagery acquired at the UAV platform. This can only be achieved by comparing such video imagery with an existing digital map. However, it is only when the image is ortho-rectified with the same co-ordinate system as an existing map that such a comparison is possible. The video image sequences from the UAV platform must be geo-registered, that is, each video frame must carry the necessary camera information before performing the ortho-rectification process. Each rectified image frame can then be mosaicked together to form a seamless image map covering the selected area. This can then be used for comparison with an existing map for geo-referencing. In this paper, we present a four-step ortho-rectification procedure for real-time geo-referencing of video data from a low-cost UAV equipped with multi-sensor system. The basic procedures for the real-time ortho-rectification are: (1) Decompilation of video stream into individual frames; (2) Finding of interior camera orientation parameters; (3) Finding the relative exterior orientation parameters for each video frames with respect to each other; (4) Finding the absolute exterior orientation parameters, using self-calibration adjustment with the aid of a mathematical model. Each ortho-rectified video frame is then mosaicked together to produce a 2-D planimetric mapping, which can be compared with a well referenced existing digital map for the purpose of georeferencing and aerial surveillance. A test field located in Abuja, Nigeria was used for testing our method. Fifteen minutes video and telemetry data were collected using the UAV and the data collected were processed using the four-step ortho-rectification procedure. The results demonstrated that the geometric measurement of the control field from ortho-images are more reliable than those from original perspective photographs when used to pin point the exact location of targets on the video imagery acquired by the UAV. The 2-D planimetric accuracy when compared with the 6 control points measured by a GPS receiver is between 3 to 5 meters.

Keywords: geo-referencing, ortho-rectification, video frame, self-calibration

Procedia PDF Downloads 478
169 Behavioral Analysis of Stock Using Selective Indicators from Fundamental and Technical Analysis

Authors: Vish Putcha, Chandrasekhar Putcha, Siva Hari

Abstract:

In the current digital era of free trading and pandemic-driven remote work culture, markets worldwide gained momentum for retail investors to trade from anywhere easily. The number of retail traders rose to 24% of the market from 15% at the pre-pandemic level. Most of them are young retail traders with high-risk tolerance compared to the previous generation of retail traders. This trend boosted the growth of subscription-based market predictors and market data vendors. Young traders are betting on these predictors, assuming one of them is correct. However, 90% of retail traders are on the losing end. This paper presents multiple indicators and attempts to derive behavioral patterns from the underlying stocks. The two major indicators that traders and investors follow are technical and fundamental. The famous investor, Warren Buffett, adheres to the “Value Investing” method that is based on a stock’s fundamental Analysis. In this paper, we present multiple indicators from various methods to understand the behavior patterns of stocks. For this research, we picked five stocks with a market capitalization of more than $200M, listed on the exchange for more than 20 years, and from different industry sectors. To study the behavioral pattern over time for these five stocks, a total of 8 indicators are chosen from fundamental, technical, and financial indicators, such as Price to Earning (P/E), Price to Book Value (P/B), Debt to Equity (D/E), Beta, Volatility, Relative Strength Index (RSI), Moving Averages and Dividend yields, followed by detailed mathematical Analysis. This is an interdisciplinary paper between various disciplines of Engineering, Accounting, and Finance. The research takes a new approach to identify clear indicators affecting stocks. Statistical Analysis of the data will be performed in terms of the probabilistic distribution, then follow and then determine the probability of the stock price going over a specific target value. The Chi-square test will be used to determine the validity of the assumed distribution. Preliminary results indicate that this approach is working well. When the complete results are presented in the final paper, they will be beneficial to the community.

Keywords: stock pattern, stock market analysis, stock predictions, trading, investing, fundamental analysis, technical analysis, quantitative trading, financial analysis, behavioral analysis

Procedia PDF Downloads 85
168 Storage Assignment Strategies to Reduce Manual Picking Errors with an Emphasis on an Ageing Workforce

Authors: Heiko Diefenbach, Christoph H. Glock

Abstract:

Order picking, i.e., the order-based retrieval of items in a warehouse, is an important time- and cost-intensive process for many logistic systems. Despite the ongoing trend of automation, most order picking systems are still manual picker-to-parts systems, where human pickers walk through the warehouse to collect ordered items. Human work in warehouses is not free from errors, and order pickers may at times pick the wrong or the incorrect number of items. Errors can cause additional costs and significant correction efforts. Moreover, age might increase a person’s likelihood to make mistakes. Hence, the negative impact of picking errors might increase for an aging workforce currently witnessed in many regions globally. A significant amount of research has focused on making order picking systems more efficient. Among other factors, storage assignment, i.e., the assignment of items to storage locations (e.g., shelves) within the warehouse, has been subject to optimization. Usually, the objective is to assign items to storage locations such that order picking times are minimized. Surprisingly, there is a lack of research concerned with picking errors and respective prevention approaches. This paper hypothesize that the storage assignment of items can affect the probability of pick errors. For example, storing similar-looking items apart from one other might reduce confusion. Moreover, storing items that are hard to count or require a lot of counting at easy-to-access and easy-to-comprehend self heights might reduce the probability to pick the wrong number of items. Based on this hypothesis, the paper discusses how to incorporate error-prevention measures into mathematical models for storage assignment optimization. Various approaches with respective benefits and shortcomings are presented and mathematically modeled. To investigate the newly developed models further, they are compared to conventional storage assignment strategies in a computational study. The study specifically investigates how the importance of error prevention increases with pickers being more prone to errors due to age, for example. The results suggest that considering error-prevention measures for storage assignment can reduce error probabilities with only minor decreases in picking efficiency. The results might be especially relevant for an aging workforce.

Keywords: an aging workforce, error prevention, order picking, storage assignment

Procedia PDF Downloads 204
167 Finite Element Modeling of Global Ti-6Al-4V Mechanical Behavior in Relationship with Microstructural Parameters

Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vedal, Farhad Rezai-Aria, Christine Boher

Abstract:

The global mechanical behavior of materials is strongly linked to their microstructure, especially their crystallographic texture and their grains morphology. These material aspects determine the mechanical fields character (heterogeneous or homogeneous), thus, they give to the global behavior a degree of anisotropy according the initial microstructure. For these reasons, the prediction of global behavior of materials in relationship with the microstructure must be performed with a multi-scale approach. Therefore, multi-scale modeling in the context of crystal plasticity is widely used. In this present contribution, a phenomenological elasto-viscoplastic model developed in the crystal plasticity context and finite element method are used to investigate the effects of crystallographic texture and grains sizes on global behavior of a polycrystalline equiaxed Ti-6Al-4V alloy. The constitutive equations of this model are written on local scale for each slip system within each grain while the strain and stress mechanical fields are investigated at the global scale via finite element scale transition. The beta phase of Ti-6Al-4V alloy modeled is negligible; its percent is less than 10%. Three families of slip systems of alpha phase are considered: basal and prismatic families with a burgers vector and pyramidal family with a burgers vector. The twinning mechanism of plastic strain is not observed in Ti-6Al-4V, therefore, it is not considered in the present modeling. Nine representative elementary volumes (REV) are generated with Voronoi tessellations. For each individual equiaxed grain, the own crystallographic orientation vis-à-vis the loading is taken into account. The meshing strategy is optimized in a way to eliminate the meshing effects and at the same time to allow calculating the individual grain size. The stress and strain fields are determined in each Gauss point of the mesh element. A post-treatment is used to calculate the local behavior (in each grain) and then by appropriate homogenization, the macroscopic behavior is calculated. The developed model is validated by comparing the numerical simulation results with an experimental data reported in the literature. It is observed that the present model is able to predict the global mechanical behavior of Ti-6Al-4V alloy and investigate the microstructural parameters' effects. According to the simulations performed on the generated volumes (REV), the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior. The average grains size influences also the Ti-6Al-4V mechanical proprieties, especially the yield stress; by decreasing of the average grains size, the yield strength increases according to Hall-Petch relationship. The grains sizes' distribution gives to the strain fields considerable heterogeneity. By increasing grain sizes, the scattering in the localization of plastic strain is observed, thus, in certain areas the stress concentrations are stronger than other regions.

Keywords: microstructural parameters, multi-scale modeling, crystal plasticity, Ti-6Al-4V alloy

Procedia PDF Downloads 126
166 Correlation Analysis of Reactivity in the Oxidation of Para and Meta-Substituted Benzyl Alcohols by Benzimidazolium Dichromate in Non-Aqueous Media: A Kinetic and Mechanistic Aspects

Authors: Seema Kothari, Dinesh Panday

Abstract:

An observed correlation of the reaction rates with the changes in the nature of substituent present on one of the reactants often reveals the nature of transition state. Selective oxidation of organic compounds under non-aqueous media is an important transformation in synthetic organic chemistry. Inorganic chromates and dichromates being drastic oxidant and are generally insoluble in most organic solvents, a number of different chromium (VI) derivatives have been synthesized. Benzimidazolium dichromate (BIDC) is one of the recently reported Cr(VI) reagents which is neither hygroscopic nor light sensitive being, therefore, much stable. Not many reports on the kinetics of the oxidations by BIDC are seemed to be available in the literature. In the present investigation, the kinetics and mechanism of benzyl alcohol (BA) and a number of para- and meta-substituted benzyl alcohols by benzimidazolium dichromate (BIDC), in dimethyl sulphoxide, is reported. The reactions were followed spectrophotometrically at 364 nm by monitoring the decrease in [BIDC] for up to 85-90% reaction, the temperature being constant. The observed oxidation product is the corresponding benzaldehyde. The reactions were of first order with respect to each the alcohol and BIDC. The reactions are catalyzed by proton, and the dependence is of the form: kobs = a + b[H+]. The reactions thus follow both, an acid-dependent and acid-independent paths. The oxidation of [1,1 2H2]benzyl alcohol exhibited the presence of a substantial kinetic isotope effect ( kH/kD = 6.20 at 298 K ). This indicated the cleavage of a α-C-H bond in the rate-determining step. An analysis of the temperature dependence of the deuterium isotope effect showed that the loss of hydrogen proceeds through a concerted cyclic process. The rate of oxidation of BA was determined in 19 organic solvents. An analysis of the solvent effect by Swain’s equation indicated that though both the anion and cation-solvating powers of the solvent contribute to the observed solvent effect, the role of cation-solvation is major. The rates of the para and meta compounds, at 298 K, failed to exhibit a significant correlation in terms of Hammett or Brown's substituent constants. The rates were then subjected to analyses in terms of dual substituent parameter (DSP) equations. The rates of oxidation of the para-substituted benzyl alcohols show an excellent correlation with Taft's σI and σRBA values. However, the rates for the meta-substituted benzyl alcohols show an excellent correlation with σI and σR0. The polar reaction constants are negative indicating an electron-deficient transition state. Hence the overall mechanism is proposed to involve the formation of a chromate ester in a fast pre-equilibrium and then a decomposition of the ester in a subsequent slow step via a cyclic concerted symmetrical transition state, involving hydride-ion transfer, leading to the product. The first order dependence on alcohol may be accounted in terms of the small value of the formation constant of the ester intermediate. An another reaction mechanism accounting the acid-catalysis involve the formation of a protonated BIDC prior to formation of an ester intermediate which subsequently decomposes in a slow step leading to the product.

Keywords: benzimidazolium dichromate, benzyl alcohols, correlation analysis, kinetics, oxidation

Procedia PDF Downloads 344
165 Hybrid Fermentation System for Improvement of Ergosterol Biosynthesis

Authors: Alexandra Tucaliuc, Alexandra C. Blaga, Anca I. Galaction, Lenuta Kloetzer, Dan Cascaval

Abstract:

Ergosterol (ergosta-5,7,22-trien-3β-ol), also known as provitamin D2, is the precursor of vitamin D2 (ergocalciferol), because it is converted under UV radiation to this vitamin. The natural sources of ergosterol are mainly the yeasts (Saccharomyces sp., Candida sp.), but it can be also found in fungus (Claviceps sp.) or plants (orchids). In the yeasts cells, ergosterol is accumulated in membranes, especially in free form in the plasma membrane, but also as esters with fatty acids in membrane lipids. The chemical synthesis of ergosterol does not represent an efficient method for its production, in these circumstances, the most attractive alternative for producing ergosterol at larger-scale remains the aerobic fermentation using S. cerevisiae on glucose or by-products from agriculture of food industry as substrates, in batch or fed-batch operating systems. The aim of this work is to analyze comparatively the influence of aeration efficiency on ergosterol production by S. cerevisiae in batch and fed-batch fermentations, by considering different levels of mixing intensity, aeration rate, and n-dodecane concentration. The effects of the studied factors are quantitatively described by means of the mathematical correlations proposed for each of the two fermentation systems, valid both for the absence and presence of oxygen-vector inside the broth. The experiments were carried out in a laboratory stirred bioreactor, provided with computer-controlled and recorded parameters. n-Dodecane was used as oxygen-vector and the ergosterol content inside the yeasts cells has been considered at the fermentation moment related to the maximum concentration of ergosterol, 9 hrs for batch process and 20 hrs for fed-batch one. Ergosterol biosynthesis is strongly dependent on the dissolved oxygen concentration. The hydrocarbon concentration exhibits a significant influence on ergosterol production mainly by accelerating the oxygen transfer rate. Regardless of n-dodecane addition, by maintaining the glucose concentration at a constant level in the fed-batch process, the amount of ergosterol accumulated into the yeasts cells has been almost tripled. In the presence of hydrocarbon, the ergosterol concentration increased by over 50%. The value of oxygen-vector concentration corresponding to the maximum level of ergosterol depends mainly on biomass concentration, due to its negative influences on broth viscosity and interfacial phenomena of air bubbles blockage through the adsorption of hydrocarbon droplets–yeast cells associations. Therefore, for the batch process, the maximum ergosterol amount was reached for 5% vol. n-dodecane, while for the fed-batch process for 10% vol. hydrocarbon.

Keywords: bioreactors, ergosterol, fermentation, oxygen-vector

Procedia PDF Downloads 188
164 Recovery of Physical Performance in Postpartum Women: An Effective Physical Education Program

Authors: Julia A. Ermakova

Abstract:

This study aimed to investigate the efficacy of a physical rehabilitation program for postpartum women. The program was developed with the purpose of restoring physical performance in women during the postpartum period. The research employed a variety of methods, including an analysis of scientific literature, pedagogical testing and experimentation, mathematical processing of study results, and physical performance assessment using a range of tests. The program recommends refraining from abdominal exercises during the first 6-8 months following a cesarean section and avoiding exercises with weights. Instead, a feasible training regimen that gradually increases in intensity several times a week is recommended, along with moderate cardio exercises such as walking, bodyweight training, and a separate workout component that targets posture improvement. Stretching after strength training is also encouraged. The necessary equipment includes comfortable sports attire with a chest support top, mat, push-ups, resistance band, timer, and clock. The motivational aspect of the program is paramount, and the mentee's positive experience with the workout regimen includes feelings of lightness in the body, increased energy, and positive emotions. The gradual reduction of body size and weight loss due to an improved metabolism also serves as positive reinforcement. The mentee's progress can be measured through various means, including an external assessment of her form, body measurements, weight, BMI, and the presence or absence of slouching in everyday life. The findings of this study reveal that the program is effective in restoring physical performance in postpartum women. The mentee achieved weight loss and almost regained her pre-pregnancy shape while her self-esteem improved. Her waist, shoulder, and hip measurements decreased, and she displayed less slouching in her daily life. In conclusion, the developed physical rehabilitation program for postpartum women is an effective means of restoring physical performance. It is crucial to follow the recommended training regimen and equipment to avoid limitations and ensure safety during the postpartum period. The motivational component of the program is also fundamental in encouraging positive reinforcement and improving self-esteem.

Keywords: physical rehabilitation, postpartum, methodology, postpartum recovery, rehabilitation

Procedia PDF Downloads 75
163 Mathematics as the Foundation for the STEM Disciplines: Different Pedagogical Strategies Addressed

Authors: Marion G. Ben-Jacob, David Wang

Abstract:

There is a mathematics requirement for entry level college and university students, especially those who plan to study STEM (Science, Technology, Engineering and Mathematics). Most of them take College Algebra, and to continue their studies, they need to succeed in this course. Different pedagogical strategies are employed to promote the success of our students. There is, of course, the Traditional Method of teaching- lecture, examples, problems for students to solve. The Emporium Model, another pedagogical approach, replaces traditional lectures with a learning resource center model featuring interactive software and on-demand personalized assistance. This presentation will compare these two methods of pedagogy and the study done with its results on this comparison. Math is the foundation for science, technology, and engineering. Its work is generally used in STEM to find patterns in data. These patterns can be used to test relationships, draw general conclusions about data, and model the real world. In STEM, solutions to problems are analyzed, reasoned, and interpreted using math abilities in a assortment of real-world scenarios. This presentation will examine specific examples of how math is used in the different STEM disciplines. Math becomes practical in science when it is used to model natural and artificial experiments to identify a problem and develop a solution for it. As we analyze data, we are using math to find the statistical correlation between the cause of an effect. Scientists who use math include the following: data scientists, scientists, biologists and geologists. Without math, most technology would not be possible. Math is the basis of binary, and without programming, you just have the hardware. Addition, subtraction, multiplication, and division is also used in almost every program written. Mathematical algorithms are inherent in software as well. Mechanical engineers analyze scientific data to design robots by applying math and using the software. Electrical engineers use math to help design and test electrical equipment. They also use math when creating computer simulations and designing new products. Chemical engineers often use mathematics in the lab. Advanced computer software is used to aid in their research and production processes to model theoretical synthesis techniques and properties of chemical compounds. Mathematics mastery is crucial for success in the STEM disciplines. Pedagogical research on formative strategies and necessary topics to be covered are essential.

Keywords: emporium model, mathematics, pedagogy, STEM

Procedia PDF Downloads 75
162 Minimizing Unscheduled Maintenance from an Aircraft and Rolling Stock Maintenance Perspective: Preventive Maintenance Model

Authors: Adel A. Ghobbar, Varun Raman

Abstract:

The Corrective maintenance of components and systems is a problem plaguing almost every industry in the world today. Train operators’ and the maintenance repair and overhaul subsidiary of the Dutch railway company is also facing this problem. A considerable portion of the maintenance activities carried out by the company are unscheduled. This, in turn, severely stresses and stretches the workforce and resources available. One possible solution is to have a robust preventive maintenance plan. The other possible solution is to plan maintenance based on real-time data obtained from sensor-based ‘Health and Usage Monitoring Systems.’ The former has been investigated in this paper. The preventive maintenance model developed for train operator will subsequently be extended, to tackle the unscheduled maintenance problem also affecting the aerospace industry. The extension of the model to the aerospace sector will be dealt with in the second part of the research, and it would, in turn, validate the soundness of the model developed. Thus, there are distinct areas that will be addressed in this paper, including the mathematical modelling of preventive maintenance and optimization based on cost and system availability. The results of this research will help an organization to choose the right maintenance strategy, allowing it to save considerable sums of money as opposed to overspending under the guise of maintaining high asset availability. The concept of delay time modelling was used to address the practical problem of unscheduled maintenance in this paper. The delay time modelling can be used to help with support planning for a given asset. The model was run using MATLAB, and the results are shown that the ideal inspection intervals computed using the extended from a minimal cost perspective were 29 days, and from a minimum downtime, perspective was 14 days. Risk matrix integration was constructed to represent the risk in terms of the probability of a fault leading to breakdown maintenance and its consequences in terms of maintenance cost. Thus, the choice of an optimal inspection interval of 29 days, resulted in a cost of approximately 50 Euros and the corresponding value of b(T) was 0.011. These values ensure that the risk associated with component X being maintained at an inspection interval of 29 days is more than acceptable. Thus, a switch in maintenance frequency from 90 days to 29 days would be optimal from the point of view of cost, downtime and risk.

Keywords: delay time modelling, unscheduled maintenance, reliability, maintainability, availability

Procedia PDF Downloads 132
161 Temporal and Spacial Adaptation Strategies in Aerodynamic Simulation of Bluff Bodies Using Vortex Particle Methods

Authors: Dario Milani, Guido Morgenthal

Abstract:

Fluid dynamic computation of wind caused forces on bluff bodies e.g light flexible civil structures or high incidence of ground approaching airplane wings, is one of the major criteria governing their design. For such structures a significant dynamic response may result, requiring the usage of small scale devices as guide-vanes in bridge design to control these effects. The focus of this paper is on the numerical simulation of the bluff body problem involving multiscale phenomena induced by small scale devices. One of the solution methods for the CFD simulation that is relatively successful in this class of applications is the Vortex Particle Method (VPM). The method is based on a grid free Lagrangian formulation of the Navier-Stokes equations, where the velocity field is modeled by particles representing local vorticity. These vortices are being convected due to the free stream velocity as well as diffused. This representation yields the main advantages of low numerical diffusion, compact discretization as the vorticity is strongly localized, implicitly accounting for the free-space boundary conditions typical for this class of FSI problems, and a natural representation of the vortex creation process inherent in bluff body flows. When the particle resolution reaches the Kolmogorov dissipation length, the method becomes a Direct Numerical Simulation (DNS). However, it is crucial to note that any solution method aims at balancing the computational cost against the accuracy achievable. In the classical VPM method, if the fluid domain is discretized by Np particles, the computational cost is O(Np2). For the coupled FSI problem of interest, for example large structures such as long-span bridges, the aerodynamic behavior may be influenced or even dominated by small structural details such as barriers, handrails or fairings. For such geometrically complex and dimensionally large structures, resolving the complete domain with the conventional VPM particle discretization might become prohibitively expensive to compute even for moderate numbers of particles. It is possible to reduce this cost either by reducing the number of particles or by controlling its local distribution. It is also possible to increase the accuracy of the solution without increasing substantially the global computational cost by computing a correction of the particle-particle interaction in some regions of interest. In this paper different strategies are presented in order to extend the conventional VPM method to reduce the computational cost whilst resolving the required details of the flow. The methods include temporal sub stepping to increase the accuracy of the particles convection in certain regions as well as dynamically re-discretizing the particle map to locally control the global and the local amount of particles. Finally, these methods will be applied on a test case and the improvements in the efficiency as well as the accuracy of the proposed extension to the method are presented. The important benefits in terms of accuracy and computational cost of the combination of these methods will be thus presented as long as their relevant applications.

Keywords: adaptation, fluid dynamic, remeshing, substepping, vortex particle method

Procedia PDF Downloads 262
160 A Network Economic Analysis of Friendship, Cultural Activity, and Homophily

Authors: Siming Xie

Abstract:

In social networks, the term homophily refers to the tendency of agents with similar characteristics to link with one another and is so robustly observed across many contexts and dimensions. The starting point of my research is the observation that the “type” of agents is not a single exogenous variable. Agents, despite their differences in race, religion, and other hard to alter characteristics, may share interests and engage in activities that cut across those predetermined lines. This research aims to capture the interactions of homophily effects in a model where agents have two-dimension characteristics (i.e., race and personal hobbies such as basketball, which one either likes or dislikes) and with biases in meeting opportunities and in favor of same-type friendships. A novel feature of my model is providing a matching process with biased meeting probability on different dimensions, which could help to understand the structuring process in multidimensional networks without missing layer interdependencies. The main contribution of this study is providing a welfare based matching process for agents with multi-dimensional characteristics. In particular, this research shows that the biases in meeting opportunities on one dimension would lead to the emergence of homophily on the other dimension. The objective of this research is to determine the pattern of homophily in network formations, which will shed light on our understanding of segregation and its remedies. By constructing a two-dimension matching process, this study explores a method to describe agents’ homophilous behavior in a social network with multidimension and construct a game in which the minorities and majorities play different strategies in a society. It also shows that the optimal strategy is determined by the relative group size, where society would suffer more from social segregation if the two racial groups have a similar size. The research also has political implications—cultivating the same characteristics among agents helps diminishing social segregation, but only if the minority group is small enough. This research includes both theoretical models and empirical analysis. Providing the friendship formation model, the author first uses MATLAB to perform iteration calculations, then derives corresponding mathematical proof on previous results, and last shows that the model is consistent with empirical evidence from high school friendships. The anonymous data comes from The National Longitudinal Study of Adolescent Health (Add Health).

Keywords: homophily, multidimension, social networks, friendships

Procedia PDF Downloads 170
159 Detection of Abnormal Process Behavior in Copper Solvent Extraction by Principal Component Analysis

Authors: Kirill Filianin, Satu-Pia Reinikainen, Tuomo Sainio

Abstract:

Frequent measurements of product steam quality create a data overload that becomes more and more difficult to handle. In the current study, plant history data with multiple variables was successfully treated by principal component analysis to detect abnormal process behavior, particularly, in copper solvent extraction. The multivariate model is based on the concentration levels of main process metals recorded by the industrial on-stream x-ray fluorescence analyzer. After mean-centering and normalization of concentration data set, two-dimensional multivariate model under principal component analysis algorithm was constructed. Normal operating conditions were defined through control limits that were assigned to squared score values on x-axis and to residual values on y-axis. 80 percent of the data set were taken as the training set and the multivariate model was tested with the remaining 20 percent of data. Model testing showed successful application of control limits to detect abnormal behavior of copper solvent extraction process as early warnings. Compared to the conventional techniques of analyzing one variable at a time, the proposed model allows to detect on-line a process failure using information from all process variables simultaneously. Complex industrial equipment combined with advanced mathematical tools may be used for on-line monitoring both of process streams’ composition and final product quality. Defining normal operating conditions of the process supports reliable decision making in a process control room. Thus, industrial x-ray fluorescence analyzers equipped with integrated data processing toolbox allows more flexibility in copper plant operation. The additional multivariate process control and monitoring procedures are recommended to apply separately for the major components and for the impurities. Principal component analysis may be utilized not only in control of major elements’ content in process streams, but also for continuous monitoring of plant feed. The proposed approach has a potential in on-line instrumentation providing fast, robust and cheap application with automation abilities.

Keywords: abnormal process behavior, failure detection, principal component analysis, solvent extraction

Procedia PDF Downloads 309
158 A Comparison of Inverse Simulation-Based Fault Detection in a Simple Robotic Rover with a Traditional Model-Based Method

Authors: Murray L. Ireland, Kevin J. Worrall, Rebecca Mackenzie, Thaleia Flessa, Euan McGookin, Douglas Thomson

Abstract:

Robotic rovers which are designed to work in extra-terrestrial environments present a unique challenge in terms of the reliability and availability of systems throughout the mission. Should some fault occur, with the nearest human potentially millions of kilometres away, detection and identification of the fault must be performed solely by the robot and its subsystems. Faults in the system sensors are relatively straightforward to detect, through the residuals produced by comparison of the system output with that of a simple model. However, faults in the input, that is, the actuators of the system, are harder to detect. A step change in the input signal, caused potentially by the loss of an actuator, can propagate through the system, resulting in complex residuals in multiple outputs. These residuals can be difficult to isolate or distinguish from residuals caused by environmental disturbances. While a more complex fault detection method or additional sensors could be used to solve these issues, an alternative is presented here. Using inverse simulation (InvSim), the inputs and outputs of the mathematical model of the rover system are reversed. Thus, for a desired trajectory, the corresponding actuator inputs are obtained. A step fault near the input then manifests itself as a step change in the residual between the system inputs and the input trajectory obtained through inverse simulation. This approach avoids the need for additional hardware on a mass- and power-critical system such as the rover. The InvSim fault detection method is applied to a simple four-wheeled rover in simulation. Additive system faults and an external disturbance force and are applied to the vehicle in turn, such that the dynamic response and sensor output of the rover are impacted. Basic model-based fault detection is then employed to provide output residuals which may be analysed to provide information on the fault/disturbance. InvSim-based fault detection is then employed, similarly providing input residuals which provide further information on the fault/disturbance. The input residuals are shown to provide clearer information on the location and magnitude of an input fault than the output residuals. Additionally, they can allow faults to be more clearly discriminated from environmental disturbances.

Keywords: fault detection, ground robot, inverse simulation, rover

Procedia PDF Downloads 308
157 Flood Early Warning and Management System

Authors: Yogesh Kumar Singh, T. S. Murugesh Prabhu, Upasana Dutta, Girishchandra Yendargaye, Rahul Yadav, Rohini Gopinath Kale, Binay Kumar, Manoj Khare

Abstract:

The Indian subcontinent is severely affected by floods that cause intense irreversible devastation to crops and livelihoods. With increased incidences of floods and their related catastrophes, an Early Warning System for Flood Prediction and an efficient Flood Management System for the river basins of India is a must. Accurately modeled hydrological conditions and a web-based early warning system may significantly reduce economic losses incurred due to floods and enable end users to issue advisories with better lead time. This study describes the design and development of an EWS-FP using advanced computational tools/methods, viz. High-Performance Computing (HPC), Remote Sensing, GIS technologies, and open-source tools for the Mahanadi River Basin of India. The flood prediction is based on a robust 2D hydrodynamic model, which solves shallow water equations using the finite volume method. Considering the complexity of the hydrological modeling and the size of the basins in India, it is always a tug of war between better forecast lead time and optimal resolution at which the simulations are to be run. High-performance computing technology provides a good computational means to overcome this issue for the construction of national-level or basin-level flash flood warning systems having a high resolution at local-level warning analysis with a better lead time. High-performance computers with capacities at the order of teraflops and petaflops prove useful while running simulations on such big areas at optimum resolutions. In this study, a free and open-source, HPC-based 2-D hydrodynamic model, with the capability to simulate rainfall run-off, river routing, and tidal forcing, is used. The model was tested for a part of the Mahanadi River Basin (Mahanadi Delta) with actual and predicted discharge, rainfall, and tide data. The simulation time was reduced from 8 hrs to 3 hrs by increasing CPU nodes from 45 to 135, which shows good scalability and performance enhancement. The simulated flood inundation spread and stage were compared with SAR data and CWC Observed Gauge data, respectively. The system shows good accuracy and better lead time suitable for flood forecasting in near-real-time. To disseminate warning to the end user, a network-enabled solution is developed using open-source software. The system has query-based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. System effectively facilitates the management of post-disaster activities caused due to floods, like displaying spatial maps of the area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of the damage.

Keywords: flood, modeling, HPC, FOSS

Procedia PDF Downloads 89
156 Modeling of the Heat and Mass Transfer in Fluids through Thermal Pollution in Pipelines

Authors: V. Radulescu, S. Dumitru

Abstract:

Introduction: Determination of the temperature field inside a fluid in motion has many practical issues, especially in the case of turbulent flow. The phenomenon is greater when the solid walls have a different temperature than the fluid. The turbulent heat and mass transfer have an essential role in case of the thermal pollution, as it was the recorded during the damage of the Thermoelectric Power-plant Oradea (closed even today). Basic Methods: Solving the theoretical turbulent thermal pollution represents a particularly difficult problem. By using the semi-empirical theories or by simplifying the made assumptions, based on the experimental measurements may be assured the elaboration of the mathematical model for further numerical simulations. The three zones of flow are analyzed separately: the vicinity of the solid wall, the turbulent transition zone, and the turbulent core. For each area are determined the distribution law of temperature. It is determined the dependence of between the Stanton and Prandtl numbers with correction factors, based on measurements experimental. Major Findings/Results: The limitation of the laminar thermal substrate was determined based on the theory of Landau and Levice, using the assumption that the longitudinal component of the velocity pulsation and the pulsation’s frequency varies proportionally with the distance to the wall. For the calculation of the average temperature, the formula is used a similar solution as for the velocity, by an analogous mediation. On these assumptions, the numerical modeling was performed with a gradient of temperature for the turbulent flow in pipes (intact or damaged, with cracks) having 4 different diameters, between 200-500 mm, as there were in the Thermoelectric Power-plant Oradea. Conclusions: It was made a superposition between the molecular viscosity and the turbulent one, followed by addition between the molecular and the turbulent transfer coefficients, necessary to elaborate the theoretical and the numerical modeling. The concept of laminar boundary layer has a different thickness when it is compared the flow with heat transfer and that one without a temperature gradient. The obtained results are within the margin of error of 5%, between the semi-empirical classical theories and the developed model, based on the experimental data. Finally, it is obtained a general correlation between the Stanton number and the Prandtl number, for a specific flow (with associated Reynolds number).

Keywords: experimental measurements, numerical correlations, thermal pollution through pipelines, turbulent thermal flow

Procedia PDF Downloads 164
155 Influence of 3D Printing Parameters on Surface Finish of Ceramic Hip Prostheses Fixed by Means of Osteointegration

Authors: Irene Buj-Corral, Ali Bagheri, Alejandro Dominguez-Fernandez

Abstract:

In recent years, use of ceramic prostheses as an implant in some parts of body has become common. In the present study, research has focused on replacement of the acetabulum bone, which is a part of the pelvis bone. Metallic prostheses have shown some problems such as release of metal ions into patient's blood. In addition, fracture of liners and squeezing between surface of femoral head and inner surface of acetabulum have been reported. Ceramic prostheses have the advantage of low debris and high strength, although they are more difficult to be manufactured than metallic ones. Specifically, new designs try to attempt an acetabulum in which the outer surface will be porous for proliferation of cells and fixation of the prostheses by means of osteointegration, while inner surface must be smooth enough to assure that the movement between femoral head and inner surface will be carried out with on feasibility. In the present study, 3D printing technologies are used for manufacturing ceramic prostheses. In Fused Deposition Modelling (FDM) process, 3D printed plastic prostheses are obtained by means of melting of a plastic filament and subsequent deposition on a glass surface. A similar process is applied to ceramics in which ceramic powders need to be mixed with a liquid polymer before depositing them. After 3D printing, parts are subjected to a sintering process in an oven so that they can achieve final strength. In the present paper, influence of printing parameters on surface roughness 3D printed ceramic parts are presented. Three parameter full factorial design of experiments was used. Selected variables were layer height, infill and nozzle diameter. Responses were average roughness Ra and mean roughness depth Rz. Regression analysis was applied to responses in order to obtain mathematical models for responses. Results showed that surface roughness depends mainly on layer height and nozzle diameter employed, while infill was found not to be significant. In order to get low surface roughness, low layer height and low infill should be selected. As a conclusion, layer height and infill are important parameters for obtaining good surface finish in ceramic 3D printed prostheses. However, use of too low infill could lead to prostheses with low mechanical strength. Such prostheses could not be able to bear the static and dynamic charges to which they are subjected once they are implanted in the body. This issue will be addressed in further research.

Keywords: ceramic, hip prostheses, surface roughness, 3D printing

Procedia PDF Downloads 197