Search results for: reduce undesirable incidents
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6346

Search results for: reduce undesirable incidents

3226 Interest Charges and Sustainability Challenges: The Case of OECD Countries

Authors: Zapji Ymele Aime Philombe

Abstract:

Servicing public debt is a significant budgetary burden in the sense that the payment of interest charges is a liability on the balance sheet of the public budget and affects fiscal policy. Interest charges can sometimes become a burden if they crowd out private activities. In order to analyse and understand the determinants of the debt burden and its impact on the sustainability of public finances, the present work focuses on OECD countries. It is noted from the literature that the factors that determine interest charges are macroeconomic (inflation, GDP growth and interest rates) and public finances (primary balance and public debt). After analysing a panel of 33 OECD countries and using ordinary least squares (OLS), we find that public debt, inflation and long-term interest rates are positively correlated with interest charges. An increase in any of these variables leads to an increase in debt charges. On the other hand, a growth in GDP is negatively associated with interest charges. Indeed, an increase in GDP generates enough revenue to meet the repayment of debt charges. According to the empirical analysis, we can say that, despite the large and growing debt-to-GDP ratio of major OECD countries, interest charges are not a threat to the sustainability of public finances. However, it is important for these countries to reduce the ratio of public debt to GDP because, in the face of the many challenges (health, aging population, etc.) that are looming on the horizon, an increase in interest rates could bring with it considerable burdens that would threaten the budgetary balance of these states.

Keywords: interests charges, public debt, sustainability, interest rates

Procedia PDF Downloads 122
3225 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model

Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong

Abstract:

In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.

Keywords: artificial neural network, Taguchi method, real estate valuation model, investors

Procedia PDF Downloads 489
3224 Alternative Acidizing Fluids and Their Impact on the Southern Algerian Shale Formations

Authors: Rezki Akkal, Mohamed Khodja, Slimane Azzi

Abstract:

Acidification is a technique used in oil reservoirs to improve annual production, reduce the skin and increase the pressure of an oil well while eliminating the formation damage that occurs during the drilling process, completion and, amongst others, to create new channels allowing the easy circulation of oil around a producing well. This is achieved by injecting an acidizing fluid at a relatively low pressure to prevent fracturing formation. The treatment fluid used depends on the type and nature of the reservoir rock traversed as well as its petrophysical properties. In order to understand the interaction mechanisms between the treatment fluids used for the reservoir rock acidizing, several candidate wells for stimulation were selected in the large Hassi Messaoud deposit in southern Algeria. The stimulation of these wells is completed using different fluids composed mainly of HCl acid with other additives such as corrosion inhibitors, clay stabilizers and iron controllers. These treatment fluids are injected over two phases, namely with clean tube (7.5% HCl) and matrix aidizing with HCl (15%). The stimulation results obtained are variable according to the type of rock traversed and its mineralogical composition. These results show that there has been an increase in production flow and head pressure respectively from 1.99 m3 / h to 3.56 m3 / h and from 13 Kgf / cm2 to 20 kgf / cm2 in the sands formation having good petrophysical properties of (porosity = 16%) and low amount of clay (Vsh = 6%).

Keywords: acidizing, Hassi-Messaoud reservoir, tube clean, matrix stimulation

Procedia PDF Downloads 180
3223 Usage of Channel Coding Techniques for Peak-to-Average Power Ratio Reduction in Visible Light Communications Systems

Authors: P. L. D. N. M. de Silva, S. G. Edirisinghe, R. Weerasuriya

Abstract:

High peak-to-average power ratio (PAPR) is a concern of orthogonal frequency division multiplexing (OFDM) based visible light communication (VLC) systems. Discrete Fourier Transform spread (DFT-s) OFDM is an alternative single carrier modulation scheme which would address this concern. Employing channel coding techniques is another mechanism to reduce the PAPR. Previous research has been conducted to study the impact of these techniques separately. However, to the best of the knowledge of the authors, no study has been done so far to identify the improvement which can be harnessed by hybridizing these two techniques for VLC systems. Therefore, this is a novel study area under this research. In addition, channel coding techniques such as Polar codes and Turbo codes have been tested in the VLC domain. However, other efficient techniques such as Hamming coding and Convolutional coding have not been studied too. Therefore, the authors present the impact of the hybrid of DFT-s OFDM and Channel coding (Hamming coding and Convolutional coding) on PAPR in VLC systems using Matlab simulations.

Keywords: convolutional coding, discrete Fourier transform spread orthogonal frequency division multiplexing, hamming coding, peak-to-average power ratio, visible light communications

Procedia PDF Downloads 154
3222 Microalgae Applied to the Reduction of Biowaste Produced by Fruit Fly Drosophila melanogaster

Authors: Shuang Qiu, Zhipeng Chen, Lingfeng Wang, Shijian Ge

Abstract:

Biowastes are a concern due to the large amounts of commercial food required for model animals during the biomedical research. Searching for sustainable food alternatives with negligible physiological effects on animals is critical to solving or reducing this challenge. Microalgae have been demonstrated as suitable for both human consumption and animal feed in addition to biofuel and bioenergy applications. In this study, the possibility of using Chlorella vulgaris and Senedesmus obliquus as a feed replacement to Drosophila melanogaster, one of the fly models commonly used in biomedical studies, was investigated to assess the fly locomotor activity, motor pattern, lifespan, and body weight. Compared to control, flies fed on 60% or 80% (w/w) microalgae exhibited varied walking performance including travel distance and apparent step size, and flies treated with 40% microalgae had shorter lifespans and decreased body weight. However, the 20% microalgae treatment showed no statistical differences in all parameters tested with respect to the control. When partially including 20% microalgae in the standard food, it can annually reduce the food waste (~ 202 kg) by 22.7 % and save $ 7,200 of the food cost, offering an environmentally superior and cost-effective food alternative without compromising physiological performance.

Keywords: animal feed, Chlorella vulgaris, Drosophila melanogaster, food waste, microalgae

Procedia PDF Downloads 167
3221 Risk Assessment of Radiation Hazard for a Typical WWER1000: Cancer Risk Analysis during a Hypothetical Accident

Authors: R. Gharari, N. Kojouri, R. Hosseini Aghdam, E. Alibeigi, B. Salmasian

Abstract:

In this research, the WWER1000/V446 (a PWR Russian type reactor) is chosen as the case study. It is assumed that radioactive materials that release into the environment are more than allowable limit due to a complete failure of the ventilation system (reactor stack). In the following, the HOTSPOT and the RASCAL computational codes have been used and coupled with a developed program using MATLAB software to evaluate Total effective dose equivalent (TEDE) and cancer risk according to the BEIR equations for various human organs. In addition, effects of the containment spray system and climate conditions on the TEDE have been investigated. According to the obtained results, there is an inverse correlation between the received dose and the wind speed; the amount of the TEDE for wind speed 2 m/s and is more than wind speed for 14 m/s during the class A of the climate (2.168 and 0.444 mSv, respectively). Also, containment spray system can effect and reduce the amount of the fission products and TEDE. Furthermore, the probability of the cancer risk for women is more than men, and for children is more than adults. In addition, a specific emergency zonal planning is proposed. Results are promising in which the site selection of the WWER1000/V446 were considered safe for the public in this situation.

Keywords: TEDE, total effective dose equivalent, RASCAL and HOTSPOT codes, BEIR equations, cancer risk

Procedia PDF Downloads 164
3220 Vibration Energy Harvesting from Aircraft Structure Using Piezoelectric Transduction

Authors: M. Saifudin Ahmed Atique, Santosh Paudyal, Caixia Yang

Abstract:

In an aircraft, a great portion of energy is wasted due to its inflight structural vibration. Structural components vibrate due to aeroelastic instabilities, gust perturbations and engine rotation at very high rpm. Energy losses due to mechanical vibration can be utilized by harvesting energy from aircraft structure as electrical energy. This harvested energy can be stored in battery panels built into aircraft fuselage and can be used to power inflight auxiliary accessories i.e., lighting and entertainment systems. Moreover, this power can be used for wireless Structural Health Monitoring System (SHM) for aircraft and as an excellent replacement of aircraft Ground Power Unit (GPU)/Auxiliary Power Unit (APU) during passenger onboard time to power aircraft cabin accessories to reduce aircraft ground operation cost significantly. In this paper, we propose the design of a noble aircraft wing in which Piezoelectric panels placed under the composite skin of aircraft wing will generate electrical charges from any inflight aerodynamics or mechanical vibration and store it into battery to power auxiliary inflight systems/accessories as per requirement. Experimental results show that a well-engineered piezoelectric energy harvester based aircraft wing can produce adequate energy to support in-flight lighting and auxiliary cabin accessories.

Keywords: vibration energy, aircraft wing, piezoelectric material, inflight accessories

Procedia PDF Downloads 159
3219 The Influences of Green Infrastructure Develop on Urban Renewals for Real Essence and Non-Real Essence Economic Value

Authors: Chao Jen-Chih, Hsu Kuo-Wei

Abstract:

Climate change and natural disasters take effect on urban development. It has been discussed urban renewals can prevent natural disasters. Integrating green infrastructure and urban renewals may have great effect on adapting the impact of climate change. To highlight the economic value of green infrastructure development on urban renewals, some strategies need to be carry on to reduce environmental impact. A number of urban renewals studies has been conducted on right transfer, financial risk, urban renewal policy, and public participation. Little research has been devoted on the subject of the economic value of green infrastructure development on urban renewals. The purpose of this study is to investigate the affecting factors on the economic value of green infrastructure development on urban renewals. This study will present the benefits of green infrastructure development and summarize the critical factors of green infrastructure develop on urban renewals for real essence and non-real essence on economic value from literature. Our results indicate that factors of housing price, land value, floor area incentive, and facilitation of the construction industry affect the outcome of real essence economic value. Factors of enhancement of urban disaster prevention, improvement of urban environment and landscape, crime reduction, climate control, pollution reduction, biological diversity, health impacts, and leisure space affects the outcome of non-real essence economic value.

Keywords: economic value, green infrastructure, urban renewals, urban development

Procedia PDF Downloads 419
3218 Personality Traits of NEO Five Factors and Statistics Anxiety among Social Sciences University Students

Authors: Oluyinka Ojedokun, S. E. Idemudia

Abstract:

In Nigeria, statistics is a compulsory course required from all social sciences students as part of their academic training. However, a rising number of social sciences undergraduates usually express statistics anxiety. The prevalence of statistics anxiety among undergraduates in social sciences has created a growing concern for educators and researchers in the higher education institutions, mainly because this statistics anxiety adversely affects their performance in statistics and research methods courses. From a societal perspective it is important to reverse this trend. Although scholars and researchers have highlighted some psychosocial factors that influence statistics anxiety in students but few empirical studies exist on the association between personality traits of NEO five factors and statistics anxiety. It is in the light of this situation that this study was designed to assess the extent to which the personality traits of NEO five factors influence statistics anxiety of students in social sciences courses. The participants were 282 undergraduates in the faculty of social sciences at a state owned public university in Nigeria. The findings demonstrate that the personality traits contributing to statistics anxiety include openness to experience, conscientious, extraversion, and neuroticism. These results imply that statistics anxiety is related to individual differences in personality traits and suggest that certain aspects of statistics anxiety may be relatively stable and resistant to change. An effective and simple method to reduce statistics anxiety among social sciences students is to create awareness of the statistical and methodological requirements of the social sciences courses before commencement of their programmes.

Keywords: personality traits, statistics anxiety, social sciences, students

Procedia PDF Downloads 536
3217 Drying Kinects of Soybean Seeds

Authors: Amanda Rithieli Pereira Dos Santos, Rute Quelvia De Faria, Álvaro De Oliveira Cardoso, Anderson Rodrigo Da Silva, Érica Leão Fernandes Araújo

Abstract:

The study of the kinetics of drying has great importance for the mathematical modeling, allowing to know about the processes of transference of heat and mass between the products and to adjust dryers managing new technologies for these processes. The present work had the objective of studying the kinetics of drying of soybean seeds and adjusting different statistical models to the experimental data varying cultivar and temperature. Soybean seeds were pre-dried in a natural environment in order to reduce and homogenize the water content to the level of 14% (b.s.). Then, drying was carried out in a forced air circulation oven at controlled temperatures of 38, 43, 48, 53 and 58 ± 1 ° C, using two soybean cultivars, BRS 8780 and Sambaíba, until reaching a hygroscopic equilibrium. The experimental design was completely randomized in factorial 5 x 2 (temperature x cultivar) with 3 replicates. To the experimental data were adjusted eleven statistical models used to explain the drying process of agricultural products. Regression analysis was performed using the least squares Gauss-Newton algorithm to estimate the parameters. The degree of adjustment was evaluated from the analysis of the coefficient of determination (R²), the adjusted coefficient of determination (R² Aj.) And the standard error (S.E). The models that best represent the drying kinetics of soybean seeds are those of Midilli and Logarítmico.

Keywords: curve of drying seeds, Glycine max L., moisture ratio, statistical models

Procedia PDF Downloads 628
3216 Using Surface Entropy Reduction to Improve the Crystallization Properties of a Recombinant Antibody Fragment RNA Crystallization Chaperone

Authors: Christina Roman, Deepak Koirala, Joseph A. Piccirilli

Abstract:

Phage displaying synthetic Fab libraries have been used to obtain Fabs that bind to specific RNA targets with high affinity and specificity. These Fabs have been demonstrated to facilitate RNA crystallization. However, the antibody framework used in the construction of these phage display libraries contains numerous bulky, flexible, and charged residues, which facilitate solubility and hinder aggregation. These residues can interfere with crystallization due to the entropic cost associated with burying them within crystal contacts. To systematically reduce the surface entropy of the Fabs and improve their crystallization properties, a protein engineering strategy termed surface entropy reduction (SER) is being applied to the Fab framework. In this approach, high entropy residues are mutated to smaller ones such as alanine or serine. Focusing initially on Fab BL3-6, which binds an RNA AAACA pentaloop with 20nM affinity, the SER P server (http://services.mbi.ucla.edu/SER/) was used and analysis was performed on existing RNA-Fab BL3-6 co-crystal structures. From this analysis twelve surface entropy reduced mutants were designed. These SER mutants were expressed and are now being measured for their crystallization and diffraction performance with various RNA targets. So far, one mutant has generated 3.02 angstrom diffraction with the yjdF riboswitch RNA. Ultimately, the most productive mutations will be combined into a new Fab framework to be used in a optimized phage displayed Fab library.

Keywords: antibody fragment, crystallography, RNA, surface entropy reduction

Procedia PDF Downloads 196
3215 Improving the Flow Capacity (CV) of the Valves

Authors: Pradeep A. G, Gorantla Giridhar, Vijay Turaga, Vinod Srinivasa

Abstract:

The major problem in the flow control valve is of lower Cv, which will reduce the overall efficiency of the flow circuit. Designers are continuously working to improve the Cv of the valve, but they need to validate the design ideas they have regarding the improvement of Cv. The traditional method of prototyping and testing takes a lot of time. That is where CFD comes into the picture with very quick and accurate validation along with visualization, which is not possible with the traditional testing method. We have developed a method to predict Cv value using CFD analysis by iterating on various Boundary conditions, solver settings and by carrying out grid convergence studies to establish the correlation between the CFD model and Test data. The present study investigates 3 different ideas put forward by the designers for improving the flow capacity of the valves, like reducing the cage thickness, changing the port position, and using the parabolic plug to guide the flow. Using CFD, we analyzed all design changes using the established methodology that we developed. We were able to evaluate the effect of these design changes on the Valve Cv. We optimized the wetted surface of the valve further by suggesting the design modification to the lower part of the valve to make the flow more streamlined. We could find that changing cage thickness and port position has little impact on the valve Cv. The combination of optimized wetted surface and introduction of parabolic plug improved the Flow capacity (Cv) of the valve significantly.

Keywords: flow control valves, flow capacity (Cv), CFD simulations, design validation

Procedia PDF Downloads 164
3214 Field Production Data Collection, Analysis and Reporting Using Automated System

Authors: Amir AlAmeeri, Mohamed Ibrahim

Abstract:

Various data points are constantly being measured in the production system, and due to the nature of the wells, these data points, such as pressure, temperature, water cut, etc.., fluctuations are constant, which requires high frequency monitoring and collection. It is a very difficult task to analyze these parameters manually using spreadsheets and email. An automated system greatly enhances efficiency, reduce errors, the need for constant emails which take up disk space, and frees up time for the operator to perform other critical tasks. Various production data is being recorded in an oil field, and this huge volume of data can be seen as irrelevant to some, especially when viewed on its own with no context. In order to fully utilize all this information, it needs to be properly collected, verified and stored in one common place and analyzed for surveillance and monitoring purposes. This paper describes how data is recorded by different parties and departments in the field, and verified numerous times as it is being loaded into a repository. Once it is loaded, a final check is done before being entered into a production monitoring system. Once all this is collected, various calculations are performed to report allocated production. Calculated production data is used to report field production automatically. It is also used to monitor well and surface facility performance. Engineers can use this for their studies and analyses to ensure field is performing as it should be, predict and forecast production, and monitor any changes in wells that could affect field performance.

Keywords: automation, oil production, Cheleken, exploration and production (E&P), Caspian Sea, allocation, forecast

Procedia PDF Downloads 156
3213 GCM Based Fuzzy Clustering to Identify Homogeneous Climatic Regions of North-East India

Authors: Arup K. Sarma, Jayshree Hazarika

Abstract:

The North-eastern part of India, which receives heavier rainfall than other parts of the subcontinent, is of great concern now-a-days with regard to climate change. High intensity rainfall for short duration and longer dry spell, occurring due to impact of climate change, affects river morphology too. In the present study, an attempt is made to delineate the North-Eastern region of India into some homogeneous clusters based on the Fuzzy Clustering concept and to compare the resulting clusters obtained by using conventional methods and non conventional methods of clustering. The concept of clustering is adapted in view of the fact that, impact of climate change can be studied in a homogeneous region without much variation, which can be helpful in studies related to water resources planning and management. 10 IMD (Indian Meteorological Department) stations, situated in various regions of the North-east, have been selected for making the clusters. The results of the Fuzzy C-Means (FCM) analysis show different clustering patterns for different conditions. From the analysis and comparison it can be concluded that non conventional method of using GCM data is somehow giving better results than the others. However, further analysis can be done by taking daily data instead of monthly means to reduce the effect of standardization.

Keywords: climate change, conventional and nonconventional methods of clustering, FCM analysis, homogeneous regions

Procedia PDF Downloads 386
3212 Saudi Human Awareness Needs: A Survey in How Human Causes Errors and Mistakes Leads to Leak Confidential Data with Proposed Solutions in Saudi Arabia

Authors: Amal Hussain Alkhaiwani, Ghadah Abdullah Almalki

Abstract:

Recently human errors have increasingly become a very high factor in security breaches that may affect confidential data, and most of the cyber data breaches are caused by human errors. With one individual mistake, the attacker will gain access to the entire network and bypass the implemented access controls without any immediate detection. Unaware employees will be vulnerable to any social engineering cyber-attacks. Providing security awareness to People is part of the company protection process; the cyber risks cannot be reduced by just implementing technology; the human awareness of security will significantly reduce the risks, which encourage changes in staff cyber-awareness. In this paper, we will focus on Human Awareness, human needs to continue the required security education level; we will review human errors and introduce a proposed solution to avoid the breach from occurring again. Recently Saudi Arabia faced many attacks with different methods of social engineering. As Saudi Arabia has become a target to many countries and individuals, we needed to initiate a defense mechanism that begins with awareness to keep our privacy and protect the confidential data against possible intended attacks.

Keywords: cybersecurity, human aspects, human errors, human mistakes, security awareness, Saudi Arabia, security program, security education, social engineering

Procedia PDF Downloads 160
3211 Technical and Pedagogical Considerations in Producing Screen Recorded Videos

Authors: M. Nikafrooz, J. Darsareh

Abstract:

Due to the COVID-19 pandemic, its impacts on education all over the world and the problems arising from the use of traditional methods in education, it was necessary to apply alternative solutions to achieve educational goals. In this regard, electronic content production through screen recording and giving educational services in virtual classes became popular among many teachers. But the production of screen recorded videos involves special technical and educational considerations so that educators could be able to produce valuable and well-made videos by taking those considerations into account. The purpose of this study was to extract and find the technical and educational considerations of producing screen recorded videos to provide a useful and comprehensive guideline for e-content producers to enable them to produce high-quality educational videos. This study is fundamental research and data collection has been done using the Delphi method. In this research, an attempt has been made to provide the necessary criteria and considerations regarding the design and production of screen recorded videos by studying the literatures, identifying and analyzing learners' and teachers' needs and expectations, reviewing the previously produced videos. The results of these studies led to the finding and extracting 129 indicators in the form of 6 criteria. Such considerations are expected to reduce production and editing time, increase the technical and educational quality, and finally facilitating and enhancing the processes of teaching and learning.

Keywords: e-content, screen recorded videos, screen recording software, technical and pedagogical considerations

Procedia PDF Downloads 105
3210 Tobacco Harm Reduction: How to Build Awareness of Smokers? A Case Study in Indonesia

Authors: Kholil, Ario Bimo, Hifni Alifahmi, Soecahyadi, Husen Money

Abstract:

The number of smokers in Indonesia currently reached 66 million (25.09%) of the total number of smokers reaching 264 million. The government (central and local governments) have issued various rules to reduce the number of smokers, but the results are still not effective; in fact, the number of smokers continues to increase every year. This study aims to determine the influence of demographics, economy, health, and the role of government on the awareness of smokers in reducing the dangers of cigarettes. Data collection was carried out through a questionnaire distributed to 255 randomly selected respondents and data analysis using SEM (Structural Equation Model). The results of the analysis show that economic and socio-cultural factors do not directly affect the awareness of reducing the dangers of cigarettes. But indirectly, its influence becomes significant through intervening variables of communication strategies. Meanwhile, health factors and the government's role have a very significant influence both directly and indirectly on reducing the dangers of cigarettes. Thus, the main strategy to build awareness of smokers in reducing the dangers of smoking is building an effective communication strategy through three main factors: (1) health, (2) government regulations and (3) the economy.

Keywords: harm reduction, awareness, communication strategy, SEM

Procedia PDF Downloads 64
3209 Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade

Authors: Jinwooung Kim, Jae-Hwan Jung, Seong-Jun Kim, Sung-Ah Kim

Abstract:

Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel.

Keywords: building envelope, machine learning, perforated metal, multi-factor optimization, façade

Procedia PDF Downloads 224
3208 Applications of Building Information Modeling (BIM) in Knowledge Sharing and Management in Construction

Authors: Shu-Hui Jan, Shih-Ping Ho, Hui-Ping Tserng

Abstract:

Construction knowledge can be referred to and reused among involved project managers and job-site engineers to alleviate problems on a construction job-site and reduce the time and cost of solving problems related to constructability. This paper proposes a new methodology to provide sharing of construction knowledge by using the Building Information Modeling (BIM) approach. The main characteristics of BIM include illustrating 3D CAD-based presentations and keeping information in a digital format, and facilitation of easy updating and transfer of information in the 3D BIM environment. Using the BIM approach, project managers and engineers can gain knowledge related to 3D BIM and obtain feedback provided by job-site engineers for future reference. This study addresses the application of knowledge sharing management in the construction phase of construction projects and proposes a BIM-based Knowledge Sharing Management (BIMKSM) system for project managers and engineers. The BIMKSM system is then applied in a selected case study of a construction project in Taiwan to verify the proposed methodology and demonstrate the effectiveness of sharing knowledge in the BIM environment. The combined results demonstrate that the BIMKSM system can be used as a visual BIM-based knowledge sharing management platform by utilizing the BIM approach and web technology.

Keywords: construction knowledge management, building information modeling, project management, web-based information system

Procedia PDF Downloads 353
3207 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: anomaly detection, autoencoder, data centers, deep learning

Procedia PDF Downloads 194
3206 Use of Virtual Reality to Manage Anxiety in Patients on Neuro-Rehabilitation Unit

Authors: Anthony Cogrove, Shagun Saikia, Pradeep Deshpande

Abstract:

Introduction: Management of anxiety in rehabilitation setting often is a challenge and is usually done by using medication. The role of psychology and the creation of a quite environment in order to reduce stimulation helps in the process. We have a hypothesis that feedback from a calm visual imagery with soothing music help in reducing anxiety in these setting Aim-To explore the possibility of using virtual reality in the management of anxiety in a setting of neuro-rehabilitation unit. Method: Six patients in an inpatient rehabilitation unit with acquired brain injury subjected to a low stimulation calming visual motion picture with calm music. Six sessions were conducted over 6 weeks. All sessions were performed in a separate purpose built room in the unit. . A cohort of 6 people with various neurological conditions were involved in 6 sessions of 30 minutes during their inpatient rehabilitation. They reported benefit from using the virtual reality environment in reducing their anxiety. Results: All reported improvement in their anxiety levels. They felt there was a calming effect of the session. There was a sense of feeling of self empowerment on direct questioning. Conclusion: Virtual reality environment can aid the traditional rehabilitation techniques used to manage the levels of anxiety experienced by people with acquired brain injury undergoing inpatient rehabilitation.

Keywords: neurological rehabilitation, virtual reality, anxiety, calming environment

Procedia PDF Downloads 112
3205 Surface Modification of Poly High Internal Phase Emulsion by Solution Plasma Process for CO2 Adsorption

Authors: Mookyada Mankrut, Manit Nithitanakul

Abstract:

An increase in the amount of atmospheric carbon dioxide (CO2) resulting from anthropogenic CO2 emission has been a concerned problem so far. Adsorption using porous materials is feasible way to reduce the content of CO2 emission into the atmosphere due to several advantages: low energy consumption in regeneration process, low-cost raw materials and, high CO2 adsorption capacity. In this work, the porous poly(divinylbenzene) (poly(DVB)) support was synthesized under high internal phase emulsion (HIPE) polymerization then modified with polyethyleneimine (PEI) by using solution plasma process. These porous polymers were then used as adsorbents for CO2 adsorption study. All samples were characterized by some techniques: Fourier transform infrared spectroscopy (FT-IR), scanning electron spectroscopy (SEM), water contact angle measurement and, surface area analyzer. The results of FT-IR and a decrease in contact angle, pore volume and, surface area of PEI-loaded materials demonstrated that surface of poly(DVB) support was modified. In other words, amine groups were introduced to poly(DVB) surface. In addition, not only the outer surface of poly(DVB) adsorbent was modified, but also the inner structure as shown by FT-IR study. As a result, PEI-loaded materials exhibited higher adsorption capacity, comparing with those of the unmodified poly(DVB) support.

Keywords: polyHIPEs, CO2 adsorption, solution plasma process, high internal phase emulsion

Procedia PDF Downloads 273
3204 Maximizing Bidirectional Green Waves for Major Road Axes

Authors: Christian Liebchen

Abstract:

Both from an environmental perspective and with respect to road traffic flow quality, planning so-called green waves along major road axes is a well-established target for traffic engineers. For one-way road axes (e.g. the Avenues in Manhattan), this is a trivial downstream task. For bidirectional arterials, the well-known necessary condition for establishing a green wave in both directions is that the driving times between two subsequent crossings must be an integer multiple of half of the cycle time of the signal programs at the nodes. In this paper, we propose an integer linear optimization model to establish fixed-time green waves in both directions that are as long and as wide as possible, even in the situation where the driving time condition is not fulfilled. In particular, we are considering an arterial along whose nodes separate left-turn signal groups are realized. In our computational results, we show that scheduling left-turn phases before or after the straight phases can reduce waiting times along the arterial. Moreover, we show that there is always a solution with green waves in both directions that are as long and as wide as possible, where absolute priority is put on just one direction. Compared to optimizing both directions together, establishing an ideal green wave into one direction can only provide suboptimal quality when considering prioritized parts of a green band (e.g., first few seconds).

Keywords: traffic light coordination, synchronization, phase sequencing, green waves, integer programming

Procedia PDF Downloads 117
3203 A Recommender System for Dynamic Selection of Undergraduates' Elective Courses

Authors: Adewale O. Ogunde, Emmanuel O. Ajibade

Abstract:

The task of selecting a few elective courses from a variety of available elective courses has been a difficult one for many students over the years. In many higher institutions, guidance and counselors or level advisers are usually employed to assist the students in picking the right choice of courses. In reality, these counselors and advisers are most times overloaded with too many students to attend to, and sometimes they do not have enough time for the students. Most times, the academic strength of the student based on past results are not considered in the new choice of electives. Recommender systems implement advanced data analysis techniques to help users find the items of their interest by producing a predicted likeliness score or a list of top recommended items for a given active user. Therefore, in this work, a collaborative filtering-based recommender system that will dynamically recommend elective courses to undergraduate students based on their past grades in related courses was developed. This approach employed the use of the k-nearest neighbor algorithm to discover hidden relationships between the related courses passed by students in the past and the currently available elective courses. Real students’ results dataset was used to build and test the recommendation model. The developed system will not only improve the academic performance of students, but it will also help reduce the workload on the level advisers and school counselors.

Keywords: collaborative filtering, elective courses, k-nearest neighbor algorithm, recommender systems

Procedia PDF Downloads 165
3202 Perception of Risks of the Telecommunication Towers in Malaysia: A Qualitative Inquiry

Authors: Y. Kamarulzaman, A. Madun, F. D. Yusop, N. Abdullah, N. K. Hoong

Abstract:

In 2011, the Malaysian Government has initiated a nationwide project called 1BestariNet which will adopt the using of technology in teaching and learning, resulting in the construction of telecommunication towers inside the public schools’ premise. Using qualitative approach, this study investigated public perception of risks associated with the project, particularly the telecommunication towers. Data collection involved observation and in-depth interviews with 22 individuals consist of a segment of public that was anxious about the risks of radio frequency electromagnetic field (RFEMF) which include two employees of telecommunication companies (telcos) and five employees of Government agencies. Observation of the location of the towers at 10 public schools, a public forum, and media reports provide valuable information in our analysis. The study finds that the main concern is related to the health risks. This study also shows that it is not easy for the Government to manage public perception mainly because it involves public trust. We find that risk perception is related with public trust, as well as the perceived benefits and level of knowledge. Efficient communication and continuous engagement with the local communities help to build and maintain public trust, reduce public fear and anxiety, hence mitigating the risk perception among the public.

Keywords: risk perception, risk communication, trust, telecommunication tower, radio frequency electromagnetic field (RFEMF)

Procedia PDF Downloads 320
3201 Infilling Strategies for Surrogate Model Based Multi-disciplinary Analysis and Applications to Velocity Prediction Programs

Authors: Malo Pocheau-Lesteven, Olivier Le Maître

Abstract:

Engineering and optimisation of complex systems is often achieved through multi-disciplinary analysis of the system, where each subsystem is modeled and interacts with other subsystems to model the complete system. The coherence of the output of the different sub-systems is achieved through the use of compatibility constraints, which enforce the coupling between the different subsystems. Due to the complexity of some sub-systems and the computational cost of evaluating their respective models, it is often necessary to build surrogate models of these subsystems to allow repeated evaluation these subsystems at a relatively low computational cost. In this paper, gaussian processes are used, as their probabilistic nature is leveraged to evaluate the likelihood of satisfying the compatibility constraints. This paper presents infilling strategies to build accurate surrogate models of the subsystems in areas where they are likely to meet the compatibility constraint. It is shown that these infilling strategies can reduce the computational cost of building surrogate models for a given level of accuracy. An application of these methods to velocity prediction programs used in offshore racing naval architecture further demonstrates these method's applicability in a real engineering context. Also, some examples of the application of uncertainty quantification to field of naval architecture are presented.

Keywords: infilling strategy, gaussian process, multi disciplinary analysis, velocity prediction program

Procedia PDF Downloads 157
3200 Artificial Intelligence and Machine Vision-Based Defect Detection Methodology for Solid Rocket Motor Propellant Grains

Authors: Sandip Suman

Abstract:

Mechanical defects (cracks, voids, irregularities) in rocket motor propellant are not new and it is induced due to various reasons, which could be an improper manufacturing process, lot-to-lot variation in chemicals or just the natural aging of the products. These defects are normally identified during the examination of radiographic films by quality inspectors. However, a lot of times, these defects are under or over-classified by human inspectors, which leads to unpredictable performance during lot acceptance tests and significant economic loss. The human eye can only visualize larger cracks and defects in the radiographs, and it is almost impossible to visualize every small defect through the human eye. A different artificial intelligence-based machine vision methodology has been proposed in this work to identify and classify the structural defects in the radiographic films of rocket motors with solid propellant. The proposed methodology can extract the features of defects, characterize them, and make intelligent decisions for acceptance or rejection as per the customer requirements. This will automatize the defect detection process during manufacturing with human-like intelligence. It will also significantly reduce production downtime and help to restore processes in the least possible time. The proposed methodology is highly scalable and can easily be transferred to various products and processes.

Keywords: artificial intelligence, machine vision, defect detection, rocket motor propellant grains

Procedia PDF Downloads 98
3199 Indoor Air Pollution: A Major Threat to Human Health

Authors: Pooja Rawat, Rakhi Tyagi

Abstract:

Globally, almost 3 billion people rely on biomass (wood, charcoal, dung and crop residues) and coal as their primary source of domestic energy. Cooking and heating with solid fuels on open fire give rise to major pollutants. Women are primarily affected by these pollutants as they spend most of their time in the house. The WHO World Health Report 2002 estimates that indoor air pollution (IAP) is responsible for 2.7% of the loss of disability adjusted life years (DALYs) worldwide and 3.7% in high mortality developing countries. Indoor air pollution has the potential to not only impact health, but also impact the general economic well-being of the household. Exposure to high level of household pollution lead to acute and chronic respiratory conditions (e.g.: pneumonia, chronic obstructive pulmonary disease, lung cancer and cataract). There has been many strategies for reducing IAP like subsidize cleaner fuel technologies, for example use of kerosene rather than traditional biomass fuels. Another example is development, promotion of 'improved cooking stoves'. India, likely ranks second- distributing over 12 million improved stoves in the first seven years of a national program to develop. IAP should be reduced by understanding the welfare effects of reducing IAP within households and to understanding the most cost effective way to reduce it.

Keywords: open fire, indoor pollution, lung diseases, indoor air pollution

Procedia PDF Downloads 298
3198 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model

Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao

Abstract:

Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.

Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization

Procedia PDF Downloads 128
3197 For Single to Multilayer Polyvinylidene Fluoride Based Polymer for Electro-Caloric Cooling

Authors: Nouh Zeggai, Lucas Debrux, Fabien Parrain, Brahim Dkhil, Martino Lobue, Morgan Almanza

Abstract:

Refrigeration and air conditioning are some of the most used energies in our daily life, especially vapor compression refrigeration. Electrocaloric material might appears as an alternative towards solid-state cooling. polyvinylidene fluoride (PVDF) based polymer has shown promising adiabatic temperature change (∆T) and entropy change (∆S). There is practically no limit to the electric field that can be applied, except the one that the material can withstand. However, when working with a large surface as required in a device, the chance to have a defect is larger and can drastically reduce the voltage breakdown, thus reducing the electrocaloric properties. In this work, we propose to study how the characteristic of a single film are transposed when going to multilayer. The laminator and the hot press appear as two interesting processes that have been investigating to achieve a multilayer film. The study is mainly focused on the breakdown field and the adiabatic temperature change, but the phase and crystallinity have also been measured. We process one layer-based PVDF and assemble them to obtain a multilayer. Pressing at hot temperature method and lamination were used for the production of the thin films. The multilayer film shows higher breakdown strength, temperature change, and crystallinity (beta phases) using the hot press technique.

Keywords: PVDF-TrFE-CFE, multilayer, electrocaloric effect, hot press, cooling device

Procedia PDF Downloads 170