Search results for: symmetric sign patterns
418 A Comparative Case Study of Institutional Work in Public Sector Organizations: Creating Knowledge Management Practice
Authors: Dyah Adi Sriwahyuni
Abstract:
Institutional work has become a prominent and contemporary institutional theory perspective in organization studies. A wealth of studies in organizations have explored actor activities in creating, maintaining, and disrupting institutions at the field level. However, the exploration of the work of actors in creating new management practices at the organizational level has been somewhat limited. The current institutional work literature mostly describes the work of actors at the field level and ignores organizational actors who work to realize management practices. Organizational actors here are defined as actors in organizations who work to institutionalize a particular management practice within the organizations. The extant literature has also generalized the types of management practices, which meant overlooking the unique characteristics of each management fashion as well as a management practice. To fill these gaps, this study aims to provide empirical evidence so as to contribute theoretically to institutional work through a comparative case study on organizational actors’ creation of knowledge management (KM) practice in two public sector organizations in Indonesia. KM is a contemporary management practice employed to manage individual and organizational knowledge in order to improve organizational performance. This practice presents a suitable practical setting with which to provide a rich understanding of the organizational actors’ institutional work and their connection with technology. Drawing on and extending the work of Perkmann and Spicer (2008), this study explores the forms of institutional work performed by organizational actors, including their motivation, skills, challenges, and opportunities. The primary data collection is semi-structured interviews with knowledgeable actors and document analysis for validity and triangulation. Following Eisenhardt's cross-case patterns, the researcher analyzed the collected data focusing on within-group similarities and intergroup differences. The researcher coded interview data using NVivo and used documents to corroborate the findings. The study’s findings add to the wealth of institutional theory literature in organization studies, particularly institutional work related to management practices. This study builds a theory about the work of organizational actors in creating knowledge management practices. Using the perspective of institutional work, research can show the roles of the various actors involved, their practices, and their relationship to technology (materiality), not only focusing on actors with a power which has been the theorizing of institutional entrepreneurship. The development of knowledge management practices in the Indonesian public sector is also a significant additional contribution, given that the current KM literature is dominated by conceptualizing the KM framework and the impact of KM on organizations. The public sector, which is the research setting, also provides important lessons on how actors in a highly institutionalized context are creating an institution, in this case, a knowledge management practice.Keywords: institutional work, knowledge management, case study, public sector organizations
Procedia PDF Downloads 119417 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement
Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes
Abstract:
Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology
Procedia PDF Downloads 80416 A Longitudinal Study of Social Engagement in Classroom in Children with Autism Spectrum Disorder
Authors: Cecile Garry, Katia Rovira, Julie Brisson
Abstract:
Autism Spectrum Disorder (ASD) is defined by a qualitative and quantitative impairment of social interaction. Indeed early intervention programs, such as the Early Start Denver Model (ESDM), aimed at encouraging the development of social skills. In classroom, the children need to be socially engaged to learn. Early intervention programs can thus be implemented in kindergarten schools. In these schools, ASD children have more opportunities to interact with their peers or adults than in elementary schools. However, the preschool children with ASD are less socially engaged than their typically developing peers in the classroom. They initiate, respond and maintain less the social interactions. In addition, they produce more responses than initiations. When they interact, the non verbal communication is more used than verbal or symbolic communication forms and they are more engaged with adults than with peers. Nevertheless, communicative patterns may vary according to the clinical profiles of ASD children. Indeed, the ASD children with better cognitive skills interact more with their peers and use more symbolic communication than the ASD children with a low cognitive level. ASD children with the less severe symptoms use more the verbal communication than ASD children with the more severe symptoms. Small groups and structured activities encourage coordinated joint engagement episodes in ASD children. Our goal is to evaluate ASD children’s social engagement development in class, with their peers or adults, during dyadic or group activities. Participants were 19 preschool children with ASD aged from 3 to 6 years old that benefited of an early intervention in special kindergarten schools. Severity of ASD symptoms was measured with the CARS at the beginning of the follow-up. Classroom situations of interaction were recorded during 10 minutes (5 minutes of dyadic interaction and 5 minutes of a group activity), every 2 months, during 10 months. Social engagement behaviors of children, including initiations, responses and imitation, directed to a peer or an adult, were then coded. The Observer software (Noldus) that allows to annotate behaviors was the coding system used. A double coding was conducted and revealed a good inter judges fidelity. Results show that ASD children were more often and longer socially engaged in dyadic than in groups situations. They were also more engaged with adults than with peers. Children with the less severe symptoms of ASD were more socially engaged in groups situations than children with the more severe symptoms of ASD. Then, ASD children with the less severe symptoms of ASD were more engaged with their peers than ASD children with the more severe symptoms of ASD. However, the engagement frequency increased during the 10 month of follow-up but only for ASD children with the more severe symptoms at the beginning. To conclude, these results highlighted the necessity of individualizing early intervention programs according to the clinical profile of the child.Keywords: autism spectrum disorder, preschool children, developmental psychology, early interventions, social interactions
Procedia PDF Downloads 159415 Efficacy of Corporate Social Responsibility in Corporate Governance Structures of Family Owned Business Groups in India
Authors: Raveena Naz
Abstract:
The concept of ‘Corporate Social Responsibility’ (CSR) has often relied on firms thinking beyond their economic interest despite the larger debate of shareholder versus stakeholder interest. India gave legal recognition to CSR in the Companies Act, 2013 which promises better corporate governance. CSR in India is believed to be different for two reasons: the dominance of family business and the history of practice of social responsibility as a form of philanthropy (mainly among the family business). This paper problematises the actual structure of business houses in India and the role of CSR in India. When the law identifies each company as a separate business entity, the economics of institutions emphasizes the ‘business group’ consisting of a plethora of firms as the institutional organization of business. The capital owned or controlled by the family group is spread across the firms through the interholding (interlocked holding) structures. This creates peculiar implications for CSR legislation in India. The legislation sets criteria for individual firms to undertake liability of mandatory CSR if they are above a certain threshold. Within this framework, the largest family firms which are all part of family owned business groups top the CSR expenditure list. The interholding structures, common managers, auditors and series of related party transactions among these firms help the family to run the business as a ‘family business’ even when the shares are issued to the public. This kind of governance structure allows family owned business group to show mandatory compliance of CSR even when they actually spend much less than what is prescribed by law. This aspect of the family firms is not addressed by the CSR legislation in particular or corporate governance legislation in general in India. The paper illustrates this with an empirical study of one of the largest family owned business group in India which is well acclaimed for its CSR activities. The individual companies under the business group are identified, shareholding patterns explored, related party transactions investigated, common managing authorities are identified; and assets, liabilities and profit/loss accounting practices are analysed. The data has been mainly collected from mandatory disclosures in the annual reports and financial statements of the companies within the business group accessed from the official website of the ultimate controlling authority. The paper demonstrates how the business group through these series of shareholding network reduces its legally mandated CSR liability. The paper thus indicates the inadequacy of CSR legislation in India because the unit of compliance is an individual firm and it assumes that each firm is independent and only connected to each other through market dealings. The law does not recognize the inter-connections of firms in corporate governance structures of family owned business group and hence is inadequate in its design to effect the threshold level of CSR expenditure. This is the central argument of the paper.Keywords: business group, corporate governance, corporate social responsibility, family firm
Procedia PDF Downloads 280414 Analyzing Bridge Response to Wind Loads and Optimizing Design for Wind Resistance and Stability
Authors: Abdul Haq
Abstract:
The goal of this research is to better understand how wind loads affect bridges and develop strategies for designing bridges that are more stable and resistant to wind. The effect of wind on bridges is essential to their safety and functionality, especially in areas that are prone to high wind speeds or violent wind conditions. The study looks at the aerodynamic forces and vibrations caused by wind and how they affect bridge construction. Part of the research method involves first understanding the underlying ideas influencing wind flow near bridges. Computational fluid dynamics (CFD) simulations are used to model and forecast the aerodynamic behaviour of bridges under different wind conditions. These models incorporate several factors, such as wind directionality, wind speed, turbulence intensity, and the influence of nearby structures or topography. The results provide significant new insights into the loads and pressures that wind places on different bridge elements, such as decks, pylons, and connections. Following the determination of the wind loads, the structural response of bridges is assessed. By simulating their dynamic behavior under wind-induced forces, Finite Element Analysis (FEA) is used to model the bridge's component parts. This work contributes to the understanding of which areas are at risk of experiencing excessive stresses, vibrations, or oscillations due to wind excitations. Because the bridge has inherent modes and frequencies, the study considers both static and dynamic responses. Various strategies are examined to maximize the design of bridges to withstand wind. It is possible to alter the bridge's geometry, add aerodynamic components, add dampers or tuned mass dampers to lessen vibrations, and boost structural rigidity. Through an analysis of several design modifications and their effectiveness, the study aims to offer guidelines and recommendations for wind-resistant bridge design. In addition to the numerical simulations and analyses, there are experimental studies. In order to assess the computational models and validate the practicality of proposed design strategies, scaled bridge models are tested in a wind tunnel. These investigations help to improve numerical models and prediction precision by providing valuable information on wind-induced forces, pressures, and flow patterns. Using a combination of numerical models, actual testing, and long-term performance evaluation, the project aims to offer practical insights and recommendations for building wind-resistant bridges that are secure, long-lasting, and comfortable for users.Keywords: wind effects, aerodynamic forces, computational fluid dynamics, finite element analysis
Procedia PDF Downloads 67413 Impact of Financial and Nutrition Support on Blood Health, Dietary Intake, and Well-Being among Female Student-Athletes
Authors: Kaila A. Vento
Abstract:
Within the field of sports science, financial situations have been reported as a key barrier in purchasing high-quality foods. A lack of proper nutrition leads to insecurities of health, impairs training, and diminishes optimal performances. Consequently, insufficient nutrient intake, disordered eating patterns, and eating disorders may arise, leading to poor health and well-being. Athletic scholarships, nutrition resources, and meal programs are available, yet are disproportionally allocated, favoring male sports, Caucasian athletes, and higher sport levels. Direct athlete finances towards nutrition at various sport levels and the role race influences aid received has yet to be examined. Additionally, a diverse female athlete population is missing in the sports science literature, specifically in nutrition. To address this gap, the current project assesses how financial and nutrition support and nutrition knowledge impacts physical health, dietary intake, and overall quality of life of a diverse sample of female athletes at the National Collegiate Athletic Association (NCAA), National Junior Collegiate Athletic Association (NJCAA), and cub sport levels. The project will identify differences in financial support in relation to race, as well. Approximately (N = 120) female athletes will participate in a single 30-minute lab visit. At this visit, body composition (i.e., height, weight, body mass index, and fat percent), blood health indicators (fasted blood glucose and lipids), and resting blood pressure are measured. In addition, three validated questionnaires pertaining to nutrition knowledge (Sports Nutrition Knowledge Questionnaire; SNKQ), dietary intake (Rapid Eating Assessment for Participants; REAP), and quality of life (World Health Organization Quality of Life Brief; WHOQL-B) are gathered. Body composition and blood health indicators will be compared with the results of self-reported sports nutrition knowledge, dietary intake, and quality of life questionnaires. It is hypothesized that 1) financial and nutrition support and nutrition knowledge will differ between the sport levels and 2) financial and nutrition support and nutrition knowledge will have a positive association with quality of dietary intake and blood health indicators, 3) financial and nutrition support will differ significantly among racial background across the various competition levels, and 4) dietary intake will influence blood health indicators and quality of life. The findings from this study could have positive implications on athletic associations' policies on equity of financial and nutrition support to improve the health and safety of all female athletes across several sport levels.Keywords: athlete, equity, finances, health, resources
Procedia PDF Downloads 106412 Assessment of the Effects of Urban Development on Urban Heat Islands and Community Perception in Semi-Arid Climates: Integrating Remote Sensing, GIS Tools, and Social Analysis - A Case Study of the Aures Region (Khanchela), Algeria
Authors: Amina Naidja, Zedira Khammar, Ines Soltani
Abstract:
This study investigates the impact of urban development on the urban heat island (UHI) effect in the semi-arid Aures region of Algeria, integrating remote sensing data with statistical analysis and community surveys to examine the interconnected environmental and social dynamics. Using Landsat 8 satellite imagery, temporal variations in the Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and land use/land cover (LULC) changes are analyzed to understand patterns of urbanization and environmental transformation. These environmental metrics are correlated with land surface temperature (LST) data derived from remote sensing to quantify the UHI effect. To incorporate the social dimension, a structured questionnaire survey is conducted among residents in selected urban areas. The survey assesses community perceptions of urban heat, its impacts on daily life, health concerns, and coping strategies. Statistical analysis is employed to analyze survey responses, identifying correlations between demographic factors, socioeconomic status, and perceived heat stress. Preliminary findings reveal significant correlations between built-up areas (NDBI) and higher LST, indicating the contribution of urbanization to local warming. Conversely, areas with higher vegetation cover (NDVI) exhibit lower LST, highlighting the cooling effect of green spaces. Social survey results provide insights into how UHI affects different demographic groups, with vulnerable populations experiencing greater heat-related challenges. By integrating remote sensing analysis with statistical modeling and community surveys, this study offers a comprehensive understanding of the environmental and social implications of urban development in semi-arid climates. The findings contribute to evidence-based urban planning strategies that prioritize environmental sustainability and social well-being. Future research should focus on policy recommendations and community engagement initiatives to mitigate UHI impacts and promote climate-resilient urban development.Keywords: urban heat island, remote sensing, social analysis, NDVI, NDBI, LST, community perception
Procedia PDF Downloads 41411 Trajectories of Conduct Problems and Cumulative Risk from Early Childhood to Adolescence
Authors: Leslie M. Gutman
Abstract:
Conduct problems (CP) represent a major dilemma, with wide-ranging and long-lasting individual and societal impacts. Children experience heterogeneous patterns of conduct problems; based on the age of onset, developmental course and related risk factors from around age 3. Early childhood represents a potential window for intervention efforts aimed at changing the trajectory of early starting conduct problems. Using the UK Millennium Cohort Study (n = 17,206 children), this study (a) identifies trajectories of conduct problems from ages 3 to 14 years and (b) assesses the cumulative and interactive effects of individual, family and socioeconomic risk factors from ages 9 months to 14 years. The same factors according to three domains were assessed, including child (i.e., low verbal ability, hyperactivity/inattention, peer problems, emotional problems), family (i.e., single families, parental poor physical and mental health, large family size) and socioeconomic (i.e., low family income, low parental education, unemployment, social housing). A cumulative risk score for the child, family, and socioeconomic domains at each age was calculated. It was then examined how the cumulative risk scores explain variation in the trajectories of conduct problems. Lastly, interactive effects among the different domains of cumulative risk were tested. Using group-based trajectory modeling, four distinct trajectories were found including a ‘low’ problem group and three groups showing childhood-onset conduct problems: ‘school-age onset’; ‘early-onset, desisting’; and ‘early-onset, persisting’. The ‘low’ group (57% of the sample) showed a low probability of conducts problems, close to zero, from 3 to 14 years. The ‘early-onset, desisting’ group (23% of the sample) demonstrated a moderate probability of CP in early childhood, with a decline from 3 to 5 years and a low probability thereafter. The ‘early-onset, persistent’ group (8%) followed a high probability of conduct problems, which declined from 11 years but was close to 70% at 14 years. In the ‘school-age onset’ group, 12% of the sample showed a moderate probability of conduct problems from 3 and 5 years, with a sharp increase by 7 years, increasing to 50% at 14 years. In terms of individual risk, all factors increased the likelihood of being in the childhood-onset groups compared to the ‘low’ group. For cumulative risk, the socioeconomic domain at 9 months and 3 years, the family domain at all ages except 14 years and child domain at all ages were found to differentiate childhood-onset groups from the ‘low’ group. Cumulative risk at 9 months and 3 years did not differentiate between the ‘school-onset’ group and ‘low’ group. Significant interactions were found between the domains for the ‘early-onset, desisting group’ suggesting that low levels of risk in one domain may buffer the effects of high risk in another domain. The implications of these findings for preventive interventions will be highlighted.Keywords: conduct problems, cumulative risk, developmental trajectories, early childhood, adolescence
Procedia PDF Downloads 251410 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning
Authors: Saahith M. S., Sivakami R.
Abstract:
In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis
Procedia PDF Downloads 38409 Moving Target Defense against Various Attack Models in Time Sensitive Networks
Authors: Johannes Günther
Abstract:
Time Sensitive Networking (TSN), standardized in the IEEE 802.1 standard, has been lent increasing attention in the context of mission critical systems. Such mission critical systems, e.g., in the automotive domain, aviation, industrial, and smart factory domain, are responsible for coordinating complex functionalities in real time. In many of these contexts, a reliable data exchange fulfilling hard time constraints and quality of service (QoS) conditions is of critical importance. TSN standards are able to provide guarantees for deterministic communication behaviour, which is in contrast to common best-effort approaches. Therefore, the superior QoS guarantees of TSN may aid in the development of new technologies, which rely on low latencies and specific bandwidth demands being fulfilled. TSN extends existing Ethernet protocols with numerous standards, providing means for synchronization, management, and overall real-time focussed capabilities. These additional QoS guarantees, as well as management mechanisms, lead to an increased attack surface for potential malicious attackers. As TSN guarantees certain deadlines for priority traffic, an attacker may degrade the QoS by delaying a packet beyond its deadline or even execute a denial of service (DoS) attack if the delays lead to packets being dropped. However, thus far, security concerns have not played a major role in the design of such standards. Thus, while TSN does provide valuable additional characteristics to existing common Ethernet protocols, it leads to new attack vectors on networks and allows for a range of potential attacks. One answer to these security risks is to deploy defense mechanisms according to a moving target defense (MTD) strategy. The core idea relies on the reduction of the attackers' knowledge about the network. Typically, mission-critical systems suffer from an asymmetric disadvantage. DoS or QoS-degradation attacks may be preceded by long periods of reconnaissance, during which the attacker may learn about the network topology, its characteristics, traffic patterns, priorities, bandwidth demands, periodic characteristics on links and switches, and so on. Here, we implemented and tested several MTD-like defense strategies against different attacker models of varying capabilities and budgets, as well as collaborative attacks of multiple attackers within a network, all within the context of TSN networks. We modelled the networks and tested our defense strategies on an OMNET++ testbench, with networks of different sizes and topologies, ranging from a couple dozen hosts and switches to significantly larger set-ups.Keywords: network security, time sensitive networking, moving target defense, cyber security
Procedia PDF Downloads 73408 The Evolution of Man through Cranial and Dental Remains: A Literature Review
Authors: Rishana Bilimoria
Abstract:
Darwin’s insightful anthropological theory on the evolution drove mankind’s understanding of our existence in the natural world. Scientists consider analysis of dental and craniofacial remains to be pivotal in uncovering facts about our evolutionary journey. The resilient mineral content of enamel and dentine allow cranial and dental remains to be preserved for millions of years, making it an excellent resource not only in anthropology but other fields of research including forensic dentistry. This literature review aims to chronologically approach each ancestral species, reviewing Australopithecus, Paranthropus, Homo Habilis, Homo Rudolfensis, Homo Erectus, Homo Neanderthalis, and finally Homo Sapiens. Studies included in the review assess the features of cranio-dental remains that are of evolutionary importance, such as microstructure, microwear, morphology, and jaw biomechanics. The article discusses the plethora of analysis techniques employed to study dental remains including carbon dating, dental topography, confocal imaging, DPI scanning and light microscopy, in addition to microwear study and analysis of features such as coronal and root morphology, mandibular corpus shape, craniofacial anatomy and microstructure. Furthermore, results from these studies provide insight into the diet, lifestyle and consequently, ecological surroundings of each species. We can correlate dental fossil evidence with wider theories on pivotal global events, to help us contextualize each species in space and time. Examples include dietary adaptation during the period of global cooling converting the landscape of Africa from forest to grassland. Global migration ‘out of Africa’ can be demonstrated by enamel thickness variation, cranial vault variation over time demonstrates accommodation to larger brain sizes, and dental wear patterns can place the commencement of lithic technology in history. Conclusions from this literature review show that dental evidence plays a major role in painting a phenotypic and all rounded picture of species of the Homo genus, in particular, analysis of coronal morphology through carbon dating and dental wear analysis. With regards to analysis technique, whilst studies require larger sample sizes, this could be unrealistic since there are limitations in ability to retrieve fossil data. We cannot deny the reliability of carbon dating; however, there is certainly scope for the use of more recent techniques, and further evidence of their success is required.Keywords: cranio-facial, dental remains, evolution, hominids
Procedia PDF Downloads 165407 A Comparison of Tsunami Impact to Sydney Harbour, Australia at Different Tidal Stages
Authors: Olivia A. Wilson, Hannah E. Power, Murray Kendall
Abstract:
Sydney Harbour is an iconic location with a dense population and low-lying development. On the east coast of Australia, facing the Pacific Ocean, it is exposed to several tsunamigenic trenches. This paper presents a component of the most detailed assessment of the potential for earthquake-generated tsunami impact on Sydney Harbour to date. Models in this study use dynamic tides to account for tide-tsunami interaction. Sydney Harbour’s tidal range is 1.5 m, and the spring tides from January 2015 that are used in the modelling for this study are close to the full tidal range. The tsunami wave trains modelled include hypothetical tsunami generated from earthquakes of magnitude 7.5, 8.0, 8.5, and 9.0 MW from the Puysegur and New Hebrides trenches as well as representations of the historical 1960 Chilean and 2011 Tohoku events. All wave trains are modelled for the peak wave to coincide with both a low tide and a high tide. A single wave train, representing a 9.0 MW earthquake at the Puysegur trench, is modelled for peak waves to coincide with every hour across a 12-hour tidal phase. Using the hydrodynamic model ANUGA, results are compared according to the impact parameters of inundation area, depth variation and current speeds. Results show that both maximum inundation area and depth variation are tide dependent. Maximum inundation area increases when coincident with a higher tide, however, hazardous inundation is only observed for the larger waves modelled: NH90high and P90high. The maximum and minimum depths are deeper on higher tides and shallower on lower tides. The difference between maximum and minimum depths varies across different tidal phases although the differences are slight. Maximum current speeds are shown to be a significant hazard for Sydney Harbour; however, they do not show consistent patterns according to tide-tsunami phasing. The maximum current speed hazard is shown to be greater in specific locations such as Spit Bridge, a narrow channel with extensive marine infrastructure. The results presented for Sydney Harbour are novel, and the conclusions are consistent with previous modelling efforts in the greater area. It is shown that tide must be a consideration for both tsunami modelling and emergency management planning. Modelling with peak tsunami waves coinciding with a high tide would be a conservative approach; however, it must be considered that maximum current speeds may be higher on other tides.Keywords: emergency management, sydney, tide-tsunami interaction, tsunami impact
Procedia PDF Downloads 242406 Developing Pedagogy for Argumentation and Teacher Agency: An Educational Design Study in the UK
Authors: Zeynep Guler
Abstract:
Argumentation and the production of scientific arguments are essential components that are necessary for helping students become scientifically literate through engaging them in constructing and critiquing ideas. Incorporating argumentation into science classrooms is challenging and can be a long-term process for both students and teachers. Students have difficulty in engaging tasks that require them to craft arguments, evaluate them to seek weaknesses, and revise them. Teachers also struggle with facilitating argumentation when they have underdeveloped science practices, underdeveloped pedagogical knowledge for argumentation science teaching, or underdeveloped teaching practice with argumentation (or a combination of all three). Thus, there is a need to support teachers in developing pedagogy for science teaching as argumentation, planning and implementing teaching practice for facilitating argumentation and also in becoming more agentic in this regards. Looking specifically at the experience of agency within education, it is arguable that agency is necessary for teachers’ renegotiation of professional purposes and practices in the light of changing educational practices. This study investigated how science teachers develop pedagogy for argumentation both individually and with their colleagues and also how teachers become more agentic (or not) through the active engagement of their contexts-for-action that refer to this as an ecological understanding of agency in order to positively influence or change their practice and their students' engagement with argumentation over two academic years. Through educational design study, this study conducted with three secondary science teachers (key stage 3-year 7 students aged 11-12) in the UK to find out if similar or different patterns of developing pedagogy for argumentation and of becoming more agentic emerge as they engage in planning and implementing a cycle of activities during the practice of teaching science with argumentation. Data from video and audio-recording of classroom practice and open-ended interviews with the science teachers were analysed using content analysis. The findings indicated that all the science teachers perceived strong agency in their opportunities to develop and apply pedagogical practices within the classroom. The teachers were pro-actively shaping their practices and classroom contexts in ways that were over and above the amendments to their pedagogy. They demonstrated some outcomes in developing pedagogy for argumentation and becoming more agentic in their teaching in this regards as a result of the collaboration with their colleagues and researcher; some appeared more agentic than others. The role of the collaboration between their colleagues was seen crucial for the teachers’ practice in the schools: close collaboration and support from other teachers in planning and implementing new educational innovations were seen as crucial for the development of pedagogy and becoming more agentic in practice. They needed to understand the importance of scientific argumentation but also understand how it can be planned and integrated into classroom practice. They also perceived constraint emerged from their lack of competence and knowledge in posing appropriate questions to help the students engage in argumentation, providing support for the students' construction of oral and written arguments.Keywords: argumentation, teacher professional development, teacher agency, students' construction of argument
Procedia PDF Downloads 133405 Forecasting Residential Water Consumption in Hamilton, New Zealand
Authors: Farnaz Farhangi
Abstract:
Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model
Procedia PDF Downloads 337404 Interculturalizing Ethiopian Universities: Between Initiation and Institutionalization
Authors: Desta Kebede Ayana, Lies Sercu, Demelash Mengistu
Abstract:
The study is set in Ethiopia, a sub-Saharan multilingual, multiethnic African country, which has seen a significant increase in the number of universities in recent years. The aim of this growth is to provide access to education for all cultural and linguistic groups across the country. However, there are challenges in promoting intercultural competence among students in this diverse context. The aim of the study is to investigate the interculturalization of Ethiopian Higher Education Institutions as perceived by university lecturers and administrators. In particular, the study aims to determine the level of support for this educational innovation and gather suggestions for its implementation and institutionalization. The researchers employed semi-structured interviews with administrators and lecturers from two large Ethiopian universities to gather data. Thematic analysis was utilized for coding and analyzing the interview data, with the assistance of the NVIVO software. The findings obtained from the grounded analysis of the interview data reveal that while there are opportunities for interculturalization in the curriculum and campus life, support for educational innovation remains low. Administrators and lecturers also emphasize the government's responsibility to prioritize interculturalization over other educational innovation goals. The study contributes to the existing literature by examining an under-researched population in an under-researched context. Additionally, the study explores whether Western perspectives of intercultural competence align with the African context, adding to the theoretical understanding of intercultural education. The data for this study was collected through semi-structured interviews conducted with administrators and lecturers from two large Ethiopian universities. The interviews allowed for an in-depth exploration of the participants' views on interculturalization in higher education. Thematic analysis was applied to the interview data, allowing for the identification and organization of recurring themes and patterns. The analysis was conducted using the NVIVO software, which aided in coding and analyzing the data. The study addresses the extent to which administrators and lecturers support the interculturalization of Ethiopian Higher Education Institutions. It also explores their suggestions for implementing and institutionalizing intercultural education, as well as their perspectives on the current level of institutionalization. The study highlights the challenges in interculturalizing Ethiopian universities and emphasizes the need for greater support and prioritization of intercultural education. It also underscores the importance of considering the African context when conceptualizing intercultural competence. This research contributes to the understanding of intercultural education in diverse contexts and provides valuable insights for policymakers and educational institutions aiming to promote intercultural competence in higher education settings.Keywords: administrators, educational change, Ethiopia, intercultural competence, lecturers
Procedia PDF Downloads 98403 HRCT of the Chest and the Role of Artificial Intelligence in the Evaluation of Patients with COVID-19
Authors: Parisa Mansour
Abstract:
Introduction: Early diagnosis of coronavirus disease (COVID-19) is extremely important to isolate and treat patients in time, thus preventing the spread of the disease, improving prognosis and reducing mortality. High-resolution computed tomography (HRCT) chest imaging and artificial intelligence (AI)-based analysis of HRCT chest images can play a central role in the treatment of patients with COVID-19. Objective: To investigate different chest HRCT findings in different stages of COVID-19 pneumonia and to evaluate the potential role of artificial intelligence in the quantitative assessment of lung parenchymal involvement in COVID-19 pneumonia. Materials and Methods: This retrospective observational study was conducted between May 1, 2020 and August 13, 2020. The study included 2169 patients with COVID-19 who underwent chest HRCT. HRCT images showed the presence and distribution of lesions such as: ground glass opacity (GGO), compaction, and any special patterns such as septal thickening, inverted halo, mark, etc. HRCT findings of the breast at different stages of the disease (early: andlt) 5 days, intermediate: 6-10 days and late stage: >10 days). A CT severity score (CTSS) was calculated based on the extent of lung involvement on HRCT, which was then correlated with clinical disease severity. Use of artificial intelligence; Analysis of CT pneumonia and quot; An algorithm was used to quantify the extent of pulmonary involvement by calculating the percentage of pulmonary opacity (PO) and gross opacity (PHO). Depending on the type of variables, statistically significant tests such as chi-square, analysis of variance (ANOVA) and post hoc tests were applied when appropriate. Results: Radiological findings were observed in HRCT chest in 1438 patients. A typical pattern of COVID-19 pneumonia, i.e., bilateral peripheral GGO with or without consolidation, was observed in 846 patients. About 294 asymptomatic patients were radiologically positive. Chest HRCT in the early stages of the disease mostly showed GGO. The late stage was indicated by such features as retinal enlargement, thickening and the presence of fibrous bands. Approximately 91.3% of cases with a CTSS = 7 were asymptomatic or clinically mild, while 81.2% of cases with a score = 15 were clinically severe. Mean PO and PHO (30.1 ± 28.0 and 8.4 ± 10.4, respectively) were significantly higher in the clinically severe categories. Conclusion: Because COVID-19 pneumonia progresses rapidly, radiologists and physicians should become familiar with typical TC chest findings to treat patients early, ultimately improving prognosis and reducing mortality. Artificial intelligence can be a valuable tool in treating patients with COVID-19.Keywords: chest, HRCT, covid-19, artificial intelligence, chest HRCT
Procedia PDF Downloads 63402 Production of Ferroboron by SHS-Metallurgy from Iron-Containing Rolled Production Wastes for Alloying of Cast Iron
Authors: G. Zakharov, Z. Aslamazashvili, M. Chikhradze, D. Kvaskhvadze, N. Khidasheli, S. Gvazava
Abstract:
Traditional technologies for processing iron-containing industrial waste, including steel-rolling production, are associated with significant energy costs, the long duration of processes, and the need to use complex and expensive equipment. Waste generated during the industrial process negatively affects the environment, but at the same time, it is a valuable raw material and can be used to produce new marketable products. The study of the effectiveness of self-propagating high-temperature synthesis (SHS) methods, which are characterized by the simplicity of the necessary equipment, the purity of the final product, and the high processing speed, is under the wide scientific and practical interest to solve the set problem. The work presents technological aspects of the production of Ferro boron by the method of SHS - metallurgy from iron-containing wastes of rolled production for alloying of cast iron and results of the effect of alloying element on the degree of boron assimilation with liquid cast iron. Features of Fe-B system combustion have been investigated, and the main parameters to control the phase composition of synthesis products have been experimentally established. Effect of overloads on patterns of cast ligatures formation and mechanisms structure formation of SHS products was studied. It has been shown that an increase in the content of hematite Fe₂O₃ in iron-containing waste leads to an increase in the content of phase FeB and, accordingly, the amount of boron in the ligature. Boron content in ligature is within 3-14%, and the phase composition of obtained ligatures consists of Fe₂B and FeB phases. Depending on the initial composition of the wastes, the yield of the end product reaches 91 - 94%, and the extraction of boron is 70 - 88%. Combustion processes of high exothermic mixtures allow to obtain a wide range of boron-containing ligatures from industrial wastes. In view of the relatively low melting point of the obtained SHS-ligature, the positive dynamics of boron absorption by liquid iron is established. According to the obtained data, the degree of absorption of the ligature by alloying gray cast iron at 1450°C is 80-85%. When combined with the treatment of liquid cast iron with magnesium, followed by alloying with the developed ligature, boron losses are reduced by 5-7%. At that, uniform distribution of boron micro-additives in the volume of treated liquid metal is provided. Acknowledgment: This work was supported by Shota Rustaveli Georgian National Science Foundation of Georgia (SRGNSFG) under the GENIE project (grant number № CARYS-19-802).Keywords: self-propagating high-temperature synthesis, cast iron, industrial waste, ductile iron, structure formation
Procedia PDF Downloads 123401 Time to Retire Rubber Crumb: How Soft Fall Playgrounds are Threatening Australia’s Great Barrier Reef
Authors: Michelle Blewitt, Scott P. Wilson, Heidi Tait, Juniper Riordan
Abstract:
Rubber crumb is a physical and chemical pollutant of concern for the environment and human health, warranting immediate investigations into its pathways to the environment and potential impacts. This emerging microplastic is created by shredding end-of-life tyres into ‘rubber crumb’ particles between 1-5mm used on synthetic turf fields and soft-fall playgrounds as a solution to intensifying tyre waste worldwide. Despite having known toxic and carcinogenic properties, studies into the transportation pathways and movement patterns of rubber crumbs from these surfaces remain in their infancy. To address this deficit, AUSMAP, the Australian Microplastic Assessment Project, in partnership with the Tangaroa Blue Foundation, conducted a study to quantify crumb loss from soft-fall surfaces. To our best knowledge, this is the first of its kind, with funding for the audits being provided by the Australian Government’s Reef Trust. Sampling occurred at 12 soft-fall playgrounds within the Great Barrier Reef Catchment Area on Australia’s North-East coast, in close proximity to the United Nations World Heritage Listed Reef. Samples were collected over a 12-month period using randomized sediment cores at 0, 2 and 4 meters away from the playground edge along a 20-meter transect. This approach facilitated two objectives pertaining to particle movement: to establish that crumb loss is occurring and that it decreases with distance from the soft-fall surface. Rubber crumb abundance was expressed as a total value and used to determine an expected average of rubber crumb loss per m2. An Analysis of Variance (ANOVA) was used to compare the differences in crumb abundance at each interval from the playground. Site characteristics, including surrounding sediment type, playground age, degree of ultra-violet exposure and amount of foot traffic, were additionally recorded for the comparison. Preliminary findings indicate that crumb is being lost at considerable rates from soft-fall playgrounds in the region, emphasizing an urgent need to further examine it as a potential source of aquatic pollution, soil contamination and threat to individuals who regularly utilize these surfaces. Additional implications for the future of rubber crumbs as a fit-for-purpose recycling initiative will be discussed with regard to industry, governments and the economic burden of surface maintenance and/ or replacement.Keywords: microplastics, toxic rubber crumb, litter pathways, marine environment
Procedia PDF Downloads 91400 Unequal Traveling: How School District System and School District Housing Characteristics Shape the Duration of Families Commuting
Authors: Geyang Xia
Abstract:
In many countries, governments have responded to the growing demand for educational resources through school district systems, and there is substantial evidence that school district systems have been effective in promoting inter-district and inter-school equity in educational resources. However, the scarcity of quality educational resources has brought about varying levels of education among different school districts, making it a common choice for many parents to buy a house in the school district where a quality school is located, and they are even willing to bear huge commuting costs for this purpose. Moreover, this is evidenced by the fact that parents of families in school districts with quality education resources have longer average commute lengths and longer average commute distances than parents in average school districts. This "unequal traveling" under the influence of the school district system is more common in school districts at the primary level of education. This further reinforces the differential hierarchy of educational resources and raises issues of inequitable educational public services, education-led residential segregation, and gentrification of school district housing. Against this background, this paper takes Nanjing, a famous educational city in China, as a case study and selects the school districts where the top 10 public elementary schools are located. The study first identifies the spatio-temporal behavioral trajectory dataset of these high-quality school district households by using spatial vector data, decrypted cell phone signaling data, and census data. Then, by constructing a "house-school-work (HSW)" commuting pattern of the population in the school district where the high-quality educational resources are located, and based on the classification of the HSW commuting pattern of the population, school districts with long employment hours were identified. Ultimately, the mechanisms and patterns inherent in this unequal commuting are analyzed in terms of six aspects, including the centrality of school district location, functional diversity, and accessibility. The results reveal that the "unequal commuting" of Nanjing's high-quality school districts under the influence of the school district system occurs mainly in the peripheral areas of the city, and the schools matched with these high-quality school districts are mostly branches of prestigious schools in the built-up areas of the city's core. At the same time, the centrality of school district location and the diversity of functions are the most important influencing factors of unequal commuting in high-quality school districts. Based on the research results, this paper proposes strategies to optimize the spatial layout of high-quality educational resources and corresponding transportation policy measures.Keywords: school-district system, high quality school district, commuting pattern, unequal traveling
Procedia PDF Downloads 97399 Hydrological Challenges and Solutions in the Nashik Region: A Multi Tracer and Geochemistry Approach to Groundwater Management
Authors: Gokul Prasad, Pennan Chinnasamy
Abstract:
The degradation of groundwater resources, attributed to factors such as excessive abstraction and contamination, has emerged as a global concern. This study delves into the stable isotopes of water) in a hard-rock aquifer situated in the Upper Godavari watershed, an agriculturally rich region in India underlain by Basalt. The higher groundwater draft (> 90%) poses significant risks; comprehending groundwater sources, flow patterns, and their environmental impacts is pivotal for researchers and water managers. The region has faced five droughts in the past 20 years; four are categorized as medium. The recharge rates are variable and show a very minimum contribution to groundwater. The rainfall pattern shows vast variability, with the region receiving seasonal monsoon rainfall for just four months and the rest of the year experiencing minimal rainfall. This research closely monitored monsoon precipitation inputs and examined spatial and temporal fluctuations in δ18O and δ2H in both groundwater and precipitation. By discerning individual recharge events during monsoons, it became possible to identify periods when evaporation led to groundwater quality deterioration, characterized by elevated salinity and stable isotope values in the return flow. The locally derived meteoric water line (LMWL) (δ2H = 6.72 * δ18O + 1.53, r² = 0.6) provided valuable insights into the groundwater system. The leftward shift of the Nashik LMWL in relation to the GMWL and LMWL indicated groundwater evaporation (-33 ‰), supported by spatial variations in electrical conductivity (EC) data. Groundwater in the eastern and northern watershed areas exhibited higher salinity > 3000uS/cm, expanding > 40% of the area compared to the western and southern regions due to geological disparities (alluvium vs basalt). The findings emphasize meteoric precipitation as the primary groundwater source in the watershed. However, spatial variations in isotope values and chemical constituents indicate other contributing factors, including evaporation, groundwater source type, and natural or anthropogenic (specifically agricultural and industrial) contaminants. Therefore, the study recommends focused hydro geochemistry and isotope analysis in areas with strong agricultural and industrial influence for the development of holistic groundwater management plans for protecting the groundwater aquifers' quantity and quality.Keywords: groundwater quality, stable isotopes, salinity, groundwater management, hard-rock aquifer
Procedia PDF Downloads 47398 Cognitive Linguistic Features Underlying Spelling Development in a Second Language: A Case Study of L2 Spellers in South Africa
Authors: A. Van Staden, A. Tolmie, E. Vorster
Abstract:
Research confirms the multifaceted nature of spelling development and underscores the importance of both cognitive and linguistic skills that affect sound spelling development such as working and long-term memory, phonological and orthographic awareness, mental orthographic images, semantic knowledge and morphological awareness. This has clear implications for many South African English second language spellers (L2) who attempt to become proficient spellers. Since English has an opaque orthography, with irregular spelling patterns and insufficient sound/grapheme correspondences, L2 spellers can neither rely, nor draw on the phonological awareness skills of their first language (for example Sesotho and many other African languages), to assist them to spell the majority of English words. Epistemologically, this research is informed by social constructivism. In addition the researchers also hypothesized that the principles of the Overlapping Waves Theory was an appropriate lens through which to investigate whether L2 spellers could significantly improve their spelling skills via the implementation of an alternative route to spelling development, namely the orthographic route, and more specifically via the application of visual imagery. Post-test results confirmed the results of previous research that argues for the interactive nature of different cognitive and linguistic systems such as working memory and its subsystems and long-term memory, as learners were systematically guided to store visual orthographic images of words in their long-term lexicons. Moreover, the results have shown that L2 spellers in the experimental group (n = 9) significantly outperformed L2 spellers (n = 9) in the control group whose intervention involved phonological awareness (and coding) including the teaching of spelling rules. Consequently, L2 learners in the experimental group significantly improved in all the post-test measures included in this investigation, namely the four sub-tests of short-term memory; as well as two spelling measures (i.e. diagnostic and standardized measures). Against this background, the findings of this study look promising and have shown that, within a social-constructivist learning environment, learners can be systematically guided to apply higher-order thinking processes such as visual imagery to successfully store and retrieve mental images of spelling words from their output lexicons. Moreover, results from the present study could play an important role in directing research into this under-researched aspect of L2 literacy development within the South African education context.Keywords: English second language spellers, phonological and orthographic coding, social constructivism, visual imagery as spelling strategy
Procedia PDF Downloads 359397 Methylphenidate Use by Canadian Children and Adolescents and the Associated Adverse Reactions
Authors: Ming-Dong Wang, Abigail F. Ruby, Michelle E. Ross
Abstract:
Methylphenidate is a first-line treatment drug for attention deficit hyperactivity disorder (ADHD), a common mental health disorder in children and adolescents. Over the last several decades, the rate of children and adolescents using ADHD medication has been increasing in many countries. A recent study found that the prevalence of ADHD medication use among children aged 3-18 years increased in 13 different world regions between 2001 and 2015, where the absolute increase ranged from 0.02 to 0.26% per year. The goal of this study was to examine the use of methylphenidate in Canadian children and its associated adverse reactions. Methylphenidate use information among young Canadians aged 0-14 years was extracted from IQVIA data on prescriptions dispensed by pharmacies between April 2014 and June 2020. The adverse reaction information associated with methylphenidate use was extracted from the Canada Vigilance database for the same time period. Methylphenidate use trends were analyzed based on sex, age group (0-4 years, 5-9 years, and 10-14 years), and geographical location (province). The common classes of adverse reactions associated with methylphenidate use were sorted, and the relative risks associated with methylphenidate use as compared with two second-line amphetamine medications for ADHD were estimated. This study revealed that among Canadians aged 0-14 years, every 100 people used about 25 prescriptions (or 23,000 mg) of methylphenidate per year during the study period, and the use increased with time. Boys used almost three times more methylphenidate than girls. The amount of drug used was inversely associated with age: Canadians aged 10-14 years used nearly three times as many drugs compared to those aged 5-9 years. Seasonal methylphenidate use patterns were apparent among young Canadians, but the seasonal trends differed among the three age groups. Methylphenidate use varied from region to region, and the highest methylphenidate use was observed in Quebec, where the use of methylphenidate was at least double that of any other province. During the study period, Health Canada received 304 adverse reaction reports associated with the use of methylphenidate for Canadians aged 0-14 years. The number of adverse reaction reports received for boys was 3.5 times higher than that for girls. The three most common adverse reaction classes were psychiatric disorders, nervous system disorders and injury, poisoning procedural complications. The number one commonly reported adverse reaction for boys was aggression (11.2%), while for girls, it was a tremor (9.6%). The safety profile in terms of adverse reaction classes associated with methylphenidate use was similar to that of the selected control products. Methylphenidate is a commonly used pharmaceutical product in young Canadians, particularly in the province of Quebec. Boys used approximately three times more of this product as compared to girls. Future investigation is needed to determine what factors are associated with the observed geographic variations in Canada.Keywords: adverse reaction risk, methylphenidate, prescription trend, use variation
Procedia PDF Downloads 160396 Web and Smart Phone-based Platform Combining Artificial Intelligence and Satellite Remote Sensing Data to Geoenable Villages for Crop Health Monitoring
Authors: Siddhartha Khare, Nitish Kr Boro, Omm Animesh Mishra
Abstract:
Recent food price hikes may signal the end of an era of predictable global grain crop plenty due to climate change, population expansion, and dietary changes. Food consumption will treble in 20 years, requiring enormous production expenditures. Climate and the atmosphere changed owing to rainfall and seasonal cycles in the past decade. India's tropical agricultural relies on evapotranspiration and monsoons. In places with limited resources, the global environmental change affects agricultural productivity and farmers' capacity to adjust to changing moisture patterns. Motivated by these difficulties, satellite remote sensing might be combined with near-surface imaging data (smartphones, UAVs, and PhenoCams) to enable phenological monitoring and fast evaluations of field-level consequences of extreme weather events on smallholder agriculture output. To accomplish this technique, we must digitally map all communities agricultural boundaries and crop kinds. With the improvement of satellite remote sensing technologies, a geo-referenced database may be created for rural Indian agriculture fields. Using AI, we can design digital agricultural solutions for individual farms. Main objective is to Geo-enable each farm along with their seasonal crop information by combining Artificial Intelligence (AI) with satellite and near-surface data and then prepare long term crop monitoring through in-depth field analysis and scanning of fields with satellite derived vegetation indices. We developed an AI based algorithm to understand the timelapse based growth of vegetation using PhenoCam or Smartphone based images. We developed an android platform where user can collect images of their fields based on the android application. These images will be sent to our local server, and then further AI based processing will be done at our server. We are creating digital boundaries of individual farms and connecting these farms with our smart phone application to collect information about farmers and their crops in each season. We are extracting satellite-based information for each farm from Google earth engine APIs and merging this data with our data of tested crops from our app according to their farm’s locations and create a database which will provide the data of quality of crops from their location.Keywords: artificial intelligence, satellite remote sensing, crop monitoring, android and web application
Procedia PDF Downloads 100395 Plastic Pollution: Analysis of the Current Legal Framework and Perspectives on Future Governance
Authors: Giorgia Carratta
Abstract:
Since the beginning of mass production, plastic items have been crucial in our daily lives. Thanks to their physical and chemical properties, plastic materials have proven almost irreplaceable in a number of economic sectors such as packaging, automotive, building and construction, textile, and many others. At the same time, the disruptive consequences of plastic pollution have been progressively brought to light in all environmental compartments. The overaccumulation of plastics in the environment, and its adverse effects on habitats, wildlife, and (most likely) human health, represents a call for action to decision-makers around the globe. From a regulatory perspective, plastic production is an unprecedented challenge at all levels of governance. At the international level, the design of new legal instruments, the amendment of existing ones, and the coordination among the several relevant policy areas requires considerable effort. Under the pressure of both increasing scientific evidence and a concerned public opinion, countries seem to slowly move towards the discussion of a new international ‘plastic treaty.’ However, whether, how, and with which scopes such instrument would be adopted is still to be seen. Additionally, governments are establishing regional-basedstrategies, prone to consider the specificities of the plastic issue in a certain geographical area. Thanks to the new Circular Economy Action Plan, approved in March 2020 by the European Commission, EU countries are slowly but steadily shifting to a carbon neutral, circular economy in the attempt to reduce the pressure on natural resources and, parallelly, facilitate sustainable economic growth. In this context, the EU Plastic Strategy is promising to change the way plastic is designed, produced, used, and treated after consumption. In fact, only in the EU27 Member States, almost 26 million tons of plastic waste are generated herein every year, whose 24,9% is still destined to landfill. Positive effects of the Strategy also include a more effective protection of our environment, especially the marine one, the reduction of greenhouse gas emissions, a reduced need for imported fossil energy sources, more sustainable production and consumption patterns. As promising as it may sound, the road ahead is still long. The need to implement these measures in domestic legislations makes their outcome difficult to predict at the moment. An analysis of the current international and European Union legal framework on plastic pollution, binding, and voluntary instruments included, could serve to detect ‘blind spots’ in the current governance as well as to facilitate the development of policy interventions along the plastic value chain, where it appears more needed.Keywords: environmental law, European union, governance, plastic pollution, sustainability
Procedia PDF Downloads 108394 Coping with Incompatible Identities in Russia: Case of Orthodox Gays
Authors: Siuzan Uorner
Abstract:
The era of late modernity is characterized, on the one hand, by social disintegration, values of personal freedom, tolerance, and self-expression. Boundaries between the accessible and the elitist, normal and abnormal are blurring. On the other hand, traditional social institutions, such as religion (especially Russian Orthodox Church), exist, criticizing lifestyle and worldview other than conventionally structured canons. Despite the declared values and opportunities in late modern society, people's freedom is ambivalent. Personal identity and its aspects are becoming a subject of choice. Hence, combinations of identity aspects can be incompatible. Our theoretical framework is based on P. Ricoeur's concept of narrative identity and hermeneutics, E. Goffman’s theory of social stigma, self-presentation, discrepant roles and W. James lectures about varieties of religious experience. This paper aims to reconstruct ways of coping with incompatible identities of Orthodox gays (an extreme sampling of a combination of sexual orientation and religious identity in a heteronormative society). This study focuses on the discourse of Orthodox gay parishioners and ROC gay priests in Russia (sampling ‘hard to reach’ populations because of the secrecy of gay community in ROC and sensitivity of the topic itself). We conducted a qualitative research design, using in-depth personal semi-structured online-interviews. Recruiting of informants took place in 'Nuntiare et Recreare' (Russian movement of religious LGBT) page in VKontakte through the post with an invitation to participate in the research. In this work, we analyzed interview transcripts using axial coding. We chose the Grounded Theory methodology to construct a theory from empirical data and contribute to the growing body of knowledge in ways of harmonizing incompatible identities in late modern societies. The research has found that there are two types of conflicts Orthodox gays meet with: canonic contradictions (postulates of Scripture and its interpretations) and problems in social interaction, mainly with ROC priests and Orthodox parishioners. We have revealed semantic meanings of most commonly used words that appear in the narratives (words such as ‘love’, ‘sin’, ‘religion’ etc.). Finally, we have reconstructed biographical patterns of LGBT social movements’ involvement. This paper argues that all incompatibilities are harmonizing in the narrative itself. As Ricoeur has suggested, the narrative configuration allows the speaker to gather facts and events together and to compose causal relationships between them. Sexual orientation and religious identity are getting along and harmonizing in the narrative.Keywords: gay priests, incompatible identities, narrative identity, Orthodox gays, religious identity, ROC, sexual orientation
Procedia PDF Downloads 137393 Estimation of Soil Nutrient Content Using Google Earth and Pleiades Satellite Imagery for Small Farms
Authors: Lucas Barbosa Da Silva, Jun Okamoto Jr.
Abstract:
Precision Agriculture has long being benefited from crop fields’ aerial imagery. This important tool has allowed identifying patterns in crop fields, generating useful information to the production management. Reflectance intensity data in different ranges from the electromagnetic spectrum may indicate presence or absence of nutrients in the soil of an area. Different relations between the different light bands may generate even more detailed information. The knowledge of the nutrients content in the soil or in the crop during its growth is a valuable asset to the farmer that seeks to optimize its yield. However, small farmers in Brazil often lack the resources to access this kind information, and, even when they do, it is not presented in a comprehensive and/or objective way. So, the challenges of implementing this technology ranges from the sampling of the imagery, using aerial platforms, building of a mosaic with the images to cover the entire crop field, extracting the reflectance information from it and analyzing its relationship with the parameters of interest, to the display of the results in a manner that the farmer may take the necessary decisions more objectively. In this work, it’s proposed an analysis of soil nutrient contents based on image processing of satellite imagery and comparing its outtakes with commercial laboratory’s chemical analysis. Also, sources of satellite imagery are compared, to assess the feasibility of using Google Earth data in this application, and the impacts of doing so, versus the application of imagery from satellites like Landsat-8 and Pleiades. Furthermore, an algorithm for building mosaics is implemented using Google Earth imagery and finally, the possibility of using unmanned aerial vehicles is analyzed. From the data obtained, some soil parameters are estimated, namely, the content of Potassium, Phosphorus, Boron, Manganese, among others. The suitability of Google Earth Imagery for this application is verified within a reasonable margin, when compared to Pleiades Satellite imagery and to the current commercial model. It is also verified that the mosaic construction method has little or no influence on the estimation results. Variability maps are created over the covered area and the impacts of the image resolution and sample time frame are discussed, allowing easy assessments of the results. The final results show that easy and cheaper remote sensing and analysis methods are possible and feasible alternatives for the small farmer, with little access to technological and/or financial resources, to make more accurate decisions about soil nutrient management.Keywords: remote sensing, precision agriculture, mosaic, soil, nutrient content, satellite imagery, aerial imagery
Procedia PDF Downloads 175392 Enhancing AI for Global Impact: Conversations on Improvement and Societal Benefits
Authors: C. P. Chukwuka, E. V. Chukwuka, F. Ukwadi
Abstract:
This paper focuses on the advancement and societal impact of artificial intelligence (AI) systems. It explores the need for a theoretical framework in corporate governance, specifically in the context of 'hybrid' companies that have a mix of private and government ownership. The paper emphasizes the potential of AI to address challenges faced by these companies and highlights the importance of the less-explored state model in corporate governance. The aim of this research is to enhance AI systems for global impact and positive societal outcomes. It aims to explore the role of AI in refining corporate governance in hybrid companies and uncover nuanced insights into complex ownership structures. The methodology involves leveraging the capabilities of AI to address the challenges faced by hybrid companies in corporate governance. The researchers will analyze existing theoretical frameworks in corporate governance and integrate AI systems to improve problem-solving and understanding of intricate systems. The paper suggests that improved AI systems have the potential to shape a more informed and responsible corporate landscape. AI can uncover nuanced insights and navigate complex ownership structures in hybrid companies, leading to greater efficacy and positive societal outcomes. The theoretical importance of this research lies in the exploration of the role of AI in corporate governance, particularly in the context of hybrid companies. By integrating AI systems, the paper highlights the potential for improved problem-solving and understanding of intricate systems, contributing to a more informed and responsible corporate landscape. The data for this research will be collected from existing literature on corporate governance, specifically focusing on hybrid companies. Additionally, data on AI capabilities and their application in corporate governance will be collected. The collected data will be analyzed through a systematic review of existing theoretical frameworks in corporate governance. The researchers will also analyze the capabilities of AI systems and their potential application in addressing the challenges faced by hybrid companies. The findings will be synthesized and compared to identify patterns and potential improvements. The research concludes that AI systems have the potential to enhance corporate governance in hybrid companies, leading to greater efficacy and positive societal outcomes. By leveraging AI capabilities, nuanced insights can be uncovered, and complex ownership structures can be navigated, shaping a more informed and responsible corporate landscape. The findings highlight the importance of integrating AI in refining problem-solving and understanding intricate systems for global impact.Keywords: advancement, artificial intelligence, challenges, societal impact
Procedia PDF Downloads 56391 Integration of EEG and Motion Tracking Sensors for Objective Measure of Attention-Deficit Hyperactivity Disorder in Pre-Schoolers
Authors: Neha Bhattacharyya, Soumendra Singh, Amrita Banerjee, Ria Ghosh, Oindrila Sinha, Nairit Das, Rajkumar Gayen, Somya Subhra Pal, Sahely Ganguly, Tanmoy Dasgupta, Tanusree Dasgupta, Pulak Mondal, Aniruddha Adhikari, Sharmila Sarkar, Debasish Bhattacharyya, Asim Kumar Mallick, Om Prakash Singh, Samir Kumar Pal
Abstract:
Background: We aim to develop an integrated device comprised of single-probe EEG and CCD-based motion sensors for a more objective measure of Attention-deficit Hyperactivity Disorder (ADHD). While the integrated device (MAHD) relies on the EEG signal (spectral density of beta wave) for the assessment of attention during a given structured task (painting three segments of a circle using three different colors, namely red, green and blue), the CCD sensor depicts movement pattern of the subjects engaged in a continuous performance task (CPT). A statistical analysis of the attention and movement patterns was performed, and the accuracy of the completed tasks was analysed using indigenously developed software. The device with the embedded software, called MAHD, is intended to improve certainty with criterion E (i.e. whether symptoms are better explained by another condition). Methods: We have used the EEG signal from a single-channel dry sensor placed on the frontal lobe of the head of the subjects (3-5 years old pre-schoolers). During the painting of three segments of a circle using three distinct colors (red, green, and blue), absolute power for delta and beta EEG waves from the subjects are found to be correlated with relaxation and attention/cognitive load conditions. While the relaxation condition of the subject hints at hyperactivity, a more direct CCD-based motion sensor is used to track the physical movement of the subject engaged in a continuous performance task (CPT) i.e., separation of the various colored balls from one table to another. We have used our indigenously developed software for the statistical analysis to derive a scale for the objective assessment of ADHD. We have also compared our scale with clinical ADHD evaluation. Results: In a limited clinical trial with preliminary statistical analysis, we have found a significant correlation between the objective assessment of the ADHD subjects with that of the clinician’s conventional evaluation. Conclusion: MAHD, the integrated device, is supposed to be an auxiliary tool to improve the accuracy of ADHD diagnosis by supporting greater criterion E certainty.Keywords: ADHD, CPT, EEG signal, motion sensor, psychometric test
Procedia PDF Downloads 99390 Unsupervised Detection of Burned Area from Remote Sensing Images Using Spatial Correlation and Fuzzy Clustering
Authors: Tauqir A. Moughal, Fusheng Yu, Abeer Mazher
Abstract:
Land-cover and land-use change information are important because of their practical uses in various applications, including deforestation, damage assessment, disasters monitoring, urban expansion, planning, and land management. Therefore, developing change detection methods for remote sensing images is an important ongoing research agenda. However, detection of change through optical remote sensing images is not a trivial task due to many factors including the vagueness between the boundaries of changed and unchanged regions and spatial dependence of the pixels to its neighborhood. In this paper, we propose a binary change detection technique for bi-temporal optical remote sensing images. As in most of the optical remote sensing images, the transition between the two clusters (change and no change) is overlapping and the existing methods are incapable of providing the accurate cluster boundaries. In this regard, a methodology has been proposed which uses the fuzzy c-means clustering to tackle the problem of vagueness in the changed and unchanged class by formulating the soft boundaries between them. Furthermore, in order to exploit the neighborhood information of the pixels, the input patterns are generated corresponding to each pixel from bi-temporal images using 3×3, 5×5 and 7×7 window. The between images and within image spatial dependence of the pixels to its neighborhood is quantified by using Pearson product moment correlation and Moran’s I statistics, respectively. The proposed technique consists of two phases. At first, between images and within image spatial correlation is calculated to utilize the information that the pixels at different locations may not be independent. Second, fuzzy c-means technique is used to produce two clusters from input feature by not only taking care of vagueness between the changed and unchanged class but also by exploiting the spatial correlation of the pixels. To show the effectiveness of the proposed technique, experiments are conducted on multispectral and bi-temporal remote sensing images. A subset (2100×1212 pixels) of a pan-sharpened, bi-temporal Landsat 5 thematic mapper optical image of Los Angeles, California, is used in this study which shows a long period of the forest fire continued from July until October 2009. Early forest fire and later forest fire optical remote sensing images were acquired on July 5, 2009 and October 25, 2009, respectively. The proposed technique is used to detect the fire (which causes change on earth’s surface) and compared with the existing K-means clustering technique. Experimental results showed that proposed technique performs better than the already existing technique. The proposed technique can be easily extendable for optical hyperspectral images and is suitable for many practical applications.Keywords: burned area, change detection, correlation, fuzzy clustering, optical remote sensing
Procedia PDF Downloads 169389 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis
Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara
Abstract:
Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy
Procedia PDF Downloads 352