Search results for: spatial audio processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6337

Search results for: spatial audio processing

3337 When the Poor Do Not Matter: Environmental Justice and Solid Waste Management in Kinshasa, the Democratic Republic of Congo

Authors: N. S. Kubanza, D. Simatele, D. K. Das

Abstract:

The purpose of this paper is to understand the urban environmental problems in Kinshasa and the consequences of these for the poor. This paper particularly examines the concept of environmental injustice in solid waste management in Kinshasa, the capital of the Democratic Republic of Congo (DRC). The urban low-income communities in Kinshasa face multiple consequences of poor solid waste management associated with unhealthy living conditions. These situations stemmed from overcrowding, poor sanitary, accumulation of solid waste, resulting in the prevalence of water and air borne diseases. Using a mix of reviewed archival records, scholarly literature, a semi-structured interview conducted with the local community members and qualitative surveys among stakeholders; it was found that solid waste management challenge in Kinshasa is not only an environmental and health risk issues, but also, a problem that generates socio-spatial disparities in the distribution of the solid waste burden. It is argued in the paper that the urban poor areas in Kinshasa are often hardest affected by irregularities of waste collection. They lack sanitary storage capacities and have undermined organizational capacity for collective action within solid waste management. In view of these observations, this paper explores mechanisms and stakeholders’ engagement necessary to lessen environmental injustice in solid waste management (SWM) in Kinshasa.

Keywords: environmental justice, solid waste management, urban environmental problems, urban poor

Procedia PDF Downloads 264
3336 Investigating the Relationship between Bank and Cloud Provider

Authors: Hatim Elhag

Abstract:

Banking and Financial Service Institutions are possibly the most advanced in terms of technology adoption and use it as a key differentiator. With high levels of business process automation, maturity in the functional portfolio, straight through processing and proven technology outsourcing benefits, Banking sector stand to benefit significantly from Cloud computing capabilities. Additionally, with complex Compliance and Regulatory policies, combined with expansive products and geography coverage, the business impact is even greater. While the benefits are exponential, there are also significant challenges in adopting this model– including Legal, Security, Performance, Reliability, Transformation complexity, Operating control and Governance and most importantly proof for the promised cost benefits. However, new architecture designed should be implemented to align this approach.

Keywords: security, cloud, banking sector, cloud computing

Procedia PDF Downloads 499
3335 The Use of Network Tool for Brain Signal Data Analysis: A Case Study with Blind and Sighted Individuals

Authors: Cleiton Pons Ferreira, Diana Francisca Adamatti

Abstract:

Advancements in computers technology have allowed to obtain information for research in biology and neuroscience. In order to transform the data from these surveys, networks have long been used to represent important biological processes, changing the use of this tools from purely illustrative and didactic to more analytic, even including interaction analysis and hypothesis formulation. Many studies have involved this application, but not directly for interpretation of data obtained from brain functions, asking for new perspectives of development in neuroinformatics using existent models of tools already disseminated by the bioinformatics. This study includes an analysis of neurological data through electroencephalogram (EEG) signals, using the Cytoscape, an open source software tool for visualizing complex networks in biological databases. The data were obtained from a comparative case study developed in a research from the University of Rio Grande (FURG), using the EEG signals from a Brain Computer Interface (BCI) with 32 eletrodes prepared in the brain of a blind and a sighted individuals during the execution of an activity that stimulated the spatial ability. This study intends to present results that lead to better ways for use and adapt techniques that support the data treatment of brain signals for elevate the understanding and learning in neuroscience.

Keywords: neuroinformatics, bioinformatics, network tools, brain mapping

Procedia PDF Downloads 182
3334 The Use of AI to Measure Gross National Happiness

Authors: Riona Dighe

Abstract:

This research attempts to identify an alternative approach to the measurement of Gross National Happiness (GNH). It uses artificial intelligence (AI), incorporating natural language processing (NLP) and sentiment analysis to measure GNH. We use ‘off the shelf’ NLP models responsible for the sentiment analysis of a sentence as a building block for this research. We constructed an algorithm using NLP models to derive a sentiment analysis score against sentences. This was then tested against a sample of 20 respondents to derive a sentiment analysis score. The scores generated resembled human responses. By utilising the MLP classifier, decision tree, linear model, and K-nearest neighbors, we were able to obtain a test accuracy of 89.97%, 54.63%, 52.13%, and 47.9%, respectively. This gave us the confidence to use the NLP models against sentences in websites to measure the GNH of a country.

Keywords: artificial intelligence, NLP, sentiment analysis, gross national happiness

Procedia PDF Downloads 121
3333 Assess Changes in Groundwater Dynamics Caused by Mini Dam Construction in Arid Zone of District Killa Abdullah, Pakistan

Authors: Akhtar Malik Muhammad, Agha Mirwais

Abstract:

Dams are considered to recharge aquifers by raising the water table, especially the ones near wells. The present study investigates the impact of dams on groundwater recharge in Jilga, Pakistan. The comparative analysis of changes in the groundwater table of the year 2012 and 2019 was carried out using ArcGIS 10.5 through the kriging method and remote sensing techniques to evaluate the mini dam's impact on the upstream area. Arc Info Spatial Analyze extension was used to find static water level maps of the years. The water table was observed minimum 67.08 feet and maximum 130.09 feet in 2012 whereas in 2019 the minimum water table level 49.89 feet and maximum 115.85 feet. Groundwater recharge with different ratio was noted, but the most significant was at Rabbani dam with 26ft due to supported lithology conditions and the lowest recharge was found at Garang dam14ft. The overall positive trend indicates the rehabilitation of dead karez and agriculture activities by increasing 36% the vegetation area in 2019. An over 6% increase in human settlement indicates socioeconomic development. Thus, it highlights the need for preferential focus on the construction of the dam so that the water level could be sustained to cater to the agricultural and domestic needs of the local population around the year

Keywords: water table, GIS, land cover, mini dams, agriculture

Procedia PDF Downloads 85
3332 Multi-Temporal Analysis of Vegetation Change within High Contaminated Watersheds by Superfund Sites in Wisconsin

Authors: Punwath Prum

Abstract:

Superfund site is recognized publicly to be a severe environmental problem to surrounding communities and biodiversity due to its hazardous chemical waste from industrial activities. It contaminates the soil and water but also is a leading potential point-source pollution affecting ecosystem in watershed areas from chemical substances. The risks of Superfund site on watershed can be effectively measured by utilizing publicly available data and geospatial analysis by free and open source application. This study analyzed the vegetation change within high risked contaminated watersheds in Wisconsin. The high risk watersheds were measured by which watershed contained high number Superfund sites. The study identified two potential risk watersheds in Lafayette and analyzed the temporal changes of vegetation within the areas based on Normalized difference vegetation index (NDVI) analysis. The raster statistic was used to compare the change of NDVI value over the period. The analysis results showed that the NDVI value within the Superfund sites’ boundary has a significant lower value than nearby surrounding and provides an analogy for environmental hazard affect by the chemical contamination in Superfund site.

Keywords: soil contamination, spatial analysis, watershed

Procedia PDF Downloads 140
3331 Angle of Arrival Estimation Using Maximum Likelihood Method

Authors: Olomon Wu, Hung Lu, Nick Wilkins, Daniel Kerr, Zekeriya Aliyazicioglu, H. K. Hwang

Abstract:

Multiple Input Multiple Output (MIMO) radar has received increasing attention in recent years. MIMO radar has many advantages over conventional phased array radar such as target detection, resolution enhancement, and interference suppression. In this paper, the results are presented from a simulation study of MIMO Uniformly-Spaced Linear Array (ULA) antennas. The performance is investigated under varied parameters, including varied array size, Pseudo Random (PN) sequence length, number of snapshots, and Signal to Noise Ratio (SNR). The results of MIMO are compared to a traditional array antenna.

Keywords: MIMO radar, phased array antenna, target detection, radar signal processing

Procedia PDF Downloads 542
3330 Brainbow Image Segmentation Using Bayesian Sequential Partitioning

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate cross talk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds since biological information is inherently included in the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.

Keywords: brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning

Procedia PDF Downloads 487
3329 Data Presentation of Lane-Changing Events Trajectories Using HighD Dataset

Authors: Basma Khelfa, Antoine Tordeux, Ibrahima Ba

Abstract:

We present a descriptive analysis data of lane-changing events in multi-lane roads. The data are provided from The Highway Drone Dataset (HighD), which are microscopic trajectories in highway. This paper describes and analyses the role of the different parameters and their significance. Thanks to HighD data, we aim to find the most frequent reasons that motivate drivers to change lanes. We used the programming language R for the processing of these data. We analyze the involvement and relationship of different variables of each parameter of the ego vehicle and the four vehicles surrounding it, i.e., distance, speed difference, time gap, and acceleration. This was studied according to the class of the vehicle (car or truck), and according to the maneuver it undertook (overtaking or falling back).

Keywords: autonomous driving, physical traffic model, prediction model, statistical learning process

Procedia PDF Downloads 261
3328 Development of Al Foam by a Low-Cost Salt Replication Method for Industrial Applications

Authors: B. Soni, S. Biswas

Abstract:

Metal foams of Al find diverse applications in several industrial sectors such as in automotive and sports equipment industry as impact, acoustic and vibration absorbers, the aerospace industry as structural components in turbines and spatial cones, in the naval industry as low frequency vibration absorbers, and in construction industry as sound barriers inside tunnels, as fire proof materials and structure protection systems against explosions and even in heat exchangers, orthopedic components, and decorative items. Here, we report on the development of Al foams by a low cost and convenient technique of salt replication method with efficient control over size, geometry and distribution of the pores. Sodium bicarbonate was used as the foaming agent to form the porous refractory salt pattern. The mixed refractory salt slurry was microwave dried followed by sintering for selected time periods. Molten Al was infiltrated into the salt pattern in an inert atmosphere at a pressure of 2 bars. The final products were obtained by leaching out the refractory salt pattern. Mechanical properties of the derived samples were studied with a universal testing machine. The results were analyzed in correlation with their microstructural features evaluated with a scanning electron microscope (SEM).

Keywords: metal foam, Al, salt replication method, mechanical properties, SEM

Procedia PDF Downloads 354
3327 Exploring the Use of Schoolgrounds for the Integration of Environmental and Sustainability Education in Natural and Social Sciences Pedagogy: A Case Study

Authors: Headman Hebe, Arnold Taringa

Abstract:

Background of the study: The benefits derived from Environmental and Sustainability Education (ESE) go beyond obtaining knowledge about the environment and the impact of human beings on the environment. Hence, it is sensible to expose learners to various resources that could enable meaningful environment-inclined pedagogy. The schoolgrounds, where they are utilised to promote ESE, benefit holistic learner development. However, empirical evidence, globally, suggests that young children’s contact with nature is declining due to urbanization, safety concerns by parents/guardians, and greater dependency on technology. Modern children spend much time on videogames and social media with very little time in the natural environment. Furthermore, national education departments in numerous countries have made tangible efforts to embed environmental and place-based learning to their school curricula. South Africa is one of those countries whose national school education curriculum advocates for ESE in pedagogy. Nevertheless, there is paucity of research conducted in South Africa on schoolgrounds as potential enablers of ESE and tools to foster a connection between youngsters and the natural environment. Accordingly, this study was essential as it seeks to determine the extent to which environmental learning is accommodated in pedagogy. Significantly, it investigates efforts made to use schoolgrounds for pedagogical purposes to connect children with the natural environment. Therefore, this study was conducted to investigate the accessibility and use of schoolgrounds for environment-inclined pedagogy in Natural and Social Sciences in two schools located in the Mpumalanga Province of South Africa. It tries to answer the question: To what extent are schoolgrounds used to promote environmental and sustainability education in the selected schools?The sub-questions: How do teachers and learners perceive the use of schoolgrounds for environmental and sustainability education activities? How does the organization of schoolgrounds offer opportunities for environmental education activities and accessibility for learners? Research method: This qualitative–interpretive case study used purposive and convenient sampling for participant selection. Forty-six respondents: 40 learners (twenty grade 7 learners per school), 2 school principals and 4 grade 7 participated in this study. Data collection tools were observations, interviews, audio-visual recordings and questionnaires while data analysis was done thematically. Major findings: The findings of the study point to: The lack of teacher training and infrastructure in the schoolgrounds and, no administrative support. Unclear curriculum guidelines on the use of schoolgrounds for ESE. The availability various elements in the schoolgrounds that could aid ESE activities. Learners denied access to certain parts of the schoolgrounds. Lack of time and curriculum demands constrain teachers from using schoolgrounds.

Keywords: affordances, environment and sustainability education, experiential learning, schoolgrounds

Procedia PDF Downloads 64
3326 A Novel Computer-Generated Hologram (CGH) Achieved Scheme Generated from Point Cloud by Using a Lens Array

Authors: Wei-Na Li, Mei-Lan Piao, Nam Kim

Abstract:

We proposed a novel computer-generated hologram (CGH) achieved scheme, wherein the CGH is generated from a point cloud which is transformed by a mapping relationship of a series of elemental images captured from a real three-dimensional (3D) object by using a lens array. This scheme is composed of three procedures: mapping from elemental images to point cloud, hologram generation, and hologram display. A mapping method is figured out to achieve a virtual volume date (point cloud) from a series of elemental images. This mapping method consists of two steps. Firstly, the coordinate (x, y) pairs and its appearing number are calculated from the series of sub-images, which are generated from the elemental images. Secondly, a series of corresponding coordinates (x, y, z) are calculated from the elemental images. Then a hologram is generated from the volume data that is calculated by the previous two steps. Eventually, a spatial light modulator (SLM) and a green laser beam are utilized to display this hologram and reconstruct the original 3D object. In this paper, in order to show a more auto stereoscopic display of a real 3D object, we successfully obtained the actual depth data of every discrete point of the real 3D object, and overcame the inherent drawbacks of the depth camera by obtaining point cloud from the elemental images.

Keywords: elemental image, point cloud, computer-generated hologram (CGH), autostereoscopic display

Procedia PDF Downloads 584
3325 Chinese Event Detection Technique Based on Dependency Parsing and Rule Matching

Authors: Weitao Lin

Abstract:

To quickly extract adequate information from large-scale unstructured text data, this paper studies the representation of events in Chinese scenarios and performs the regularized abstraction. It proposes a Chinese event detection technique based on dependency parsing and rule matching. The method first performs dependency parsing on the original utterance, then performs pattern matching at the word or phrase granularity based on the results of dependent syntactic analysis, filters out the utterances with prominent non-event characteristics, and obtains the final results. The experimental results show the effectiveness of the method.

Keywords: natural language processing, Chinese event detection, rules matching, dependency parsing

Procedia PDF Downloads 141
3324 Secret Security Smart Lock Using Artificial Intelligence Hybrid Algorithm

Authors: Vahid Bayrami Rad

Abstract:

Ever since humans developed a collective way of life to the development of urbanization, the concern of security has always been considered one of the most important challenges of life. To protect property, locks have always been a practical tool. With the advancement of technology, the form of locks has changed from mechanical to electric. One of the most widely used fields of using artificial intelligence is its application in the technology of surveillance security systems. Currently, the technologies used in smart anti-theft door handles are one of the most potential fields for using artificial intelligence. Artificial intelligence has the possibility to learn, calculate, interpret and process by analyzing data with the help of algorithms and mathematical models and make smart decisions. We will use Arduino board to process data.

Keywords: arduino board, artificial intelligence, image processing, solenoid lock

Procedia PDF Downloads 69
3323 Urban Sustainable Development Based on Habitat Quality Evolution: A Case Study in Chongqing, China

Authors: Jing Ren, Kun Wu

Abstract:

Over the last decade or so, China's urbanization has shown a rapid development trend. At the same time, it has also had a great negative impact on the habitat quality. Therefore, it is of great significance to study the impact of land use change on the level of habitat quality in mountain cities for sustainable urban development. This paper analyzed the spatial and temporal land use changes in Chongqing from 2010 to 2020 using ArcGIS 10.6, as well as the evolutionary trend of habitat quality during this period based on the InVEST 3.13.0, to obtain the impact of land use changes on habitat quality. The results showed that the habitat quality in the western part of Chongqing decreased significantly between 2010 and 2020, while the northeastern and southeastern parts remained stable. The main reason for this is the continuous expansion of urban construction land in the western area, which leads to serious habitat fragmentation and the continuous decline of habitat quality. while, in the northeast and southeast areas, due to the greater emphasis on ecological priority and urban-rural coordination in the development process, land use change is characterized by a benign transfer, which maintains the urbanization process while maintaining the coordinated development of habitat quality. This study can provide theoretical support for the sustainable development of mountain cities.

Keywords: mountain cities, ecological environment, habitat quality, sustainable development

Procedia PDF Downloads 84
3322 Comparing and Contrasting Western and Eastern Ways of War: Building a Universal Strategic Theory

Authors: Adam Kok Wey Leong

Abstract:

The comparison between the Western ways of war and Eastern ways of war has raised contemporary debates on the validity of these arguments. The Western way of war is popularly propounded by Victor Davis Hanson as originating from the Greek hoplite tactics, direct military maneuvers, democratic principles and social freedom and cohesion that has continued to yield military success for the Western powers for centuries. On the other hand, the Eastern way of war has been deemed as relying on indirect tactics, deception, and ruses. This often accepted notion of the divide between Western and Eastern style does not sustain in view of the available classical strategic texts from both sides from the same period that has proposed similar principles of warfare. This paper analyses the similarities between classical strategic texts on war from the Eastern perspective namely Sun Tzu’s Art of War with a similar temporal strategic text from the West which is Sextus Iuluis Frontinus’s Stratagematon, and deduces answers to this core research question - Does the hypothesis of the existence of distinctive Western and Eastern ways of warfare stands? The main thesis advanced by this research is that ways of warfare share universal principles, and it transcends cultural and spatial boundaries. Warfare is a human endeavour, and the same moral actions guide humans from different geo-cultural spheres in warfare’s objectives, which are winning over an enemy in the most economical way and serve as a mean to an end.

Keywords: ways of warfare, strategic culture, strategy, Sun Tzu, frontinus

Procedia PDF Downloads 473
3321 Hydrogen: Contention-Aware Hybrid Memory Management for Heterogeneous CPU-GPU Architectures

Authors: Yiwei Li, Mingyu Gao

Abstract:

Integrating hybrid memories with heterogeneous processors could leverage heterogeneity in both compute and memory domains for better system efficiency. To ensure performance isolation, we introduce Hydrogen, a hardware architecture to optimize the allocation of hybrid memory resources to heterogeneous CPU-GPU systems. Hydrogen supports efficient capacity and bandwidth partitioning between CPUs and GPUs in both memory tiers. We propose decoupled memory channel mapping and token-based data migration throttling to enable flexible partitioning. We also support epoch-based online search for optimized configurations and lightweight reconfiguration with reduced data movements. Hydrogen significantly outperforms existing designs by 1.21x on average and up to 1.31x.

Keywords: hybrid memory, heterogeneous systems, dram cache, graphics processing units

Procedia PDF Downloads 97
3320 Comparative Analysis between Corn and Ramon (Brosimum alicastrum) Starches to Be Used as Sustainable Bio-Based Plastics

Authors: C. R. Ríos-Soberanis, V. M. Moo-Huchin, R. J. Estrada-Leon, E. Perez-Pacheco

Abstract:

Polymers from renewable resources have attracted an increasing amount of attention over the last two decades, predominantly due to two major reasons: firstly environmental concerns, and secondly the realization that our petroleum resources are finite. Finding new uses for agricultural commodities is also an important area of research. Therefore, it is crucial to get new sources of natural materials that can be used in different applications. Ramon tree (Brosimum alicastrum) is a tropical plant that grows freely in Yucatan countryside. This paper focuses on the seeds recollection, processing and starch extraction and characterization in order to find out about its suitability as biomaterial. Results demonstrated that it has a high content of qualities to be used not only as comestible but also as an important component in polymeric blends.

Keywords: biomaterials, characterization techniques, natural resource, starch

Procedia PDF Downloads 326
3319 Frequent Item Set Mining for Big Data Using MapReduce Framework

Authors: Tamanna Jethava, Rahul Joshi

Abstract:

Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.

Keywords: frequent item set mining, big data, Hadoop, MapReduce

Procedia PDF Downloads 436
3318 Proposal of a Damage Inspection Tool After Earthquakes: Case of Algerian Buildings

Authors: Akkouche Karim, Nekmouche Aghiles, Bouzid Leyla

Abstract:

This study focuses on the development of a multifunctional Expert System (ES) called post-seismic damage inspection tool (PSDIT), a powerful tool which allows the evaluation, the processing and the archiving of the collected data stock after earthquakes. PSDIT can be operated by two user types; an ordinary user (engineer, expert or architect) for the damage visual inspection and an administrative user for updating the knowledge and / or for adding or removing the ordinary user. The knowledge acquisition is driven by a hierarchical knowledge model, the Information from investigation reports and those acquired through feedback from expert / engineer questionnaires are part.

Keywords: buildings, earthquake, seismic damage, damage assessment, expert system

Procedia PDF Downloads 87
3317 Applications for Additive Manufacturing Technology for Reducing the Weight of Body Parts of Gas Turbine Engines

Authors: Liubov Magerramova, Mikhail Petrov, Vladimir Isakov, Liana Shcherbinina, Suren Gukasyan, Daniil Povalyukhin, Olga Klimova-Korsmik, Darya Volosevich

Abstract:

Aircraft engines are developing along the path of increasing resource, strength, reliability, and safety. The building of gas turbine engine body parts is a complex design and technological task. Particularly complex in the design and manufacturing are the casings of the input stages of helicopter gearboxes and central drives of aircraft engines. Traditional technologies, such as precision casting or isothermal forging, are characterized by significant limitations in parts production. For parts like housing, additive technologies guarantee spatial freedom and limitless or flexible design. This article presents the results of computational and experimental studies. These investigations justify the applicability of additive technologies (AT) to reduce the weight of aircraft housing gearbox parts by up to 32%. This is possible due to geometrical optimization compared to the classical, less flexible manufacturing methods and as-casted aircraft parts with over-insured values of safety factors. Using an example of the body of the input stage of an aircraft gearbox, visualization of the layer-by-layer manufacturing of a part based on thermal deformation was demonstrated.

Keywords: additive technologies, gas turbine engines, topological optimization, synthesis process

Procedia PDF Downloads 117
3316 Parallel Computing: Offloading Matrix Multiplication to GPU

Authors: Bharath R., Tharun Sai N., Bhuvan G.

Abstract:

This project focuses on developing a Parallel Computing method aimed at optimizing matrix multiplication through GPU acceleration. Addressing algorithmic challenges, GPU programming intricacies, and integration issues, the project aims to enhance efficiency and scalability. The methodology involves algorithm design, GPU programming, and optimization techniques. Future plans include advanced optimizations, extended functionality, and integration with high-level frameworks. User engagement is emphasized through user-friendly interfaces, open- source collaboration, and continuous refinement based on feedback. The project's impact extends to significantly improving matrix multiplication performance in scientific computing and machine learning applications.

Keywords: matrix multiplication, parallel processing, cuda, performance boost, neural networks

Procedia PDF Downloads 59
3315 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation

Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman

Abstract:

With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.

Keywords: band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation

Procedia PDF Downloads 354
3314 1/Sigma Term Weighting Scheme for Sentiment Analysis

Authors: Hanan Alshaher, Jinsheng Xu

Abstract:

Large amounts of data on the web can provide valuable information. For example, product reviews help business owners measure customer satisfaction. Sentiment analysis classifies texts into two polarities: positive and negative. This paper examines movie reviews and tweets using a new term weighting scheme, called one-over-sigma (1/sigma), on benchmark datasets for sentiment classification. The proposed method aims to improve the performance of sentiment classification. The results show that 1/sigma is more accurate than the popular term weighting schemes. In order to verify if the entropy reflects the discriminating power of terms, we report a comparison of entropy values for different term weighting schemes.

Keywords: 1/sigma, natural language processing, sentiment analysis, term weighting scheme, text classification

Procedia PDF Downloads 204
3313 Big Data Analysis Approach for Comparison New York Taxi Drivers' Operation Patterns between Workdays and Weekends Focusing on the Revenue Aspect

Authors: Yongqi Dong, Zuo Zhang, Rui Fu, Li Li

Abstract:

The records generated by taxicabs which are equipped with GPS devices is of vital importance for studying human mobility behavior, however, here we are focusing on taxi drivers' operation strategies between workdays and weekends temporally and spatially. We identify a group of valuable characteristics through large scale drivers' behavior in a complex metropolis environment. Based on the daily operations of 31,000 taxi drivers in New York City, we classify drivers into top, ordinary and low-income groups according to their monthly working load, daily income, daily ranking and the variance of the daily rank. Then, we apply big data analysis and visualization methods to compare the different characteristics among top, ordinary and low income drivers in selecting of working time, working area as well as strategies between workdays and weekends. The results verify that top drivers do have special operation tactics to help themselves serve more passengers, travel faster thus make more money per unit time. This research provides new possibilities for fully utilizing the information obtained from urban taxicab data for estimating human behavior, which is not only very useful for individual taxicab driver but also to those policy-makers in city authorities.

Keywords: big data, operation strategies, comparison, revenue, temporal, spatial

Procedia PDF Downloads 227
3312 Underage Internal Migration from Rural to Urban Areas of Ethiopia: The Perspective of Social Marketing in Controlling Child Labor

Authors: Belaynesh Tefera, Ahmed Mohammed, Zelalem Bayisa

Abstract:

This study focuses on the issue of underage internal migration from rural to urban areas in Ethiopia, specifically in the context of child labor. It addresses the significant disparities in living standards between rural and urban areas, which motivate individuals from rural areas to migrate to urban areas in search of better economic opportunities. The study was conducted in Addis Ababa, where there is a high prevalence of underage internal migrants engaged in child labor due to extreme poverty in rural parts of the country. The aim of this study is to explore the life experiences of shoe-makers who have migrated from rural areas of Ethiopia to Addis Ababa. The focus is on understanding the factors that push these underage individuals to migrate, the challenges they face, and the implications for child labor. This study adopts a qualitative approach, using semistructured face-to-face interviews with underage migrants. A total of 27 interviews were conducted in Addis Ababa, Ethiopia, until the point of data saturation. The criteria for selecting interviewees include working as shoemakers and migrating to Addis Ababa underage, below 16 years old. The interviews were audio-taped, transcribed into Amharic, and then translated into English for analysis. The study reveals that the major push factors for underage internal migration are socioeconomic and environmental factors. Despite improvements in living standards for underage migrants and their families, there is a high prevalence of child labor and lack of access to education among them. Most interviewees migrated without the accompaniment of their family members and faced various challenges, including sleeping on the streets. This study highlights the role of social marketing in addressing the issues of underage internal migration and child labor. It suggests that social marketing can be an effective strategy to protect children from abuse, loneliness, and harassment during their migration process. The data collection involved conducting in-depth interviews with the underage migrants. The interviews were transcribed and translated for analysis. The analysis focused on identifying common themes and patterns within the interview data. The study addresses the factors contributing to underage internal migration, the challenges faced by underage migrants, the prevalence of child labor, and the potential role of social marketing in addressing these issues. The study concludes that although Ethiopia has policies against child internal migration, it is difficult to protect underage laborers who migrate from rural to urban areas due to the voluntary nature of their migration. The study suggests that social marketing can serve as a solution to protect children from abuse and other challenges faced during migration.

Keywords: underage, internal migration, social marketing, child labor, Ethiopia

Procedia PDF Downloads 81
3311 Assessing Children’s Probabilistic and Creative Thinking in a Non-formal Learning Context

Authors: Ana Breda, Catarina Cruz

Abstract:

Daily, we face unpredictable events, often attributed to chance, as there is no justification for such an occurrence. Chance, understood as a source of uncertainty, is present in several aspects of human life, such as weather forecasts, dice rolling, and lottery. Surprisingly, humans and some animals can quickly adjust their behavior to handle efficiently doubly stochastic processes (random events with two layers of randomness, like unpredictable weather affecting dice rolling). This adjustment ability suggests that the human brain has built-in mechanisms for perceiving, understanding, and responding to simple probabilities. It also explains why current trends in mathematics education include probability concepts in official curriculum programs, starting from the third year of primary education onwards. In the first years of schooling, children learn to use a certain type of (specific) vocabulary, such as never, always, rarely, perhaps, likely, and unlikely, to help them to perceive and understand the probability of some events. These are keywords of crucial importance for their perception and understanding of probabilities. The development of the probabilistic concepts comes from facts and cause-effect sequences resulting from the subject's actions, as well as the notion of chance and intuitive estimates based on everyday experiences. As part of a junior summer school program, which took place at a Portuguese university, a non-formal learning experiment was carried out with 18 children in the 5th and 6th grades. This experience was designed to be implemented in a dynamic of a serious ice-breaking game, to assess their levels of probabilistic, critical, and creative thinking in understanding impossible, certain, equally probable, likely, and unlikely events, and also to gain insight into how the non-formal learning context influenced their achievements. The criteria used to evaluate probabilistic thinking included the creative ability to conceive events classified in the specified categories, the ability to properly justify the categorization, the ability to critically assess the events classified by other children, and the ability to make predictions based on a given probability. The data analysis employs a qualitative, descriptive, and interpretative-methods approach based on students' written productions, audio recordings, and researchers' field notes. This methodology allowed us to conclude that such an approach is an appropriate and helpful formative assessment tool. The promising results of this initial exploratory study require a future research study with children from these levels of education, from different regions, attending public or private schools, to validate and expand our findings.

Keywords: critical and creative thinking, non-formal mathematics learning, probabilistic thinking, serious game

Procedia PDF Downloads 27
3310 Evaluation and Strategic Development of IT in Accounting in Turkey

Authors: Eda Kocakaya, Sebahat Seker, Dogan Argun

Abstract:

The aim of this study is to determine the process of information technologies and the connections between concepts in accounting management services in Turkey. The objective of this study is to determine the adaptation and evaluation process of information technologies and the connections between concepts and differences in accounting management services in Turkey. The situation and determination of the IT applications of Accounting Management were studied. The applications of • Billing • Order Processing • Accounts Receivable/Payable Management • Contract Management • Bank Account Management Were discussed in this study. The IT applications were demonstrated and realized in actual accounting services. The sectoral representative's companies were selected, and the IT application was searched by bibliometric analysis.

Keywords: management, accounting, information technologies, adaptation

Procedia PDF Downloads 309
3309 Radar-Based Classification of Pedestrian and Dog Using High-Resolution Raw Range-Doppler Signatures

Authors: C. Mayr, J. Periya, A. Kariminezhad

Abstract:

In this paper, we developed a learning framework for the classification of vulnerable road users (VRU) by their range-Doppler signatures. The frequency-modulated continuous-wave (FMCW) radar raw data is first pre-processed to obtain robust object range-Doppler maps per coherent time interval. The complex-valued range-Doppler maps captured from our outdoor measurements are further fed into a convolutional neural network (CNN) to learn the classification. This CNN has gone through a hyperparameter optimization process for improved learning. By learning VRU range-Doppler signatures, the three classes 'pedestrian', 'dog', and 'noise' are classified with an average accuracy of almost 95%. Interestingly, this classification accuracy holds for a combined longitudinal and lateral object trajectories.

Keywords: machine learning, radar, signal processing, autonomous driving

Procedia PDF Downloads 246
3308 Data Analysis Tool for Predicting Water Scarcity in Industry

Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse

Abstract:

Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.

Keywords: data mining, industry, machine Learning, shortage, water resources

Procedia PDF Downloads 121