Search results for: Tobit regression model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18782

Search results for: Tobit regression model

15782 Robust Speed Sensorless Control to Estimated Error for PMa-SynRM

Authors: Kyoung-Jin Joo, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

Recently, the permanent magnet-assisted synchronous reluctance motor (PMa-SynRM) that can be substituted for the induction motor has been studying because of the needs of the development of the premium high efficiency motor for the minimum energy performance standard (MEPS). PMa-SynRM is required to the speed and position information for motor speed and torque controls. However, to apply the sensors has many problems that are sensor mounting space shortage and additional cost, etc. Therefore, in this paper, speed-sensorless control based on model reference adaptive system (MRAS) is introduced to eliminate the sensor. The sensorless method is constructed in a reference model as standard and an adaptive model as the state observer. The proposed algorithm is verified by the simulation.

Keywords: PMa-SynRM, sensorless control, robust estimation, MRAS method

Procedia PDF Downloads 404
15781 Reliability Assessment of Various Empirical Formulas for Prediction of Scour Hole Depth (Plunge Pool) Using a Comprehensive Physical Model

Authors: Majid Galoie, Khodadad Safavi, Abdolreza Karami Nejad, Reza Roshan

Abstract:

In this study, a comprehensive scouring model has been developed in order to evaluate the accuracy of various empirical relationships which were suggested for prediction of scour hole depth in plunge pools by Martins, Mason, Chian and Veronese. For this reason, scour hole depths caused by free falling jets from a flip bucket to a plunge pool were investigated. In this study various discharges, angles, scouring times, etc. have been considered. The final results demonstrated that the all mentioned empirical formulas, except Mason formula, were reasonably agreement with the experimental data.

Keywords: scour hole depth, plunge pool, physical model, reliability assessment

Procedia PDF Downloads 535
15780 Artificial Intelligence Approach to Water Treatment Processes: Case Study of Daspoort Treatment Plant, South Africa

Authors: Olumuyiwa Ojo, Masengo Ilunga

Abstract:

Artificial neural network (ANN) has broken the bounds of the convention programming, which is actually a function of garbage in garbage out by its ability to mimic the human brain. Its ability to adopt, adapt, adjust, evaluate, learn and recognize the relationship, behavior, and pattern of a series of data set administered to it, is tailored after the human reasoning and learning mechanism. Thus, the study aimed at modeling wastewater treatment process in order to accurately diagnose water control problems for effective treatment. For this study, a stage ANN model development and evaluation methodology were employed. The source data analysis stage involved a statistical analysis of the data used in modeling in the model development stage, candidate ANN architecture development and then evaluated using a historical data set. The model was developed using historical data obtained from Daspoort Wastewater Treatment plant South Africa. The resultant designed dimensions and model for wastewater treatment plant provided good results. Parameters considered were temperature, pH value, colour, turbidity, amount of solids and acidity. Others are total hardness, Ca hardness, Mg hardness, and chloride. This enables the ANN to handle and represent more complex problems that conventional programming is incapable of performing.

Keywords: ANN, artificial neural network, wastewater treatment, model, development

Procedia PDF Downloads 149
15779 Modified Model for UV-Laser Corneal Ablation

Authors: Salah Hassab Elnaby, Omnia Hamdy, Aziza Ahmed Hassan, Salwa Abdelkawi, Ibrahim Abdelhalim

Abstract:

Laser corneal reshaping has been proposed as a successful treatment of many refraction disorders. However, some physical and chemical demonstrations of the laser effect upon interaction with the corneal tissue are still not fully explained. Therefore, different computational and mathematical models have been implemented to predict the depth of the ablated channel and calculate the ablation threshold and the local temperature rise. In the current paper, we present a modified model that aims to answer some of the open questions about the ablation threshold, the ablation rate, and the physical and chemical mechanisms of that action. The proposed model consists of three parts. The first part deals with possible photochemical reactions between the incident photons and various components of the cornea (collagen, water, etc.). Such photochemical reactions may end by photo-ablation or just the electronic excitation of molecules. Then a chemical reaction is responsible for the ablation threshold. Finally, another chemical reaction produces fragments that can be cleared out. The model takes into account all processes at the same time with different probabilities. Moreover, the effect of applying different laser wavelengths that have been studied before, namely the common excimer laser (193-nm) and the solid state lasers (213-nm & 266-nm), has been investigated. Despite the success and ubiquity of the ArF laser, the presented results reveal that a carefully designed 213-nm laser gives the same results with lower operational drawbacks. Moreover, the use of mode locked laser could also decrease the risk of heat generation and diffusion.

Keywords: UV lasers, mathematical model, corneal ablation, photochemical ablation

Procedia PDF Downloads 90
15778 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning

Authors: Melody Yin

Abstract:

Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.

Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time

Procedia PDF Downloads 168
15777 Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials

Authors: S. Bennoud, M. Zergoug

Abstract:

The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models. The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces. The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations. In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects.

Keywords: eddy current, finite element method, non destructive testing, numerical simulations

Procedia PDF Downloads 443
15776 Inventory Decisions for Perishable Products with Age and Stock Dependent Demand Rate

Authors: Maher Agi, Hardik Soni

Abstract:

This paper presents a deterministic model for optimized control of the inventory of a perishable product subject to both physical deterioration and degradation of its freshness condition. The demand for the product depends on its current inventory level and freshness condition. Our model allows for any positive amount of end of cycle inventory. Some useful conditions that characterize the optimal solution of the model are derived and an algorithm is presented for finding the optimal values of the price, the inventory cycle, the end of cycle inventory level and the order quantity. Numerical examples are then given. Our work shows how the product freshness in conjunction with the inventory deterioration affects the inventory management decisions.

Keywords: inventory management, lot sizing, perishable products, deteriorating inventory, age-dependent demand, stock-dependent demand

Procedia PDF Downloads 234
15775 Investigating the English Speech Processing System of EFL Japanese Older Children

Authors: Hiromi Kawai

Abstract:

This study investigates the nature of EFL older children’s L2 perceptive and productive abilities using classroom data, in order to find a pedagogical solution to the teaching of L2 sounds at an early stage of learning in a formal school setting. It is still inconclusive whether older children with only EFL formal school instruction at the initial stage of L2 learning are able to attain native-like perception and production in English within the very limited amount of exposure to the target language available. Based on the notion of the lack of study of EFL Japanese children’s acquisition of English segments, the researcher uses a model of L1 speech processing which was developed for investigating L1 English children’s speech and literacy difficulties using a psycholinguistic framework. The model is composed of input channel, output channel, and lexical representation, and examines how a child receives information from spoken or written language, remembers and stores it within the lexical representations and how the child selects and produces spoken or written words. Concerning language universality and language specificity in the language acquisitional process, the aim of finding any sound errors in L1 English children seemed to conform to the author’s intention to find abilities of English sounds in older Japanese children at the novice level of English in an EFL setting. 104 students in Grade 5 (between the ages of 10 and 11 years old) of an elementary school in Tokyo participated in this study. Four tests to measure their perceptive ability and three oral repetition tests to measure their productive ability were conducted with/without reference to lexical representation. All the test items were analyzed to calculate item facility (IF) indices, and correlational analyses and Structural Equation Modeling (SEM) were conducted to examine the relationship between the receptive ability and the productive ability. IF analysis showed that (1) the participants were better at perceiving a segment than producing a segment, (2) they had difficulty in auditory discrimination of paired consonants when one of them does not exist in the Japanese inventory, (3) they had difficulty in both perceiving and producing English vowels, and (4) their L1 loan word knowledge had an influence on their ability to perceive and produce L2 sounds. The result of the Multiple Regression Modeling showed that the two production tests could predict the participants’ auditory ability of real words in English. The result of SEM showed that the hypothesis that perceptive ability affects productive ability was supported. Based on these findings, the author discusses the possible explicit method of teaching English segments to EFL older children in a formal school setting.

Keywords: EFL older children, english segments, perception, production, speech processing system

Procedia PDF Downloads 243
15774 SLAMF5 Regulates Myeloid Cells Activation in the Eae Model

Authors: Laura Bellassen, Idit Shachar

Abstract:

Multiple sclerosis (MS) is a chronic neurological disorder characterized by demyelination of the central nervous system (CNS), leading to a wide range of physical and cognitive impairments. Myeloid cells in the CNS, such microglia and border associated macrophage cells, participate in the neuroinflammation in MS. Activation of those cells in MS contributes to the inflammatory response in the CNS and recruitment of immune cells in the this compartment. SLAMF5 is a cell surface receptor that functions as a homophilic adhesion molecule, whose signaling can activate or inhibit leukocyte function. In the current study we followed the expression and function of SLAMF5 in myeloid cells in the CNS and in the periphery in the murine model for MS, the experimental autoimmune encephalomyelitis model (EAE). Our results show that SLAMF5 deficiency or blocking decreases the expression of activation molecules and costimulatory molecules such as MHCII and CD80, resulting in delayed onset and reduced progression of the disease. Moreover, blocking SLAMF5 in peripheral monocytes derived from MS patients and iPSC-derived microglia cells, controls the expression of HLA-DR and CD80. Thus, SLAMF5 is a regulator of myeloid cells function and can serve as a therapeutic target in autoimmune disorders as Multiple Sclerosis.

Keywords: multiple sclerosis, EAE model, myeloid cells, new antibody, neuroimmunology

Procedia PDF Downloads 54
15773 CFD Simulation for Thermo-Hydraulic Performance V-Shaped Discrete Ribs on the Absorber Plate of Solar Air Heater

Authors: J. L. Bhagoria, Ajeet Kumar Giri

Abstract:

A computational investigation of various flow characteristics with artificial roughness in the form of V-types discrete ribs, heated wall of rectangular duct for turbulent flow with Reynolds number range (3800-15000) and p/e (5 to 12) has been carried out with k-e turbulence model is selected by comparing the predictions of different turbulence models with experimental results available in literature. The current study evaluates thermal performance behavior, heat transfer and fluid flow behavior in a v shaped duct with discrete roughened ribs mounted on one of the principal wall (solar plate) by computational fluid dynamics software (Fluent 6.3.26 Solver). In this study, CFD has been carried out through designing 3-demensional model of experimental solar air heater model analysis has been used to perform a numerical simulation to enhance turbulent heat transfer and Reynolds-Averaged Navier–Stokes analysis is used as a numerical technique and the k-epsilon model with near-wall treatment as a turbulent model. The thermal efficiency enhancement because of selected roughness is found to be 16-24%. The result predicts a significant enhancement of heat transfer as compared to that of for a smooth surface with different P’ and various range of Reynolds number.

Keywords: CFD, solar collector, airheater, thermal efficiency

Procedia PDF Downloads 290
15772 Experimental and Numerical Performance Analysis for Steam Jet Ejectors

Authors: Abdellah Hanafi, G. M. Mostafa, Mohamed Mortada, Ahmed Hamed

Abstract:

The steam ejectors are the heart of most of the desalination systems that employ vacuum. The systems that employ low grade thermal energy sources like solar energy and geothermal energy use the ejector to drive the system instead of high grade electric energy. The jet-ejector is used to create vacuum employing the flow of steam or air and using the severe pressure drop at the outlet of the main nozzle. The present work involves developing a one dimensional mathematical model for designing jet-ejectors and transform it into computer code using Engineering Equation solver (EES) software. The model receives the required operating conditions at the inlets and outlet of the ejector as inputs and produces the corresponding dimensions required to reach these conditions. The one-dimensional model has been validated using an existed model working on Abu-Qir power station. A prototype has been designed according to the one-dimensional model and attached to a special test bench to be tested before using it in the solar desalination pilot plant. The tested ejector will be responsible for the startup evacuation of the system and adjusting the vacuum of the evaporating effects. The tested prototype has shown a good agreement with the results of the code. In addition a numerical analysis has been applied on one of the designed geometry to give an image of the pressure and velocity distribution inside the ejector from a side, and from other side, to show the difference in results between the two-dimensional ideal gas model and real prototype. The commercial edition of ANSYS Fluent v.14 software is used to solve the two-dimensional axisymmetric case.

Keywords: solar energy, jet ejector, vacuum, evaporating effects

Procedia PDF Downloads 621
15771 A Study on Mesh Size Dependency on Bed Expansion Zone in a Three-Phase Fluidized Bed Reactor

Authors: Liliana Patricia Olivo Arias

Abstract:

The present study focused on the hydrodynamic study in a three-phase fluidized bed reactor and the influence of important aspects, such as volume fractions (Hold up), velocity magnitude of gas, liquid and solid phases (hydrogen, gasoil, and gamma alumina), interactions of phases, through of drag models with the k-epsilon turbulence model. For this purpose was employed a Euler-Euler model and also considers the system is constituted of three phases, gaseous, liquid and solid, characterized by its physical and thermal properties, the transport processes that are developed within the transient regime. The proposed model of the three-phase fluidized bed reactor was solved numerically using the ANSYS-Fluent software with different mesh refinements on bed expansion zone in order to observe the influence of the hydrodynamic parameters and convergence criteria. With this model and the numerical simulations obtained for its resolution, it was possible to predict the results of the volume fractions (Hold ups) and the velocity magnitude for an unsteady system from the initial and boundaries conditions were established.

Keywords: three-phase fluidized bed system, CFD simulation, mesh dependency study, hydrodynamic study

Procedia PDF Downloads 166
15770 Mathematical Modeling of the Operating Process and a Method to Determine the Design Parameters in an Electromagnetic Hammer Using Solenoid Electromagnets

Authors: Song Hyok Choe

Abstract:

This study presented a method to determine the optimum design parameters based on a mathematical model of the operating process in a manual electromagnetic hammer using solenoid electromagnets. The operating process of the electromagnetic hammer depends on the circuit scheme of the power controller. Mathematical modeling of the operating process was carried out by considering the energy transfer process in the forward and reverse windings and the electromagnetic force acting on the impact and brake pistons. Using the developed mathematical model, the initial design data of a manual electromagnetic hammer proposed in this paper are encoded and analyzed in Matlab. On the other hand, a measuring experiment was carried out by using a measurement device to check the accuracy of the developed mathematical model. The relative errors of the analytical results for measured stroke distance of the impact piston, peak value of forward stroke current and peak value of reverse stroke current were −4.65%, 9.08% and 9.35%, respectively. Finally, it was shown that the mathematical model of the operating process of an electromagnetic hammer is relatively accurate, and it can be used to determine the design parameters of the electromagnetic hammer. Therefore, the design parameters that can provide the required impact energy in the manual electromagnetic hammer were determined using a mathematical model developed. The proposed method will be used for the further design and development of the various types of percussion rock drills.

Keywords: solenoid electromagnet, electromagnetic hammer, stone processing, mathematical modeling

Procedia PDF Downloads 46
15769 Understanding Seismic Behavior of Masonry Buildings in Earthquake

Authors: Alireza Mirzaee, Soosan Abdollahi, Mohammad Abdollahi

Abstract:

Unreinforced Masonry (URM) wall is vulnerable in resisting horizontal load such as wind and seismic loading. It is due to the low tensile strength of masonry, the mortar connection between the brick units. URM structures are still widely used in the world as an infill wall and commonly constructed with door and window openings. This research aimed to investigate the behavior of URM wall with openings when horizontal load acting on it and developed load-drift relationship of the wall. The finite element (FE) method was chosen to numerically simulate the behavior of URM with openings. In this research, ABAQUS, commercially available FE software with explicit solver was employed. In order to ensure the numerical model can accurately represent the behavior of an URM wall, the model was validated for URM wall without openings using available experimental results. Load-displacement relationship of numerical model is well agreed with experimental results. Evidence shows the same load displacement curve shape obtained from the FE model. After validating the model, parametric study conducted on URM wall with openings to investigate the influence of area of openings and pre-compressive load on the horizontal load capacity of the wall. The result showed that the increasing of area of openings decreases the capacity of the wall in resisting horizontal loading. It is also well observed from the result that capacity of the wall increased with the increasing of pre-compressive load applied on the top of the walls.

Keywords: masonry constructions, performance at earthquake, MSJC-08 (ASD), bearing wall, tie-column

Procedia PDF Downloads 252
15768 Research Regarding Resistance Characteristics of Biscuits Assortment Using Cone Penetrometer

Authors: G.–A. Constantin, G. Voicu, E.–M. Stefan, P. Tudor, G. Paraschiv, M.–G. Munteanu

Abstract:

In the activity of handling and transport of food products, the products may be subjected to mechanical stresses that may lead to their deterioration by deformation, breaking, or crushing. This is the case for biscuits, regardless of their type (gluten-free or sugary), the addition of ingredients or flour from which they are made. However, gluten-free biscuits have a higher mechanical resistance to breakage or crushing compared to easily shattered sugar biscuits (especially those for children). The paper presents the results of the experimental evaluation of the texture for four varieties of commercial biscuits, using the penetrometer equipped with needle cone at five different additional weights on the cone-rod. The assortments of biscuits tested in the laboratory were Petit Beurre, Picnic, and Maia (all three manufactured by RoStar, Romania) and Sultani diet biscuits, manufactured by Eti Burcak Sultani (Turkey, in packs of 138 g). For the four varieties of biscuits and the five additional weights (50, 77, 100, 150 and 177 g), the experimental data obtained were subjected to regression analysis in the MS Office Excel program, using Velon's relationship (h = a∙ln(t) + b). The regression curves were analysed comparatively in order to identify possible differences and to highlight the variation of the penetration depth h, in relation to the time t. Based on the penetration depth between two-time intervals (every 5 seconds), the curves of variation of the penetration speed in relation to time were then drawn. It was found that Velon's law verifies the experimental data for all assortments of biscuits and for all five additional weights. The correlation coefficient R2 had in most of the analysed cases values over 0.850. The values recorded for the penetration depth were framed, in general, within 45-55 p.u. (penetrometric units) at an additional mass of 50 g, respectively between 155-168 p.u., at an additional mass of 177 g, at Petit Beurre biscuits. For Sultani diet biscuits, the values of the penetration depth were within the limits of 32-35 p.u., at an additional weight of 50 g and between 80-114 p.u., at an additional weight of 177g. The data presented in the paper can be used by both operators on the manufacturing technology flow, as well as by the traders of these food products, in order to establish the most efficient parametric of the working regimes (when packaging and handling).

Keywords: biscuits resistance/texture, penetration depth, penetration velocity, sharp pin penetrometer

Procedia PDF Downloads 130
15767 Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: transformers, generative ai, gene expression design, classification

Procedia PDF Downloads 59
15766 Practical Model of Regenerative Braking Using DC Machine and Boost Converter

Authors: Shah Krupa Rajendra, Amit Kumar

Abstract:

Increasing use of traditional vehicles driven by internal combustion engine is responsible for the environmental pollution. Further, it leads to depletion of limited energy resources. Therefore, it is required to explore alternative energy sources for the transportation. The promising solution is to use electric vehicle. However, it suffers from limited driving range. Regenerative braking increases the range of the electric vehicle to a certain extent. In this paper, a novel methodology utilizing regenerative braking is described. The model comprising of DC machine, feedback based boost converter and micro-controller is proposed. The suggested method is very simple and reliable. The proposed model successfully shows the energy being saved into during regenerative braking process.

Keywords: boost converter, DC machine, electric vehicle, micro-controller, regenerative braking

Procedia PDF Downloads 272
15765 Preliminary WRF SFIRE Simulations over Croatia during the Split Wildfire in July 2017

Authors: Ivana Čavlina Tomašević, Višnjica Vučetić, Maja Telišman Prtenjak, Barbara Malečić

Abstract:

The Split wildfire on the mid-Adriatic Coast in July 2017 is one of the most severe wildfires in Croatian history, given the size and unexpected fire behavior, and it is used in this research as a case study to run the Weather Research and Forecasting Spread Fire (WRF SFIRE) model. This coupled fire-atmosphere model was successfully run for the first time ever for one Croatian wildfire case. Verification of coupled simulations was possible by using the detailed reconstruction of the Split wildfire. Specifically, precise information on ignition time and location, together with mapped fire progressions and spotting within the first 30 hours of the wildfire, was used for both – to initialize simulations and to evaluate the model’s ability to simulate fire’s propagation and final fire scar. The preliminary simulations were obtained using high-resolution vegetation and topography data for the fire area, additionally interpolated to fire grid spacing at 33.3 m. The results demonstrated that the WRF SFIRE model has the ability to work with real data from Croatia and produce adequate results for forecasting fire spread. As the model in its setup has the ability to include and exclude the energy fluxes between the fire and the atmosphere, this was used to investigate possible fire-atmosphere interactions during the Split wildfire. Finally, successfully coupled simulations provided the first numerical evidence that a wildfire from the Adriatic coast region can modify the dynamical structure of the surrounding atmosphere, which agrees with observations from fire grounds. This study has demonstrated that the WRF SFIRE model has the potential for operational application in Croatia with more accurate fire predictions in the future, which could be accomplished by inserting the higher-resolution input data into the model without interpolation. Possible uses for fire management in Croatia include prediction of fire spread and intensity that may vary under changing weather conditions, available fuels and topography, planning effective and safe deployment of ground and aerial firefighting forces, preventing wildland-urban interface fires, effective planning of evacuation routes etc. In addition, the WRF SFIRE model results from this research demonstrated that the model is important for fire weather research and education purposes in order to better understand this hazardous phenomenon that occurs in Croatia.

Keywords: meteorology, agrometeorology, fire weather, wildfires, couple fire-atmosphere model

Procedia PDF Downloads 89
15764 Decision Tree Model for the Recommendation of Digital and Alternate Payment Methods for SMEs

Authors: Arturo J. Anci Alméstar, Jose D. Fernandez Huapaya, David Mauricio

Abstract:

Companies make erroneous decisions by not evaluating the inherent difficulties of entering electronic commerce without a prior review of current digital and alternate means of payment. For this reason, it is very important for businesses to have reliable, complete and integrated information on the means of current digital and alternate payments that allow decisions to be made about which of these to use. However, there is no such consolidated information or criteria that companies use to make decisions about the means of payment according to their needs. In this paper, we propose a decision tree model based on a taxonomy that presents us with a categorization of digital and alternative means of payment, as well as the visualization of the flow of information at a high level from the company to obtain a recommendation. This will allow the company to make the most appropriate decision about the implementation of the digital means of payment or alternative ideal for their needs, which allows a reduction in costs and complexity of the payment process. Likewise, the efficiency of the proposed model was evaluated through a satisfaction survey presented to company personnel, confirming the satisfactory quality level of the recommendations obtained by the model.

Keywords: digital payment medium, decision tree, decision making, digital payments taxonomy

Procedia PDF Downloads 179
15763 Assessment of Artists’ Socioeconomic and Working Conditions: The Empirical Case of Lithuania

Authors: Rusne Kregzdaite, Erika Godlevska, Morta Vidunaite

Abstract:

The main aim of this research is to explore existing methodologies for artists’ labour force and create artists’ socio-economic and creative conditions in an assessment model. Artists have dual aims in their creative working process: 1) income and 2) artistic self-expression. The valuation of their conditions takes into consideration both sides: the factors related to income and the satisfaction of the creative process and its result. The problem addressed in the study: tangible and intangible artists' criteria used for assessments creativity conditions. The proposed model includes objective factors (working time, income, etc.) and subjective factors (salary covering essential needs, self-satisfaction). Other intangible indicators are taken into account: the impact on the common culture, social values, and the possibility to receive awards, to represent the country in the international market. The empirical model consists of 59 separate indicators, grouped into eight categories. The deviation of each indicator from the general evaluation allows for identifying the strongest and the weakest components of artists’ conditions.

Keywords: artist conditions, artistic labour force, cultural policy, indicator, assessment model

Procedia PDF Downloads 151
15762 A Soft Error Rates (SER) Evaluation Method of Combinational Logic Circuit Based on Linear Energy Transfers

Authors: Man Li, Wanting Zhou, Lei Li

Abstract:

Communication stability is the primary concern of communication satellites. Communication satellites are easily affected by particle radiation to generate single event effects (SEE), which leads to soft errors (SE) of the combinational logic circuit. The existing research on soft error rates (SER) of the combined logic circuit is mostly based on the assumption that the logic gates being bombarded have the same pulse width. However, in the actual radiation environment, the pulse widths of the logic gates being bombarded are different due to different linear energy transfers (LET). In order to improve the accuracy of SER evaluation model, this paper proposes a soft error rate evaluation method based on LET. In this paper, the authors analyze the influence of LET on the pulse width of combinational logic and establish the pulse width model based on the LET. Based on this model, the error rate of test circuit ISCAS'85 is calculated. The effectiveness of the model is proved by comparing it with previous experiments.

Keywords: communication satellite, pulse width, soft error rates, LET

Procedia PDF Downloads 172
15761 The Relationship between Political Risks and Capital Adequacy Ratio: Evidence from GCC Countries Using a Dynamic Panel Data Model (System–GMM)

Authors: Wesam Hamed

Abstract:

This paper contributes to the existing literature by investigating the impact of political risks on the capital adequacy ratio in the banking sector of Gulf Cooperation Council (GCC) countries, which is the first attempt for this nexus to the best of our knowledge. The dynamic panel data model (System‐GMM) showed that political risks significantly decrease the capital adequacy ratio in the banking sector. For this purpose, we used political risks, bank-specific, profitability, and macroeconomic variables that are utilized from the data stream database for the period 2005-2017. The results also actively support the “too big to fail” hypothesis. Finally, the robustness results confirm the conclusions derived from the baseline System‐GMM model.

Keywords: capital adequacy ratio, system GMM, GCC, political risks

Procedia PDF Downloads 147
15760 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs

Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare

Abstract:

The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.

Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio

Procedia PDF Downloads 98
15759 A Construction Scheduling Model by Applying Pedestrian and Vehicle Simulation

Authors: Akhmad F. K. Khitam, Yi Tai, Hsin-Yun Lee

Abstract:

In the modern research of construction management, the goals of scheduling are not only to finish the project within the limited duration, but also to improve the impact of people and environment. Especially for the impact to the pedestrian and vehicles, the considerable social cost should be estimated in the total performance of a construction project. However, the site environment has many differences between projects. These interactions affect the requirement and goal of scheduling. It is difficult for schedule planners to quantify these interactions. Therefore, this study use 3D dynamic simulation technology to plan the schedule of the construction engineering projects that affect the current space users (i.e., the pedestrians and vehicles). The proposed model can help the project manager find out the optimal schedule to minimize the inconvenience brought to the space users. Besides, a roadwork project and a building renovation project were analyzed for the practical situation of engineering and operations. Then this study integrates the proper optimization algorithms and computer technology to establish a decision support model. The proposed model can generate a near-optimal schedule solution for project planners.

Keywords: scheduling, simulation, optimization, pedestrian and vehicle behavior

Procedia PDF Downloads 141
15758 A Combined Approach Based on Artificial Intelligence and Computer Vision for Qualitative Grading of Rice Grains

Authors: Hemad Zareiforoush, Saeed Minaei, Ahmad Banakar, Mohammad Reza Alizadeh

Abstract:

The quality inspection of rice (Oryza sativa L.) during its various processing stages is very important. In this research, an artificial intelligence-based model coupled with computer vision techniques was developed as a decision support system for qualitative grading of rice grains. For conducting the experiments, first, 25 samples of rice grains with different levels of percentage of broken kernels (PBK) and degree of milling (DOM) were prepared and their qualitative grade was assessed by experienced experts. Then, the quality parameters of the same samples examined by experts were determined using a machine vision system. A grading model was developed based on fuzzy logic theory in MATLAB software for making a relationship between the qualitative characteristics of the product and its quality. Totally, 25 rules were used for qualitative grading based on AND operator and Mamdani inference system. The fuzzy inference system was consisted of two input linguistic variables namely, DOM and PBK, which were obtained by the machine vision system, and one output variable (quality of the product). The model output was finally defuzzified using Center of Maximum (COM) method. In order to evaluate the developed model, the output of the fuzzy system was compared with experts’ assessments. It was revealed that the developed model can estimate the qualitative grade of the product with an accuracy of 95.74%.

Keywords: machine vision, fuzzy logic, rice, quality

Procedia PDF Downloads 419
15757 Determinants of Long Acting Reversible Contraception Utilization among Women (15-49) in Uganda: Analysis of 2016 PMA2020 Uganda Survey

Authors: Nulu Nanono

Abstract:

Background: The Ugandan national health policy and the national population policy all recognize the need to increase access to quality, affordable, acceptable and sustainable contraceptive services for all people but provision and utilization of quality services remains low. Two contraceptive methods are categorized as long-acting temporary methods: intrauterine contraceptive devices (IUCDs) and implants. Copper-containing IUCDs, generally available in Ministry of Health (MoH) family planning programs and is effective for at least 12 years while Implants, depending on the type, last for up to three to seven years. Uganda’s current policy and political environment are favorable towards achieving national access to quality and safe contraceptives for all people as evidenced by increasing government commitments and innovative family planning programs. Despite the increase of modern contraception use from 14% to 26%, long acting reversible contraceptive (LARC) utilization has relatively remained low with less than 5% using IUDs & Implants which in a way explains Uganda’s persistent high fertility rates. Main question/hypothesis: The purpose of the study was to examine relationship between the demographic, socio-economic characteristics of women, health facility factors and long acting reversible contraception utilization. Methodology: LARC utilization was investigated comprising of the two questions namely are you or your partner currently doing something or using any method to delay or avoid getting pregnant? And which method or methods are you using? Data for the study was sourced from the 2016 Uganda Performance Monitoring and Accountability 2020 Survey comprising of 3816 female respondents aged 15 to 49 years. The analysis was done using the Chi-squared tests and the probit regression at bivariate and multivariate levels respectively. The model was further tested for validity and normality of the residuals using the Sharipo wilks test and test for kurtosis and skewness. Results: The results showed the model the age, parity, marital status, region, knowledge of LARCs, availability of LARCs to be significantly associated with long acting contraceptive utilization with p value of less than 0.05. At the multivariate analysis level, women who had higher parities (0.000) tertiary education (0.013), no knowledge about LARCs (0.006) increases their probability of using LARCs. Furthermore while women age 45-49, those who live in the eastern region reduces their probability of using LARCs. Knowledge contribution: The findings of this study join the debate of prior research in this field and add to the body of knowledge related to long acting reversible contraception. An outstanding and queer finding from the study is the non-utilization of LARCs by women who are aware and have knowledge about them, this may be an opportunity for further research to investigate the attribution to this.

Keywords: contraception, long acting, utilization, women (15-49)

Procedia PDF Downloads 205
15756 A Parking Demand Forecasting Method for Making Parking Policy in the Center of Kabul City

Authors: Roien Qiam, Shoshi Mizokami

Abstract:

Parking demand in the Central Business District (CBD) has enlarged with the increase of the number of private vehicles due to rapid economic growth, lack of an efficient public transport and traffic management system. This has resulted in low mobility, poor accessibility, serious congestion, high rates of traffic accident fatalities and injuries and air pollution, mainly because people have to drive slowly around to find a vacant spot. With parking pricing and enforcement policy, considerable advancement could be found, and on-street parking spaces could be managed efficiently and effectively. To evaluate parking demand and making parking policy, it is required to understand the current parking condition and driver’s behavior, understand how drivers choose their parking type and location as well as their behavior toward finding a vacant parking spot under parking charges and search times. This study illustrates the result from an observational, revealed and stated preference surveys and experiment. Attained data shows that there is a gap between supply and demand in parking and it has maximized. For the modeling of the parking decision, a choice model was constructed based on discrete choice modeling theory and multinomial logit model estimated by using SP survey data; the model represents the choice of an alternative among different alternatives which are priced on-street, off-street, and illegal parking. Individuals choose a parking type based on their preference concerning parking charges, searching times, access times and waiting times. The parking assignment model was obtained directly from behavioral model and is used in parking simulation. The study concludes with an evaluation of parking policy.

Keywords: CBD, parking demand forecast, parking policy, parking choice model

Procedia PDF Downloads 194
15755 Modified Genome-Scale Metabolic Model of Escherichia coli by Adding Hyaluronic Acid Biosynthesis-Related Enzymes (GLMU2 and HYAD) from Pasteurella multocida

Authors: P. Pasomboon, P. Chumnanpuen, T. E-kobon

Abstract:

Hyaluronic acid (HA) consists of linear heteropolysaccharides repeat of D-glucuronic acid and N-acetyl-D-glucosamine. HA has various useful properties to maintain skin elasticity and moisture, reduce inflammation, and lubricate the movement of various body parts without causing immunogenic allergy. HA can be found in several animal tissues as well as in the capsule component of some bacteria including Pasteurella multocida. This study aimed to modify a genome-scale metabolic model of Escherichia coli using computational simulation and flux analysis methods to predict HA productivity under different carbon sources and nitrogen supplement by the addition of two enzymes (GLMU2 and HYAD) from P. multocida to improve the HA production under the specified amount of carbon sources and nitrogen supplements. Result revealed that threonine and aspartate supplement raised the HA production by 12.186%. Our analyses proposed the genome-scale metabolic model is useful for improving the HA production and narrows the number of conditions to be tested further.

Keywords: Pasteurella multocida, Escherichia coli, hyaluronic acid, genome-scale metabolic model, bioinformatics

Procedia PDF Downloads 123
15754 D-Wave Quantum Computing Ising Model: A Case Study for Forecasting of Heat Waves

Authors: Dmytro Zubov, Francesco Volponi

Abstract:

In this paper, D-Wave quantum computing Ising model is used for the forecasting of positive extremes of daily mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 4-, and 5-day historical data respectively. Ising model’s real-valued weights and dimensionless coefficients are calculated using daily mean air temperatures from 119 places around the world, as well as sea level (Aburatsu, Japan). In comparison with current methods, this approach is better suited to predict heat wave values because it does not require the estimation of a probability distribution from scarce observations. Proposed forecast quantum computing algorithm is simulated based on traditional computer architecture and combinatorial optimization of Ising model parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on learning sample (1975-2010 yr). Analysis of the forecast accuracy (ratio of successful predictions to total number of predictions) on the validation sample (2011-2014 yr) shows that Ising model with three qubits has 100 % accuracy, which is quite significant as compared to other methods. However, number of identified heat waves is small (only one out of nineteen in this case). Other models with 2, 4, and 5 qubits have 20 %, 3.8 %, and 3.8 % accuracy respectively. Presented three-qubit forecast model is applied for prediction of heat waves at other five locations: Aurel Vlaicu, Romania – accuracy is 28.6 %; Bratislava, Slovakia – accuracy is 21.7 %; Brussels, Belgium – accuracy is 33.3 %; Sofia, Bulgaria – accuracy is 50 %; Akhisar, Turkey – accuracy is 21.4 %. These predictions are not ideal, but not zeros. They can be used independently or together with other predictions generated by different method(s). The loss of human life, as well as environmental, economic, and material damage, from extreme air temperatures could be reduced if some of heat waves are predicted. Even a small success rate implies a large socio-economic benefit.

Keywords: heat wave, D-wave, forecast, Ising model, quantum computing

Procedia PDF Downloads 500
15753 Modeling and Controlling the Rotational Degree of a Quadcopter Using Proportional Integral and Derivative Controller

Authors: Sanjay Kumar, Lillie Dewan

Abstract:

The study of complex dynamic systems has advanced through various scientific approaches with the help of computer modeling. The common design trends in aerospace system design can be applied to quadcopter design. A quadcopter is a nonlinear, under-actuated system with complex aerodynamics parameters and creates challenges that demand new, robust, and effective control approaches. The flight control stability can be improved by planning and tracking the trajectory and reducing the effect of sensors and the operational environment. This paper presents a modern design Simmechanics visual modeling approach for a mechanical model of a quadcopter with three degrees of freedom. The Simmechanics model, considering inertia, mass, and geometric properties of a dynamic system, produces multiple translation and rotation maneuvers. The proportional, integral, and derivative (PID) controller is integrated with the Simmechanics model to follow a predefined quadcopter rotational trajectory for a fixed time interval. The results presented are satisfying. The simulation of the quadcopter control performed operations successfully.

Keywords: nonlinear system, quadcopter model, simscape modelling, proportional-integral-derivative controller

Procedia PDF Downloads 196