Search results for: scale invariant feature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7515

Search results for: scale invariant feature

7245 Effect of Residential Block Scale Envelope in Buildings Energy Consumption: A Vernacular Case Study in an Iranian Urban Context

Authors: M. Panahian

Abstract:

A global challenge which is of paramount significance today is the issue of devising innovative solutions to tackle the environmental issues, as well as more intelligent and foresightful consumption of and management of natural resources. Changes in global climate resulting from the burning of fossil fuel and the rise in the level of energy consumption are a few examples of environmental issues detrimental to any form of life on earth, which are aggravated year by year. Overall, energy-efficient designs and construction strategies can be studied at three scales: building, block, and city. Nevertheless, as the available literature suggests, the greatest emphasis has been on building and city scales, and little has been done as to the energy-efficient designs at block scale. Therefore, the aim of the current research is to investigate the influences of residential block scale envelope on the energy consumption in buildings. To this end, a case study of residential block scale has been selected in the city of Isfahan, in Iran, situated in a hot and dry climate with cold winters. Eventually, the most effective variables in energy consumption, concerning the block scale envelope, will be concluded.

Keywords: sustainability, passive energy saving solutions, residential block scale, energy efficiency

Procedia PDF Downloads 241
7244 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network

Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza

Abstract:

The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.

Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer

Procedia PDF Downloads 262
7243 The Relationship between Human Pose and Intention to Fire a Handgun

Authors: Joshua van Staden, Dane Brown, Karen Bradshaw

Abstract:

Gun violence is a significant problem in modern-day society. Early detection of carried handguns through closed-circuit television (CCTV) can aid in preventing potential gun violence. However, CCTV operators have a limited attention span. Machine learning approaches to automating the detection of dangerous gun carriers provide a way to aid CCTV operators in identifying these individuals. This study provides insight into the relationship between human key points extracted using human pose estimation (HPE) and their intention to fire a weapon. We examine the feature importance of each keypoint and their correlations. We use principal component analysis (PCA) to reduce the feature space and optimize detection. Finally, we run a set of classifiers to determine what form of classifier performs well on this data. We find that hips, shoulders, and knees tend to be crucial aspects of the human pose when making these predictions. Furthermore, the horizontal position plays a larger role than the vertical position. Of the 66 key points, nine principal components could be used to make nonlinear classifications with 86% accuracy. Furthermore, linear classifications could be done with 85% accuracy, showing that there is a degree of linearity in the data.

Keywords: feature engineering, human pose, machine learning, security

Procedia PDF Downloads 93
7242 Enhanced Extra Trees Classifier for Epileptic Seizure Prediction

Authors: Maurice Ntahobari, Levin Kuhlmann, Mario Boley, Zhinoos Razavi Hesabi

Abstract:

For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection.

Keywords: machine learning, seizure prediction, extra tree classifier, SHAP, epilepsy

Procedia PDF Downloads 112
7241 Classifying Facial Expressions Based on a Motion Local Appearance Approach

Authors: Fabiola M. Villalobos-Castaldi, Nicolás C. Kemper, Esther Rojas-Krugger, Laura G. Ramírez-Sánchez

Abstract:

This paper presents the classification results about exploring the combination of a motion based approach with a local appearance method to describe the facial motion caused by the muscle contractions and expansions that are presented in facial expressions. The proposed feature extraction method take advantage of the knowledge related to which parts of the face reflects the highest deformations, so we selected 4 specific facial regions at which the appearance descriptor were applied. The most common used approaches for feature extraction are the holistic and the local strategies. In this work we present the results of using a local appearance approach estimating the correlation coefficient to the 4 corresponding landmark-localized facial templates of the expression face related to the neutral face. The results let us to probe how the proposed motion estimation scheme based on the local appearance correlation computation can simply and intuitively measure the motion parameters for some of the most relevant facial regions and how these parameters can be used to recognize facial expressions automatically.

Keywords: facial expression recognition system, feature extraction, local-appearance method, motion-based approach

Procedia PDF Downloads 413
7240 Music Genre Classification Based on Non-Negative Matrix Factorization Features

Authors: Soyon Kim, Edward Kim

Abstract:

In order to retrieve information from the massive stream of songs in the music industry, music search by title, lyrics, artist, mood, and genre has become more important. Despite the subjectivity and controversy over the definition of music genres across different nations and cultures, automatic genre classification systems that facilitate the process of music categorization have been developed. Manual genre selection by music producers is being provided as statistical data for designing automatic genre classification systems. In this paper, an automatic music genre classification system utilizing non-negative matrix factorization (NMF) is proposed. Short-term characteristics of the music signal can be captured based on the timbre features such as mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), octave-based spectral contrast (OSC), and octave band sum (OBS). Long-term time-varying characteristics of the music signal can be summarized with (1) the statistical features such as mean, variance, minimum, and maximum of the timbre features and (2) the modulation spectrum features such as spectral flatness measure, spectral crest measure, spectral peak, spectral valley, and spectral contrast of the timbre features. Not only these conventional basic long-term feature vectors, but also NMF based feature vectors are proposed to be used together for genre classification. In the training stage, NMF basis vectors were extracted for each genre class. The NMF features were calculated in the log spectral magnitude domain (NMF-LSM) as well as in the basic feature vector domain (NMF-BFV). For NMF-LSM, an entire full band spectrum was used. However, for NMF-BFV, only low band spectrum was used since high frequency modulation spectrum of the basic feature vectors did not contain important information for genre classification. In the test stage, using the set of pre-trained NMF basis vectors, the genre classification system extracted the NMF weighting values of each genre as the NMF feature vectors. A support vector machine (SVM) was used as a classifier. The GTZAN multi-genre music database was used for training and testing. It is composed of 10 genres and 100 songs for each genre. To increase the reliability of the experiments, 10-fold cross validation was used. For a given input song, an extracted NMF-LSM feature vector was composed of 10 weighting values that corresponded to the classification probabilities for 10 genres. An NMF-BFV feature vector also had a dimensionality of 10. Combined with the basic long-term features such as statistical features and modulation spectrum features, the NMF features provided the increased accuracy with a slight increase in feature dimensionality. The conventional basic features by themselves yielded 84.0% accuracy, but the basic features with NMF-LSM and NMF-BFV provided 85.1% and 84.2% accuracy, respectively. The basic features required dimensionality of 460, but NMF-LSM and NMF-BFV required dimensionalities of 10 and 10, respectively. Combining the basic features, NMF-LSM and NMF-BFV together with the SVM with a radial basis function (RBF) kernel produced the significantly higher classification accuracy of 88.3% with a feature dimensionality of 480.

Keywords: mel-frequency cepstral coefficient (MFCC), music genre classification, non-negative matrix factorization (NMF), support vector machine (SVM)

Procedia PDF Downloads 303
7239 Pilot-free Image Transmission System of Joint Source Channel Based on Multi-Level Semantic Information

Authors: Linyu Wang, Liguo Qiao, Jianhong Xiang, Hao Xu

Abstract:

In semantic communication, the existing joint Source Channel coding (JSCC) wireless communication system without pilot has unstable transmission performance and can not effectively capture the global information and location information of images. In this paper, a pilot-free image transmission system of joint source channel based on multi-level semantic information (Multi-level JSCC) is proposed. The transmitter of the system is composed of two networks. The feature extraction network is used to extract the high-level semantic features of the image, compress the information transmitted by the image, and improve the bandwidth utilization. Feature retention network is used to preserve low-level semantic features and image details to improve communication quality. The receiver also is composed of two networks. The received high-level semantic features are fused with the low-level semantic features after feature enhancement network in the same dimension, and then the image dimension is restored through feature recovery network, and the image location information is effectively used for image reconstruction. This paper verifies that the proposed multi-level JSCC algorithm can effectively transmit and recover image information in both AWGN channel and Rayleigh fading channel, and the peak signal-to-noise ratio (PSNR) is improved by 1~2dB compared with other algorithms under the same simulation conditions.

Keywords: deep learning, JSCC, pilot-free picture transmission, multilevel semantic information, robustness

Procedia PDF Downloads 120
7238 Multi-Class Text Classification Using Ensembles of Classifiers

Authors: Syed Basit Ali Shah Bukhari, Yan Qiang, Saad Abdul Rauf, Syed Saqlaina Bukhari

Abstract:

Text Classification is the methodology to classify any given text into the respective category from a given set of categories. It is highly important and vital to use proper set of pre-processing , feature selection and classification techniques to achieve this purpose. In this paper we have used different ensemble techniques along with variance in feature selection parameters to see the change in overall accuracy of the result and also on some other individual class based features which include precision value of each individual category of the text. After subjecting our data through pre-processing and feature selection techniques , different individual classifiers were tested first and after that classifiers were combined to form ensembles to increase their accuracy. Later we also studied the impact of decreasing the classification categories on over all accuracy of data. Text classification is highly used in sentiment analysis on social media sites such as twitter for realizing people’s opinions about any cause or it is also used to analyze customer’s reviews about certain products or services. Opinion mining is a vital task in data mining and text categorization is a back-bone to opinion mining.

Keywords: Natural Language Processing, Ensemble Classifier, Bagging Classifier, AdaBoost

Procedia PDF Downloads 231
7237 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition

Authors: Fawaz S. Al-Anzi, Dia AbuZeina

Abstract:

Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.

Keywords: speech recognition, acoustic features, mel frequency, cepstral coefficients

Procedia PDF Downloads 259
7236 Learning Dynamic Representations of Nodes in Temporally Variant Graphs

Authors: Sandra Mitrovic, Gaurav Singh

Abstract:

In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.

Keywords: churn prediction, dynamic networks, node2vec, auto-encoders

Procedia PDF Downloads 314
7235 Socio-Economic Effects of Micro-Credit on Small-Scale Poultry Farmers’ Livelihood in Ado Odo-Ota Local Government Area of Ogun State, Nigeria

Authors: E. O. Fakoya, B. G. Abiona, W. O. Oyediran, A. M. Omoare

Abstract:

This study examined the socio-economic effects of micro-credit on small scale poultry farmers’ livelihood in Ado Odo-Ota Local Government area of Ogun State. Purposive sampling method was used to select eighty (80) small scale poultry farmers that benefited in micro credit. Interview guide was used to obtain information on the respondents’ socio-economic characteristic, sources of micro-credit and the effects of micro-credit on their livelihood. The results revealed that most of the respondents (77.50 %) were males while half (40.00%) of the respondents were between the ages of 31-40 years. A high proportion (72.50%) of the respondents had formal education. The major sources of micro credit to small scale poultry farmers were cooperative society (47.50%) and personal savings (20.00%). The findings also revealed that micro-credit had positive effect on the assets and livelihoods of small scale poultry farmers’ livelihood. Results of t-test analysis showed a significant difference between the effects before and after micro-credit on small-scale poultry farmers’ Livelihood at p < 0.05. The study recommends that formal lending institution should be given necessary support by government to enable poultry farmers have access to credit facilities in the study area.

Keywords: micro-credit, effects, livelihood, poultry farmers, socio-economic, small scale

Procedia PDF Downloads 441
7234 Feasibility Study on Hybrid Multi-Stage Direct-Drive Generator for Large-Scale Wind Turbine

Authors: Jin Uk Han, Hye Won Han, Hyo Lim Kang, Tae An Kim, Seung Ho Han

Abstract:

Direct-drive generators for large-scale wind turbine, which are divided into AFPM(Axial Flux Permanent Magnet) and RFPM(Radial Flux Permanent Magnet) type machine, have attracted interest because of a higher energy density in comparison with gear train type generators. Each type of the machines provides distinguishable geometrical features such as narrow width with a large diameter for the AFPM-type machine and wide width with a certain diameter for the RFPM-type machine. When the AFPM-type machine is applied, an increase of electric power production through a multi-stage arrangement in axial direction is easily achieved. On the other hand, the RFPM-type machine can be applied by using its geometric feature of wide width. In this study, a hybrid two-stage direct-drive generator for 6.2MW class wind turbine was proposed, in which the two-stage AFPM-type machine for 5 MW was composed of two models arranged in axial direction with a hollow shape topology of the rotor with annular disc, the stator and the main shaft mounted on coupled slew bearings. In addition, the RFPM-type machine for 1.2MW was installed at the empty space of the rotor. Analytic results obtained from an electro-magnetic and structural interaction analysis showed that the structural weight of the proposed hybrid two-stage direct-drive generator can be achieved as 155tonf in a condition satisfying the requirements of structural behaviors such as allowable air-gap clearance and strength. Therefore, it was sure that the 6.2MW hybrid two-stage direct-drive generator is competitive than conventional generators. (NRF grant funded by the Korea government MEST, No. 2017R1A2B4005405).

Keywords: AFPM-type machine, direct-drive generator, electro-magnetic analysis, large-scale wind turbine, RFPM-type machine

Procedia PDF Downloads 167
7233 Evaluate the Possibility of Using ArcGIS Basemaps as GCP for Large Scale Maps

Authors: Jali Octariady, Ida Herliningsih, Ade K. Mulyana, Annisa Fitria, Diaz C. K. Yuwana

Abstract:

Awareness of the importance large-scale maps for development of a country is growing in all walks of life, especially for governments in Indonesia. Various parties, especially local governments throughout Indonesia demanded for immediate availability the large-scale maps of 1:5000 for regional development. But in fact, the large-scale maps of 1:5000 is only available less than 5% of the entire territory of Indonesia. Unavailability precise GCP at the entire territory of Indonesia is one of causes of slow availability the large scale maps of 1:5000. This research was conducted to find an alternative solution to this problem. This study was conducted to assess the accuracy of ArcGIS base maps coordinate when it shall be used as GCP for creating a map scale of 1:5000. The study was conducted by comparing the GCP coordinate from Field survey using GPS Geodetic than the coordinate from ArcGIS basemaps in various locations in Indonesia. Some areas are used as a study area are Lombok Island, Kupang City, Surabaya City and Kediri District. The differences value of the coordinates serve as the basis for assessing the accuracy of ArcGIS basemaps coordinates. The results of the study at various study area show the variation of the amount of the coordinates value given. Differences coordinate value in the range of millimeters (mm) to meters (m) in the entire study area. This is shown the inconsistency quality of ArcGIS base maps coordinates. This inconsistency shows that the coordinate value from ArcGIS Basemaps is careless. The Careless coordinate from ArcGIS Basemaps indicates that its cannot be used as GCP for large-scale mapping on the entire territory of Indonesia.

Keywords: accuracy, ArcGIS base maps, GCP, large scale maps

Procedia PDF Downloads 373
7232 Image Analysis for Obturator Foramen Based on Marker-controlled Watershed Segmentation and Zernike Moments

Authors: Seda Sahin, Emin Akata

Abstract:

Obturator foramen is a specific structure in pelvic bone images and recognition of it is a new concept in medical image processing. Moreover, segmentation of bone structures such as obturator foramen plays an essential role for clinical research in orthopedics. In this paper, we present a novel method to analyze the similarity between the substructures of the imaged region and a hand drawn template, on hip radiographs to detect obturator foramen accurately with integrated usage of Marker-controlled Watershed segmentation and Zernike moment feature descriptor. Marker-controlled Watershed segmentation is applied to seperate obturator foramen from the background effectively. Zernike moment feature descriptor is used to provide matching between binary template image and the segmented binary image for obturator foramens for final extraction. The proposed method is tested on randomly selected 100 hip radiographs. The experimental results represent that our method is able to segment obturator foramens with % 96 accuracy.

Keywords: medical image analysis, segmentation of bone structures on hip radiographs, marker-controlled watershed segmentation, zernike moment feature descriptor

Procedia PDF Downloads 434
7231 Scale-Up Process for Phyllanthus niruri Enriched Extract by Supercritical Fluid Extraction

Authors: Norsyamimi Hassim, Masturah Markom

Abstract:

Supercritical fluid extraction (SFE) has been known as a sustainable and safe extraction technique for plant extraction due to the minimal usage of organic solvent. In this study, a scale-up process for the selected herbal plant (Phyllanthus niruri) was investigated by using supercritical carbon dioxide (SC-CO2) with food-grade (ethanol-water) cosolvent. The quantification of excess ethanol content in the final dry extracts was conducted to determine the safety of enriched extracts. The extraction yields obtained by scale-up SFE unit were not much different compared to the predicted extraction yields with an error of 2.92%. For component contents, the scale-up extracts showed comparable quality with laboratory-scale experiments. The final dry extract showed that the excess ethanol content was 1.56% g/g extract. The fish embryo toxicity test (FETT) on the zebrafish embryos showed no toxicity effects by the extract, where the LD50 value was found to be 505.71 µg/mL. Thus, it has been proven that SFE with food-grade cosolvent is a safe extraction technique for the production of bioactive compounds from P. niruri.

Keywords: scale-up, supercritical fluid extraction, enriched extract, toxicity, ethanol content

Procedia PDF Downloads 132
7230 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory

Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi

Abstract:

One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.

Keywords: rough set theory, attribute reduction, fuzzy logic, memetic algorithms, record to record algorithm, great deluge algorithm

Procedia PDF Downloads 454
7229 Faster Pedestrian Recognition Using Deformable Part Models

Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia

Abstract:

Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.

Keywords: autonomous vehicles, deformable part model, dpm, pedestrian detection, real time

Procedia PDF Downloads 279
7228 Identification of Potential Large Scale Floating Solar Sites in Peninsular Malaysia

Authors: Nur Iffika Ruslan, Ahmad Rosly Abbas, Munirah Stapah@Salleh, Nurfaziera Rahim

Abstract:

Increased concerns and awareness of environmental hazards by fossil fuels burning for energy have become the major factor driving the transition toward green energy. It is expected that an additional of 2,000 MW of renewable energy is to be recorded from the renewable sources by 2025 following the implementation of Large Scale Solar projects in Peninsular Malaysia, including Large Scale Floating Solar projects. Floating Solar has better advantages over its landed counterparts such as the requirement for land acquisition is relatively insignificant. As part of the site selection process established by TNB Research Sdn. Bhd., a set of mandatory and rejection criteria has been developed in order to identify only sites that are feasible for the future development of Large Scale Floating Solar power plant. There are a total of 85 lakes and reservoirs identified within Peninsular Malaysia. Only lakes and reservoirs with a minimum surface area of 120 acres will be considered as potential sites for the development of Large Scale Floating Solar power plant. The result indicates a total of 10 potential Large Scale Floating Solar sites identified which are located in Selangor, Johor, Perak, Pulau Pinang, Perlis and Pahang. This paper will elaborate on the various mandatory and rejection criteria, as well as on the various site selection process required to identify potential (suitable) Large Scale Floating Solar sites in Peninsular Malaysia.

Keywords: Large Scale Floating Solar, Peninsular Malaysia, Potential Sites, Renewable Energy

Procedia PDF Downloads 180
7227 Exploring Syntactic and Semantic Features for Text-Based Authorship Attribution

Authors: Haiyan Wu, Ying Liu, Shaoyun Shi

Abstract:

Authorship attribution is to extract features to identify authors of anonymous documents. Many previous works on authorship attribution focus on statistical style features (e.g., sentence/word length), content features (e.g., frequent words, n-grams). Modeling these features by regression or some transparent machine learning methods gives a portrait of the authors' writing style. But these methods do not capture the syntactic (e.g., dependency relationship) or semantic (e.g., topics) information. In recent years, some researchers model syntactic trees or latent semantic information by neural networks. However, few works take them together. Besides, predictions by neural networks are difficult to explain, which is vital in authorship attribution tasks. In this paper, we not only utilize the statistical style and content features but also take advantage of both syntactic and semantic features. Different from an end-to-end neural model, feature selection and prediction are two steps in our method. An attentive n-gram network is utilized to select useful features, and logistic regression is applied to give prediction and understandable representation of writing style. Experiments show that our extracted features can improve the state-of-the-art methods on three benchmark datasets.

Keywords: authorship attribution, attention mechanism, syntactic feature, feature extraction

Procedia PDF Downloads 136
7226 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique

Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu

Abstract:

Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.

Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing

Procedia PDF Downloads 101
7225 Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach

Authors: Nidal F. Shilbayeh, Remah W. Al-Khatib, Sameer A. Nooh

Abstract:

Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system.  This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals.

Keywords: handwritten numerals, segmentation, courtesy amount, feature extraction, numeral recognition

Procedia PDF Downloads 381
7224 Development and Evaluation of a Psychological Adjustment and Adaptation Status Scale for Breast Cancer Survivors

Authors: Jing Chen, Jun-E Liu, Peng Yue

Abstract:

Objective: The objective of this study was to develop a psychological adjustment and adaptation status scale for breast cancer survivors, and to examine the reliability and validity of the scale. Method: 37 breast cancer survivors were recruited in qualitative research; a five-subject theoretical framework and an item pool of 150 items of the scale were derived from the interview data. In order to evaluate and select items and reach a preliminary validity and reliability for the original scale, the suggestions of study group members, experts and breast cancer survivors were taken, and statistical methods were used step by step in a sample of 457 breast cancer survivors. Results: An original 24-item scale was developed. The five dimensions “domestic affections”, “interpersonal relationship”, “attitude of life”, “health awareness”, “self-control/self-efficacy” explained 58.053% of the total variance. The content validity was assessed by experts, the CVI was 0.92. The construct validity was examined in a sample of 264 breast cancer survivors. The fitting indexes of confirmatory factor analysis (CFA) showed good fitting of the five dimensions model. The criterion-related validity of the total scale with PTGI was satisfactory (r=0.564, p<0.001). The internal consistency reliability and test-retest reliability were tested. Cronbach’s alpha value (0.911) showed a good internal consistency reliability, and the intraclass correlation coefficient (ICC=0.925, p<0.001) showed a satisfactory test-retest reliability. Conclusions: The scale was brief and easy to understand, was suitable for breast cancer patients whose physical strength and energy were limited.

Keywords: breast cancer survivors, rehabilitation, psychological adaption and adjustment, development of scale

Procedia PDF Downloads 513
7223 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network

Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar

Abstract:

Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.

Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network

Procedia PDF Downloads 517
7222 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 74
7221 Speeding-up Gray-Scale FIC by Moments

Authors: Eman A. Al-Hilo, Hawraa H. Al-Waelly

Abstract:

In this work, fractal compression (FIC) technique is introduced based on using moment features to block indexing the zero-mean range-domain blocks. The moment features have been used to speed up the IFS-matching stage. Its moments ratio descriptor is used to filter the domain blocks and keep only the blocks that are suitable to be IFS matched with tested range block. The results of tests conducted on Lena picture and Cat picture (256 pixels, resolution 24 bits/pixel) image showed a minimum encoding time (0.89 sec for Lena image and 0.78 of Cat image) with appropriate PSNR (30.01dB for Lena image and 29.8 of Cat image). The reduction in ET is about 12% for Lena and 67% for Cat image.

Keywords: fractal gray level image, fractal compression technique, iterated function system, moments feature, zero-mean range-domain block

Procedia PDF Downloads 492
7220 Image-Based UAV Vertical Distance and Velocity Estimation Algorithm during the Vertical Landing Phase Using Low-Resolution Images

Authors: Seyed-Yaser Nabavi-Chashmi, Davood Asadi, Karim Ahmadi, Eren Demir

Abstract:

The landing phase of a UAV is very critical as there are many uncertainties in this phase, which can easily entail a hard landing or even a crash. In this paper, the estimation of relative distance and velocity to the ground, as one of the most important processes during the landing phase, is studied. Using accurate measurement sensors as an alternative approach can be very expensive for sensors like LIDAR, or with a limited operational range, for sensors like ultrasonic sensors. Additionally, absolute positioning systems like GPS or IMU cannot provide distance to the ground independently. The focus of this paper is to determine whether we can measure the relative distance and velocity of UAV and ground in the landing phase using just low-resolution images taken by a monocular camera. The Lucas-Konda feature detection technique is employed to extract the most suitable feature in a series of images taken during the UAV landing. Two different approaches based on Extended Kalman Filters (EKF) have been proposed, and their performance in estimation of the relative distance and velocity are compared. The first approach uses the kinematics of the UAV as the process and the calculated optical flow as the measurement; On the other hand, the second approach uses the feature’s projection on the camera plane (pixel position) as the measurement while employing both the kinematics of the UAV and the dynamics of variation of projected point as the process to estimate both relative distance and relative velocity. To verify the results, a sequence of low-quality images taken by a camera that is moving on a specifically developed testbed has been used to compare the performance of the proposed algorithm. The case studies show that the quality of images results in considerable noise, which reduces the performance of the first approach. On the other hand, using the projected feature position is much less sensitive to the noise and estimates the distance and velocity with relatively high accuracy. This approach also can be used to predict the future projected feature position, which can drastically decrease the computational workload, as an important criterion for real-time applications.

Keywords: altitude estimation, drone, image processing, trajectory planning

Procedia PDF Downloads 113
7219 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines

Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso

Abstract:

The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.

Keywords: feature extraction, machine learning, OBIA, remote sensing

Procedia PDF Downloads 360
7218 The Mechanism of Calcium Carbonate Scale Deposition Affected by Carboxymethyl Chitosan

Authors: Genaro Bolívar, Manuel Mas, Maria Tortolero, Jorge Salazar

Abstract:

Due to the extensive use of water injection for oil displacement and pressure maintenance in oil fields, many reservoirs experience the problem of scale deposition when injection water starts to break through. In most cases the scaled-up wells are caused by the formation of sulfate and carbonate scales of calcium and strontium. Due to their relative hardness and low solubility, there are limited processes available for their removal and preventive measures such as the “squeeze” inhibitor treatment have to be taken. It is, therefore, important to gain a proper understanding of the kinetics of scale formation and its detrimental effects on formation damage under both inhibited and uninhibited conditions. Recently, the production of chitosan was started in our country and in the PDVSA-Intevep laboratories was synthesized and evaluated the properties of carboxymethyl chitosan (CMQ) as chelating agent of Ca2 + ions in water injection. In this regard, the characterization of the biopolymer by 13C - NMR, FTIR, TGA, and TM0374-2007 standard laboratory test has demonstrated the ability to remove up to 70% calcium ions in solution and shows a behavior that approaches that of commercial products.

Keywords: carboxymethyl chitosan, scale, calcium carbonate scale deposition, water injection

Procedia PDF Downloads 436
7217 The Modification of Convolutional Neural Network in Fin Whale Identification

Authors: Jiahao Cui

Abstract:

In the past centuries, due to climate change and intense whaling, the global whale population has dramatically declined. Among the various whale species, the fin whale experienced the most drastic drop in number due to its popularity in whaling. Under this background, identifying fin whale calls could be immensely beneficial to the preservation of the species. This paper uses feature extraction to process the input audio signal, then a network based on AlexNet and three networks based on the ResNet model was constructed to classify fin whale calls. A mixture of the DOSITS database and the Watkins database was used during training. The results demonstrate that a modified ResNet network has the best performance considering precision and network complexity.

Keywords: convolutional neural network, ResNet, AlexNet, fin whale preservation, feature extraction

Procedia PDF Downloads 122
7216 Nonlinear Passive Shunt for Electroacoustic Absorbers Using Nonlinear Energy Sink

Authors: Diala Bitar, Emmanuel Gourdon, Claude H. Lamarque, Manuel Collet

Abstract:

Acoustic absorber devices play an important role reducing the noise at the propagation and reception paths. An electroacoustic absorber consists of a loudspeaker coupled to an electric shunt circuit, where the membrane is playing the role of an absorber/reflector of sound. Although the use of linear shunt resistors at the transducer terminals, has shown to improve the performances of the dynamical absorbers, it is nearly efficient in a narrow frequency band. Therefore, and since nonlinear phenomena are promising for their ability to absorb the vibrations and sound on a larger frequency range, we propose to couple a nonlinear electric shunt circuit at the loudspeaker terminals. Then, the equivalent model can be described by a 2 degrees of freedom system, consisting of a primary linear oscillator describing the dynamics of the loudspeaker membrane, linearly coupled to a cubic nonlinear energy sink (NES). The system is analytically treated for the case of 1:1 resonance, using an invariant manifold approach at different time scales. The proposed methodology enables us to detect the equilibrium points and fold singularities at the first slow time scales, providing a predictive tool to design the nonlinear circuit shunt during the energy exchange process. The preliminary results are promising; a significant improvement of acoustic absorption performances are obtained.

Keywords: electroacoustic absorber, multiple-time-scale with small finite parameter, nonlinear energy sink, nonlinear passive shunt

Procedia PDF Downloads 220