Search results for: opportunity recognition
2897 Using Speech Emotion Recognition as a Longitudinal Biomarker for Alzheimer’s Diseases
Authors: Yishu Gong, Liangliang Yang, Jianyu Zhang, Zhengyu Chen, Sihong He, Xusheng Zhang, Wei Zhang
Abstract:
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide and is characterized by cognitive decline and behavioral changes. People living with Alzheimer’s disease often find it hard to complete routine tasks. However, there are limited objective assessments that aim to quantify the difficulty of certain tasks for AD patients compared to non-AD people. In this study, we propose to use speech emotion recognition (SER), especially the frustration level, as a potential biomarker for quantifying the difficulty patients experience when describing a picture. We build an SER model using data from the IEMOCAP dataset and apply the model to the DementiaBank data to detect the AD/non-AD group difference and perform longitudinal analysis to track the AD disease progression. Our results show that the frustration level detected from the SER model can possibly be used as a cost-effective tool for objective tracking of AD progression in addition to the Mini-Mental State Examination (MMSE) score.Keywords: Alzheimer’s disease, speech emotion recognition, longitudinal biomarker, machine learning
Procedia PDF Downloads 1172896 English Learning Speech Assistant Speak Application in Artificial Intelligence
Authors: Albatool Al Abdulwahid, Bayan Shakally, Mariam Mohamed, Wed Almokri
Abstract:
Artificial intelligence has infiltrated every part of our life and every field we can think of. With technical developments, artificial intelligence applications are becoming more prevalent. We chose ELSA speak because it is a magnificent example of Artificial intelligent applications, ELSA speak is a smartphone application that is free to download on both IOS and Android smartphones. ELSA speak utilizes artificial intelligence to help non-native English speakers pronounce words and phrases similar to a native speaker, as well as enhance their English skills. It employs speech-recognition technology that aids the application to excel the pronunciation of its users. This remarkable feature distinguishes ELSA from other voice recognition algorithms and increase the efficiency of the application. This study focused on evaluating ELSA speak application, by testing the degree of effectiveness based on survey questions. The results of the questionnaire were variable. The generality of the participants strongly agreed that ELSA has helped them enhance their pronunciation skills. However, a few participants were unconfident about the application’s ability to assist them in their learning journey.Keywords: ELSA speak application, artificial intelligence, speech-recognition technology, language learning, english pronunciation
Procedia PDF Downloads 1102895 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System
Authors: J. K. Adedeji, M. O. Oyekanmi
Abstract:
This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.Keywords: biometric characters, facial recognition, neural network, OpenCV
Procedia PDF Downloads 2592894 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets
Authors: Kothuri Sriraman, Mattupalli Komal Teja
Abstract:
In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm
Procedia PDF Downloads 3532893 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot
Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan
Abstract:
With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.Keywords: object detection, feature, descriptors, SIFT, SURF, depth images, service robots
Procedia PDF Downloads 5472892 Text Emotion Recognition by Multi-Head Attention based Bidirectional LSTM Utilizing Multi-Level Classification
Authors: Vishwanath Pethri Kamath, Jayantha Gowda Sarapanahalli, Vishal Mishra, Siddhesh Balwant Bandgar
Abstract:
Recognition of emotional information is essential in any form of communication. Growing HCI (Human-Computer Interaction) in recent times indicates the importance of understanding of emotions expressed and becomes crucial for improving the system or the interaction itself. In this research work, textual data for emotion recognition is used. The text being the least expressive amongst the multimodal resources poses various challenges such as contextual information and also sequential nature of the language construction. In this research work, the proposal is made for a neural architecture to resolve not less than 8 emotions from textual data sources derived from multiple datasets using google pre-trained word2vec word embeddings and a Multi-head attention-based bidirectional LSTM model with a one-vs-all Multi-Level Classification. The emotions targeted in this research are Anger, Disgust, Fear, Guilt, Joy, Sadness, Shame, and Surprise. Textual data from multiple datasets were used for this research work such as ISEAR, Go Emotions, Affect datasets for creating the emotions’ dataset. Data samples overlap or conflicts were considered with careful preprocessing. Our results show a significant improvement with the modeling architecture and as good as 10 points improvement in recognizing some emotions.Keywords: text emotion recognition, bidirectional LSTM, multi-head attention, multi-level classification, google word2vec word embeddings
Procedia PDF Downloads 1782891 An Accurate Computation of 2D Zernike Moments via Fast Fourier Transform
Authors: Mohammed S. Al-Rawi, J. Bastos, J. Rodriguez
Abstract:
Object detection and object recognition are essential components of every computer vision system. Despite the high computational complexity and other problems related to numerical stability and accuracy, Zernike moments of 2D images (ZMs) have shown resilience when used in object recognition and have been used in various image analysis applications. In this work, we propose a novel method for computing ZMs via Fast Fourier Transform (FFT). Notably, this is the first algorithm that can generate ZMs up to extremely high orders accurately, e.g., it can be used to generate ZMs for orders up to 1000 or even higher. Furthermore, the proposed method is also simpler and faster than the other methods due to the availability of FFT software and/or hardware. The accuracies and numerical stability of ZMs computed via FFT have been confirmed using the orthogonality property. We also introduce normalizing ZMs with Neumann factor when the image is embedded in a larger grid, and color image reconstruction based on RGB normalization of the reconstructed images. Astonishingly, higher-order image reconstruction experiments show that the proposed methods are superior, both quantitatively and subjectively, compared to the q-recursive method.Keywords: Chebyshev polynomial, fourier transform, fast algorithms, image recognition, pseudo Zernike moments, Zernike moments
Procedia PDF Downloads 2662890 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth
Authors: Valentina Zhang
Abstract:
While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning
Procedia PDF Downloads 1522889 A Review on Artificial Neural Networks in Image Processing
Authors: B. Afsharipoor, E. Nazemi
Abstract:
Artificial neural networks (ANNs) are powerful tool for prediction which can be trained based on a set of examples and thus, it would be useful for nonlinear image processing. The present paper reviews several paper regarding applications of ANN in image processing to shed the light on advantage and disadvantage of ANNs in this field. Different steps in the image processing chain including pre-processing, enhancement, segmentation, object recognition, image understanding and optimization by using ANN are summarized. Furthermore, results on using multi artificial neural networks are presented.Keywords: neural networks, image processing, segmentation, object recognition, image understanding, optimization, MANN
Procedia PDF Downloads 4132888 A Study of Effective Event Development and the Sustainability of Tourism Industry in Lagos State, Nigeria
Authors: Olajumoke Elizabeth Olawale-Olakunle
Abstract:
This research examined effective event development on the sustainability of tourism in Lagos State. The objectives were to ascertain the implication of effective event development on cost, environmental innovations, opportunity for participants, job creation and working conditions. Also, there was a focus on employee participation and the sustainability of the tourism industry. However, the primary data were obtained via the use of structured questionnaire administered to the selected respondents. Simple random sampling was used to select the respondents, using the Yaro Yame formula. The formulated hypothesis was tested using Analysis of Variance (ANOVA) and Non-parametric chi-square. From the tests conducted, the results showed that effective event development has helped to reduce costs, bring about environmental innovations, offer unique opportunity among event participants, create jobs and promote better working conditions, and the influence it has on employee participation affects the sustainability of the tourism industry. Based on these results, it was concluded that effective event development helps to achieve sustainability in the tourism industry by reducing costs, ensuring efficient use of tourism resources and offers a unique opportunity among event participants. It was, therefore, recommended that events should be developed in such a way that it can help to reduce cost and help leverage the financial burdens of participants and stakeholders, thereby, achieving sustainability in the tourism industry.Keywords: tourism, hospitality, industry, development
Procedia PDF Downloads 3952887 Fabrication of Highly Stable Low-Density Self-Assembled Monolayers by Thiolyne Click Reaction
Authors: Leila Safazadeh, Brad Berron
Abstract:
Self-assembled monolayers have tremendous impact in interfacial science, due to the unique opportunity they offer to tailor surface properties. Low-density self-assembled monolayers are an emerging class of monolayers where the environment-interfacing portion of the adsorbate has a greater level of conformational freedom when compared to traditional monolayer chemistries. This greater range of motion and increased spacing between surface-bound molecules offers new opportunities in tailoring adsorption phenomena in sensing systems. In particular, we expect low-density surfaces to offer a unique opportunity to intercalate surface bound ligands into the secondary structure of protiens and other macromolecules. Additionally, as many conventional sensing surfaces are built upon gold surfaces (SPR or QCM), these surfaces must be compatible with gold substrates. Here, we present the first stable method of generating low-density self assembled monolayer surfaces on gold for the analysis of their interactions with protein targets. Our approach is based on the 2:1 addition of thiol-yne chemistry to develop new classes of y-shaped adsorbates on gold, where the environment-interfacing group is spaced laterally from neighboring chemical groups. This technique involves an initial deposition of a crystalline monolayer of 1,10 decanedithiol on the gold substrate, followed by grafting of a low-packed monolayer on through a photoinitiated thiol-yne reaction in presence of light. Orthogonality of the thiol-yne chemistry (commonly referred to as a click chemistry) allows for preparation of low-density monolayers with variety of functional groups. To date, carboxyl, amine, alcohol, and alkyl terminated monolayers have been prepared using this core technology. Results from surface characterization techniques such as FTIR, contact angle goniometry and electrochemical impedance spectroscopy confirm the proposed low chain-chain interactions of the environment interfacing groups. Reductive desorption measurements suggest a higher stability for the click-LDMs compared to traditional SAMs, along with the equivalent packing density at the substrate interface, which confirms the proposed stability of the monolayer-gold interface. In addition, contact angle measurements change in the presence of an applied potential, supporting our description of a surface structure which allows the alkyl chains to freely orient themselves in response to different environments. We are studying the differences in protein adsorption phenomena between well packed and our loosely packed surfaces, and we expect this data will be ready to present at the GRC meeting. This work aims to contribute biotechnology science in the following manner: Molecularly imprinted polymers are a promising recognition mode with several advantages over natural antibodies in the recognition of small molecules. However, because of their bulk polymer structure, they are poorly suited for the rapid diffusion desired for recognition of proteins and other macromolecules. Molecularly imprinted monolayers are an emerging class of materials where the surface is imprinted, and there is not a bulk material to impede mass transfer. Further, the short distance between the binding site and the signal transduction material improves many modes of detection. My dissertation project is to develop a new chemistry for protein-imprinted self-assembled monolayers on gold, for incorporation into SPR sensors. Our unique contribution is the spatial imprinting of not only physical cues (seen in current imprinted monolayer techniques), but to also incorporate complementary chemical cues. This is accomplished through a photo-click grafting of preassembled ligands around a protein template. This conference is important for my development as a graduate student to broaden my appreciation of the sensor development beyond surface chemistry.Keywords: low-density self-assembled monolayers, thiol-yne click reaction, molecular imprinting
Procedia PDF Downloads 2282886 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: Aisultan Shoiynbek, Darkhan Kuanyshbay, Paulo Menezes, Akbayan Bekarystankyzy, Assylbek Mukhametzhanov, Temirlan Shoiynbek
Abstract:
Speech emotion recognition (SER) has received increasing research interest in recent years. It is a common practice to utilize emotional speech collected under controlled conditions recorded by actors imitating and artificially producing emotions in front of a microphone. There are four issues related to that approach: emotions are not natural, meaning that machines are learning to recognize fake emotions; emotions are very limited in quantity and poor in variety of speaking; there is some language dependency in SER; consequently, each time researchers want to start work with SER, they need to find a good emotional database in their language. This paper proposes an approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describes the sequence of actions involved in the proposed approach. One of the first objectives in the sequence of actions is the speech detection issue. The paper provides a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To investigate the working capacity of the developed model, an analysis of speech detection and extraction from real tasks has been performed.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 302885 Chaotic Sequence Noise Reduction and Chaotic Recognition Rate Improvement Based on Improved Local Geometric Projection
Authors: Rubin Dan, Xingcai Wang, Ziyang Chen
Abstract:
A chaotic time series noise reduction method based on the fusion of the local projection method, wavelet transform, and particle swarm algorithm (referred to as the LW-PSO method) is proposed to address the problem of false recognition due to noise in the recognition process of chaotic time series containing noise. The method first uses phase space reconstruction to recover the original dynamical system characteristics and removes the noise subspace by selecting the neighborhood radius; then it uses wavelet transform to remove D1-D3 high-frequency components to maximize the retention of signal information while least-squares optimization is performed by the particle swarm algorithm. The Lorenz system containing 30% Gaussian white noise is simulated and verified, and the phase space, SNR value, RMSE value, and K value of the 0-1 test method before and after noise reduction of the Schreiber method, local projection method, wavelet transform method, and LW-PSO method are compared and analyzed, which proves that the LW-PSO method has a better noise reduction effect compared with the other three common methods. The method is also applied to the classical system to evaluate the noise reduction effect of the four methods and the original system identification effect, which further verifies the superiority of the LW-PSO method. Finally, it is applied to the Chengdu rainfall chaotic sequence for research, and the results prove that the LW-PSO method can effectively reduce the noise and improve the chaos recognition rate.Keywords: Schreiber noise reduction, wavelet transform, particle swarm optimization, 0-1 test method, chaotic sequence denoising
Procedia PDF Downloads 2042884 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.Keywords: Iot, activity recognition, automatic classification, unconstrained environment
Procedia PDF Downloads 2272883 A New Scheme for Chain Code Normalization in Arabic and Farsi Scripts
Authors: Reza Shakoori
Abstract:
This paper presents a structural correction of Arabic and Persian strokes using manipulation of their chain codes in order to improve the rate and performance of Persian and Arabic handwritten word recognition systems. It collects pure and effective features to represent a character with one consolidated feature vector and reduces variations in order to decrease the number of training samples and increase the chance of successful classification. Our results also show that how the proposed approaches can simplify classification and consequently recognition by reducing variations and possible noises on the chain code by keeping orientation of characters and their backbone structures.Keywords: Arabic, chain code normalization, OCR systems, image processing
Procedia PDF Downloads 4082882 Modified Form of Margin Based Angular Softmax Loss for Speaker Verification
Authors: Jamshaid ul Rahman, Akhter Ali, Adnan Manzoor
Abstract:
Learning-based systems have received increasing interest in recent years; recognition structures, including end-to-end speak recognition, are one of the hot topics in this area. A famous work on end-to-end speaker verification by using Angular Softmax Loss gained significant importance and is considered useful to directly trains a discriminative model instead of the traditional adopted i-vector approach. The margin-based strategy in angular softmax is beneficial to learn discriminative speaker embeddings where the random selection of margin values is a big issue in additive angular margin and multiplicative angular margin. As a better solution in this matter, we present an alternative approach by introducing a bit similar form of an additive parameter that was originally introduced for face recognition, and it has a capacity to adjust automatically with the corresponding margin values and is applicable to learn more discriminative features than the Softmax. Experiments are conducted on the part of Fisher dataset, where it observed that the additive parameter with angular softmax to train the front-end and probabilistic linear discriminant analysis (PLDA) in the back-end boosts the performance of the structure.Keywords: additive parameter, angular softmax, speaker verification, PLDA
Procedia PDF Downloads 1092881 Feature Extraction of MFCC Based on Fisher-Ratio and Correlated Distance Criterion for Underwater Target Signal
Authors: Han Xue, Zhang Lanyue
Abstract:
In order to seek more effective feature extraction technology, feature extraction method based on MFCC combined with vector hydrophone is exposed in the paper. The sound pressure signal and particle velocity signal of two kinds of ships are extracted by using MFCC and its evolution form, and the extracted features are fused by using fisher-ratio and correlated distance criterion. The features are then identified by BP neural network. The results showed that MFCC, First-Order Differential MFCC and Second-Order Differential MFCC features can be used as effective features for recognition of underwater targets, and the fusion feature can improve the recognition rate. Moreover, the results also showed that the recognition rate of the particle velocity signal is higher than that of the sound pressure signal, and it reflects the superiority of vector signal processing.Keywords: vector information, MFCC, differential MFCC, fusion feature, BP neural network
Procedia PDF Downloads 5352880 Attendance Management System Implementation Using Face Recognition
Authors: Zainab S. Abdullahi, Zakariyya H. Abdullahi, Sahnun Dahiru
Abstract:
Student attendance in schools is a very important aspect in school management record. In recent years, security systems have become one of the most demanding systems in school. Every institute have its own method of taking attendance, many schools in Nigeria use the old fashion way of taking attendance. That is writing the students name and registration number in a paper and submitting it to the lecturer at the end of the lecture which is time-consuming and insecure, because some students can write for their friends without the lecturer’s knowledge. In this paper, we propose a system that takes attendance using face recognition. There are many automatic methods available for this purpose i.e. biometric attendance, but they all waste time, because the students have to follow a queue to put their thumbs on a scanner which is time-consuming. This attendance is recorded by using a camera attached in front of the class room and capturing the student images, detect the faces in the image and compare the detected faces with database and mark the attendance. The principle component analysis was used to recognize the faces detected with a high accuracy rate. The paper reviews the related work in the field of attendance system, then describe the system architecture, software algorithm and result.Keywords: attendance system, face detection, face recognition, PCA
Procedia PDF Downloads 3672879 Improving Machine Learning Translation of Hausa Using Named Entity Recognition
Authors: Aishatu Ibrahim Birma, Aminu Tukur, Abdulkarim Abbass Gora
Abstract:
Machine translation plays a vital role in the Field of Natural Language Processing (NLP), breaking down language barriers and enabling communication across diverse communities. In the context of Hausa, a widely spoken language in West Africa, mainly in Nigeria, effective translation systems are essential for enabling seamless communication and promoting cultural exchange. However, due to the unique linguistic characteristics of Hausa, accurate translation remains a challenging task. The research proposes an approach to improving the machine learning translation of Hausa by integrating Named Entity Recognition (NER) techniques. Named entities, such as person names, locations, organizations, and dates, are critical components of a language's structure and meaning. Incorporating NER into the translation process can enhance the quality and accuracy of translations by preserving the integrity of named entities and also maintaining consistency in translating entities (e.g., proper names), and addressing the cultural references specific to Hausa. The NER will be incorporated into Neural Machine Translation (NMT) for the Hausa to English Translation.Keywords: machine translation, natural language processing (NLP), named entity recognition (NER), neural machine translation (NMT)
Procedia PDF Downloads 492878 The Role of Named Entity Recognition for Information Extraction
Authors: Girma Yohannis Bade, Olga Kolesnikova, Grigori Sidorov
Abstract:
Named entity recognition (NER) is a building block for information extraction. Though the information extraction process has been automated using a variety of techniques to find and extract a piece of relevant information from unstructured documents, the discovery of targeted knowledge still poses a number of research difficulties because of the variability and lack of structure in Web data. NER, a subtask of information extraction (IE), came to exist to smooth such difficulty. It deals with finding the proper names (named entities), such as the name of the person, country, location, organization, dates, and event in a document, and categorizing them as predetermined labels, which is an initial step in IE tasks. This survey paper presents the roles and importance of NER to IE from the perspective of different algorithms and application area domains. Thus, this paper well summarizes how researchers implemented NER in particular application areas like finance, medicine, defense, business, food science, archeology, and so on. It also outlines the three types of sequence labeling algorithms for NER such as feature-based, neural network-based, and rule-based. Finally, the state-of-the-art and evaluation metrics of NER were presented.Keywords: the role of NER, named entity recognition, information extraction, sequence labeling algorithms, named entity application area
Procedia PDF Downloads 842877 Detailed Observations on Numerically Invariant Signatures
Authors: Reza Aghayan
Abstract:
Numerically invariant signatures were introduced as a new paradigm of the invariant recognition for visual objects modulo a certain group of transformations. This paper shows that the current formulation suffers from noise and indeterminacy in the resulting joint group-signatures and applies the n-difference technique and the m-mean signature method to minimize their effects. In our experimental results of applying the proposed numerical scheme to generate joint group-invariant signatures, the sensitivity of some parameters such as regularity and mesh resolution used in the algorithm will also be examined. Finally, several interesting observations are made.Keywords: Euclidean and affine geometry, differential invariant G-signature curves, numerically invariant joint G-signatures, object recognition, noise, indeterminacy
Procedia PDF Downloads 4012876 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response
Abstract:
After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. The hands-free requirement from the first responders excludes the use of tedious manual control and operation. In unknown, unstructured, and obstructed environments, natural-language-based supervision is not amenable for first responders to formulate, and is difficult for robots to understand. Brain-computer interface is a promising option to overcome the limitations. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.Keywords: consensus assessment, electroencephalogram, emergency response, human-robot collaboration, intention recognition, search and rescue
Procedia PDF Downloads 962875 Empowerment at the Grassroots: Impact of Participatory (in) Equalities in Policy Formulation and Recognition and Redistribution of Women at the Grassroots in India
Authors: Samanwita Paul
Abstract:
Borrowing from Kabeer’s framework of empowerment, participation of women at Panchayat level politics (grassroots level of politics in India) has been conceptualized as a resource in the study and the impact of the same in influencing the policies at the grassroots as an agency. The study attempts to examine such intricacies in the dynamics of participation and policy formulation at the Panchayat level and to assess its overall impact in altering the recognition and redistribution of women. A conscious attempt has been made to go beyond formal politics and consider participants of the informal political processes as subjects of the study. Primary surveys were conducted for data collection in 4 Panchayat villages (from Jalpaiguri district in West Bengal) of which 2 wards from each were selected based on the nature of reservation of the panchayat seats. In-depth interviews with the Panchayat members and an approximate of 80 voters from each of the villages were conducted. This has been further analyzed with the aid of appropriate statistical tools and narratives. Preliminary findings show that women from vulnerable sections tend to participate more in the political process since it offers them a means of negotiating with their vulnerabilities however in case of its impact on policy formulation, the effect of women’s participation does to appear to be as profound.Keywords: recognition, redistribution, political participation, women
Procedia PDF Downloads 1382874 Theory and Practice of Wavelets in Signal Processing
Authors: Jalal Karam
Abstract:
The methods of Fourier, Laplace, and Wavelet Transforms provide transfer functions and relationships between the input and the output signals in linear time invariant systems. This paper shows the equivalence among these three methods and in each case presenting an application of the appropriate (Fourier, Laplace or Wavelet) to the convolution theorem. In addition, it is shown that the same holds for a direct integration method. The Biorthogonal wavelets Bior3.5 and Bior3.9 are examined and the zeros distribution of their polynomials associated filters are located. This paper also presents the significance of utilizing wavelets as effective tools in processing speech signals for common multimedia applications in general, and for recognition and compression in particular. Theoretically and practically, wavelets have proved to be effective and competitive. The practical use of the Continuous Wavelet Transform (CWT) in processing and analysis of speech is then presented along with explanations of how the human ear can be thought of as a natural wavelet transformer of speech. This generates a variety of approaches for applying the (CWT) to many paradigms analysing speech, sound and music. For perception, the flexibility of implementation of this transform allows the construction of numerous scales and we include two of them. Results for speech recognition and speech compression are then included.Keywords: continuous wavelet transform, biorthogonal wavelets, speech perception, recognition and compression
Procedia PDF Downloads 4202873 Human Action Recognition Using Wavelets of Derived Beta Distributions
Authors: Neziha Jaouedi, Noureddine Boujnah, Mohamed Salim Bouhlel
Abstract:
In the framework of human machine interaction systems enhancement, we focus throw this paper on human behavior analysis and action recognition. Human behavior is characterized by actions and reactions duality (movements, psychological modification, verbal and emotional expression). It’s worth noting that many information is hidden behind gesture, sudden motion points trajectories and speeds, many research works reconstructed an information retrieval issues. In our work we will focus on motion extraction, tracking and action recognition using wavelet network approaches. Our contribution uses an analysis of human subtraction by Gaussian Mixture Model (GMM) and body movement through trajectory models of motion constructed from kalman filter. These models allow to remove the noise using the extraction of the main motion features and constitute a stable base to identify the evolutions of human activity. Each modality is used to recognize a human action using wavelets of derived beta distributions approach. The proposed approach has been validated successfully on a subset of KTH and UCF sports database.Keywords: feautures extraction, human action classifier, wavelet neural network, beta wavelet
Procedia PDF Downloads 4142872 A Recognition Method for Spatio-Temporal Background in Korean Historical Novels
Authors: Seo-Hee Kim, Kee-Won Kim, Seung-Hoon Kim
Abstract:
The most important elements of a novel are the characters, events and background. The background represents the time, place and situation that character appears, and conveys event and atmosphere more realistically. If readers have the proper knowledge about background of novels, it may be helpful for understanding the atmosphere of a novel and choosing a novel that readers want to read. In this paper, we are targeting Korean historical novels because spatio-temporal background especially performs an important role in historical novels among the genre of Korean novels. To the best of our knowledge, we could not find previous study that was aimed at Korean novels. In this paper, we build a Korean historical national dictionary. Our dictionary has historical places and temple names of kings over many generations as well as currently existing spatial words or temporal words in Korean history. We also present a method for recognizing spatio-temporal background based on patterns of phrasal words in Korean sentences. Our rules utilize postposition for spatial background recognition and temple names for temporal background recognition. The knowledge of the recognized background can help readers to understand the flow of events and atmosphere, and can use to visualize the elements of novels.Keywords: data mining, Korean historical novels, Korean linguistic feature, spatio-temporal background
Procedia PDF Downloads 2812871 Grid Pattern Recognition and Suppression in Computed Radiographic Images
Authors: Igor Belykh
Abstract:
Anti-scatter grids used in radiographic imaging for the contrast enhancement leave specific artifacts. Those artifacts may be visible or may cause Moiré effect when a digital image is resized on a diagnostic monitor. In this paper, we propose an automated grid artifacts detection and suppression algorithm which is still an actual problem. Grid artifacts detection is based on statistical approach in spatial domain. Grid artifacts suppression is based on Kaiser bandstop filter transfer function design and application avoiding ringing artifacts. Experimental results are discussed and concluded with description of advantages over existing approaches.Keywords: grid, computed radiography, pattern recognition, image processing, filtering
Procedia PDF Downloads 2862870 Alphabet Recognition Using Pixel Probability Distribution
Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay
Abstract:
Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix
Procedia PDF Downloads 3902869 The Relevance of Sustainability Skills for International Students
Authors: Mary Panko, Rashika Sharma
Abstract:
Sustainability often appears to be an unfamiliar concept to many international students that enrol in a New Zealand technological degree. Lecturers’ experiences with classroom interactions and evaluation of assessments indicate that studying the concept enlightens and enhances international students understanding of sustainability. However, in most cases, even after studying sustainability in their degree programme, students are not given an opportunity to practice and apply this concept into their professions in their home countries. Therefore, using a qualitative approach, the academics conducted research to determine the change in international students understanding of sustainability before and after their enrolment in an Applied Technology degree. The research also aimed to evaluate if international students viewed sustainability of relevance to their professions and whether the students felt that they will be provided with an opportunity to apply their knowledge about sustainability in the industry. The findings of the research are presented in this paper.Keywords: education for sustainability, international students, vocational education
Procedia PDF Downloads 3102868 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation
Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang
Abstract:
Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.Keywords: CCS concepts, computing methodologies, interest point, salient region detections, image segmentation
Procedia PDF Downloads 135