Search results for: non-linear differential equations
3701 Heat Transfer Process Parameter Optimization in SI/Ge Using TAGUCHI Method
Authors: Evln Ranga Charyulu, S. P. Venu Madhavarao, S. Udaya kumar, S. V. S. S. N. V. G. Krishna Murthy
Abstract:
With the advent of new nanometer process technologies, it is possible to integrate billion transistors on a single substrate. When more and more functionality included there is the possibility of multi-million transistors switching simultaneously consuming more power and dissipating more power along with more leakage of current into the substrate of porous silicon or germanium material. These results in substrate heating and thermal noise generation coupled to signals of interest. The heating process is represented by coupled nonlinear partial differential equations in porous silicon and germanium. By identifying heat sources and heat fluxes may results in designing of ultra-low power circuits. The PDEs are solved by finite difference scheme assuming that boundary layer equations in porous silicon and germanium. Local heat fluxes along the vertical isothermal surface immersed in porous SI/Ge are considered. The parameters considered for optimization are thermal diffusivity, thermal expansion coefficient, thermal diffusion ratio, permeability, specific heat at constant temperatures, Rayleigh number, amplitude of wavy surface, mass expansion coefficient. The diffusion of heat was caused by the concentration gradient. Thermal physical properties are homogeneous and isotropic. By using L8, TAGUCHI method the parameters are optimized.Keywords: heat transfer, pde, taguchi optimization, SI/Ge
Procedia PDF Downloads 3383700 Exponential Stabilization of a Flexible Structure via a Delayed Boundary Control
Authors: N. Smaoui, B. Chentouf
Abstract:
The boundary stabilization problem of the rotating disk-beam system is a topic of interest in research studies. This system involves a flexible beam attached to the center of a disk, and the control and stabilization of this system have been extensively studied. This research focuses on the case where the center of mass is fixed in an inertial frame, and the rotation of the center is non-uniform. The system is represented by a set of nonlinear coupled partial differential equations and ordinary differential equations. The boundary stabilization problem of this system via a delayed boundary control is considered. We assume that the boundary control is either of a force type control or a moment type control and is subject to the presence of a constant time-delay. The aim of this research is threefold: First, we demonstrate that the rotating disk-beam system is well-posed in an appropriate functional space. Then, we establish the exponential stability property of the system. Finally, we provide numerical simulations that illustrate the theoretical findings. The research utilizes the semigroup theory to establish the well-posedness of the system. The resolvent method is then employed to prove the exponential stability property. Finally, the finite element method is used to demonstrate the theoretical results through numerical simulations. The research findings indicate that the rotating disk-beam system can be stabilized using a boundary control with a time delay. The proof of stability is based on the resolvent method and a variation of constants formula. The numerical simulations further illustrate the theoretical results. The findings have potential implications for the design and implementation of control strategies in similar systems. In conclusion, this research demonstrates that the rotating disk-beam system can be stabilized using a boundary control with time delay. The well-posedness and exponential stability properties are established through theoretical analysis, and these findings are further supported by numerical simulations. The research contributes to the understanding and practical application of control strategies for flexible structures, providing insights into the stability of rotating disk-beam systems.Keywords: rotating disk-beam, delayed force control, delayed moment control, torque control, exponential stability
Procedia PDF Downloads 753699 Free Convection from a Perforated Spinning Cone with Heat Generation, Temperature-Dependent Viscosity and Partial Slip
Authors: Gilbert Makanda
Abstract:
The problem of free convection from a perforated spinning cone with viscous dissipation, temperature-dependent viscosity, and partial slip was studied. The boundary layer velocity and temperature profiles were numerically computed for different values of the spin, viscosity variation, inertia drag force, Eckert, suction/blowing parameters. The partial differential equations were transformed into a system of ordinary differential equations which were solved using the fourth-order Runge-Kutta method. This paper considered the effect of partial slip and spin parameters on the swirling velocity profiles which are rarely reported in the literature. The results obtained by this method was compared to those in the literature and found to be in agreement. Increasing the viscosity variation parameter, spin, partial slip, Eckert number, Darcian drag force parameters reduce swirling velocity profiles.Keywords: free convection, suction/injection, partial slip, viscous dissipation
Procedia PDF Downloads 2473698 Thermal Buckling Response of Cylindrical Panels with Higher Order Shear Deformation Theory—a Case Study with Angle-Ply Laminations
Authors: Humayun R. H. Kabir
Abstract:
An analytical solution before used for static and free-vibration response has been extended for thermal buckling response on cylindrical panel with anti-symmetric laminations. The partial differential equations that govern kinematic behavior of shells produce five coupled differential equations. The basic displacement and rotational unknowns are similar to first order shear deformation theory---three displacement in spatial space, and two rotations about in-plane axes. No drilling degree of freedom is considered. Boundary conditions are considered as complete hinge in all edges so that the panel respond on thermal inductions. Two sets of double Fourier series are considered in the analytical solution process. The sets are selected that satisfy mixed type of natural boundary conditions. Numerical results are presented for the first 10 eigenvalues, and first 10 mode shapes for Ux, Uy, and Uz components. The numerical results are compared with a finite element based solution.Keywords: higher order shear deformation, composite, thermal buckling, angle-ply laminations
Procedia PDF Downloads 3733697 Dam Break Model Using Navier-Stokes Equation
Authors: Alireza Lohrasbi, Alireza Lavaei, Mohammadali M. Shahlaei
Abstract:
The liquid flow and the free surface shape during the initial stage of dam breaking are investigated. A numerical scheme is developed to predict the wave of an unsteady, incompressible viscous flow with free surface. The method involves a two dimensional finite element (2D), in a vertical plan. The Naiver-Stokes equations for conservation of momentum and mass for Newtonian fluids, continuity equation, and full nonlinear kinematic free-surface equation were used as the governing equations. The mapping developed to solve highly deformed free surface problems common in waves formed during wave propagation, transforms the run up model from the physical domain to a computational domain with Arbitrary Lagrangian Eulerian (ALE) finite element modeling technique.Keywords: dam break, Naiver-Stokes equations, free-surface flows, Arbitrary Lagrangian-Eulerian
Procedia PDF Downloads 3363696 Verification of Space System Dynamics Using the MATLAB Identification Toolbox in Space Qualification Test
Authors: Yuri V. Kim
Abstract:
This article presents a new approach to the Functional Testing of Space Systems (SS). It can be considered as a generic test and used for a wide class of SS that from the point of view of System Dynamics and Control may be described by the ordinary differential equations. Suggested methodology is based on using semi-natural experiment- laboratory stand that doesn’t require complicated, precise and expensive technological control-verification equipment. However, it allows for testing system as a whole totally assembled unit during Assembling, Integration and Testing (AIT) activities, involving system hardware (HW) and software (SW). The test physically activates system input (sensors) and output (actuators) and requires recording their outputs in real time. The data is then inserted in laboratory PC where it is post-experiment processed by Matlab/Simulink Identification Toolbox. It allows for estimating system dynamics in form of estimation of system differential equations by the experimental way and comparing them with expected mathematical model prematurely verified by mathematical simulation during the design process.Keywords: system dynamics, space system ground tests and space qualification, system dynamics identification, satellite attitude control, assembling, integration and testing
Procedia PDF Downloads 1633695 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries
Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows
Abstract:
Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.Keywords: biomagnetic fluid, FHD, MHD, nonlinear stretching sheet
Procedia PDF Downloads 1613694 Hybrid Equity Warrants Pricing Formulation under Stochastic Dynamics
Authors: Teh Raihana Nazirah Roslan, Siti Zulaiha Ibrahim, Sharmila Karim
Abstract:
A warrant is a financial contract that confers the right but not the obligation, to buy or sell a security at a certain price before expiration. The standard procedure to value equity warrants using call option pricing models such as the Black–Scholes model had been proven to contain many flaws, such as the assumption of constant interest rate and constant volatility. In fact, existing alternative models were found focusing more on demonstrating techniques for pricing, rather than empirical testing. Therefore, a mathematical model for pricing and analyzing equity warrants which comprises stochastic interest rate and stochastic volatility is essential to incorporate the dynamic relationships between the identified variables and illustrate the real market. Here, the aim is to develop dynamic pricing formulations for hybrid equity warrants by incorporating stochastic interest rates from the Cox-Ingersoll-Ross (CIR) model, along with stochastic volatility from the Heston model. The development of the model involves the derivations of stochastic differential equations that govern the model dynamics. The resulting equations which involve Cauchy problem and heat equations are then solved using partial differential equation approaches. The analytical pricing formulas obtained in this study comply with the form of analytical expressions embedded in the Black-Scholes model and other existing pricing models for equity warrants. This facilitates the practicality of this proposed formula for comparison purposes and further empirical study.Keywords: Cox-Ingersoll-Ross model, equity warrants, Heston model, hybrid models, stochastic
Procedia PDF Downloads 1293693 Regularized Euler Equations for Incompressible Two-Phase Flow Simulations
Authors: Teng Li, Kamran Mohseni
Abstract:
This paper presents an inviscid regularization technique for the incompressible two-phase flow simulations. This technique is known as observable method due to the understanding of observability that any feature smaller than the actual resolution (physical or numerical), i.e., the size of wire in hotwire anemometry or the grid size in numerical simulations, is not able to be captured or observed. Differ from most regularization techniques that applies on the numerical discretization, the observable method is employed at PDE level during the derivation of equations. Difficulties in the simulation and analysis of realistic fluid flow often result from discontinuities (or near-discontinuities) in the calculated fluid properties or state. Accurately capturing these discontinuities is especially crucial when simulating flows involving shocks, turbulence or sharp interfaces. Over the past several years, the properties of this new regularization technique have been investigated that show the capability of simultaneously regularizing shocks and turbulence. The observable method has been performed on the direct numerical simulations of shocks and turbulence where the discontinuities are successfully regularized and flow features are well captured. In the current paper, the observable method will be extended to two-phase interfacial flows. Multiphase flows share the similar features with shocks and turbulence that is the nonlinear irregularity caused by the nonlinear terms in the governing equations, namely, Euler equations. In the direct numerical simulation of two-phase flows, the interfaces are usually treated as the smooth transition of the properties from one fluid phase to the other. However, in high Reynolds number or low viscosity flows, the nonlinear terms will generate smaller scales which will sharpen the interface, causing discontinuities. Many numerical methods for two-phase flows fail at high Reynolds number case while some others depend on the numerical diffusion from spatial discretization. The observable method regularizes this nonlinear mechanism by filtering the convective terms and this process is inviscid. The filtering effect is controlled by an observable scale which is usually about a grid length. Single rising bubble and Rayleigh-Taylor instability are studied, in particular, to examine the performance of the observable method. A pseudo-spectral method is used for spatial discretization which will not introduce numerical diffusion, and a Total Variation Diminishing (TVD) Runge Kutta method is applied for time integration. The observable incompressible Euler equations are solved for these two problems. In rising bubble problem, the terminal velocity and shape of the bubble are particularly examined and compared with experiments and other numerical results. In the Rayleigh-Taylor instability, the shape of the interface are studied for different observable scale and the spike and bubble velocities, as well as positions (under a proper observable scale), are compared with other simulation results. The results indicate that this regularization technique can potentially regularize the sharp interface in the two-phase flow simulationsKeywords: Euler equations, incompressible flow simulation, inviscid regularization technique, two-phase flow
Procedia PDF Downloads 5023692 Analysis of a Differential System to Get Insights on the Potential Establishment of Microsporidia MB in the Mosquito Population for Malaria Control
Authors: Charlene N. T. Mfangnia, Henri E. Z. Tonnang, Berge Tsanou, Jeremy Herren
Abstract:
Microsporidia MB is a recently discovered symbiont capable of blocking the transmission of Plasmodium from mosquitoes to humans. The symbiont can spread both horizontally and vertically among the mosquito population. This dual transmission gives the symbiont the ability to invade the mosquito population. The replacement of the mosquito population by the population of symbiont-infected mosquitoes then appears as a promising strategy for malaria control. In this context, the present study uses differential equations to model the transmission dynamics of Microsporidia MB in the population of female Anopheles mosquitoes. Long-term propagation scenarios of the symbiont, such as extinction, persistence or total infection, are obtained through the determination of the target and basic reproduction numbers, the equilibria, and the study of their stability. The stability is illustrated numerically, and the contribution of vertical and horizontal transmission in the spread of the symbiont is assessed. Data obtained from laboratory experiments are then used to explain the low prevalence observed in nature. The study also shows that the male death rate, the mating rate and the attractiveness of MB-positive mosquitoes are the factors that most influence the transmission of the symbiont. In addition, the introduction of temperature and the study of bifurcations show the significant influence of the environmental condition in the propagation of Microsporidia MB. This finding proves the necessity of taking into account environmental variables for the potential establishment of the symbiont in a new area.Keywords: differential equations, stability analysis, malaria, microsporidia MB, horizontal transmission, vertical transmission, numerical illustration
Procedia PDF Downloads 1133691 Nonlinear Response of Infinite Beams on a Multilayer Tensionless Extensible Geosynthetic – Reinforced Earth Bed under Moving Load
Authors: K. Karuppasamy
Abstract:
In this paper analysis of an infinite beam resting on multilayer tensionless extensible geosynthetic reinforced granular fill - poor soil system overlying soft soil strata under moving the load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear Winkler springs representing the underlying the very poor soil. The multilayer tensionless extensible geosynthetic layer has been assumed to deform such that at the interface the geosynthetic and the soil have some deformation. Nonlinear behavior of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Governing differential equations of the soil foundation system have been obtained and solved with the help of appropriate boundary conditions. The solution has been obtained by employing finite difference method by means of Gauss-Siedel iterative scheme. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil – foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. These parameters include the magnitude of applied load, the velocity of the load, damping, the ultimate resistance of the poor soil and granular fill layer. The range of values of parameters has been considered as per Indian Railways conditions. This study clearly observed that the comparisons of multilayer tensionless extensible geosynthetic reinforcement with poor foundation soil and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil – foundation system. However, for the considered range of velocity, the response has been found to be insensitive towards velocity. The ultimate resistance of granular fill layer has also been found to have no significant influence on the response of the system.Keywords: infinite beams, multilayer tensionless extensible geosynthetic, granular layer, moving load and nonlinear behavior of poor soil
Procedia PDF Downloads 4373690 Statistical Physics Model of Seismic Activation Preceding a Major Earthquake
Authors: Daniel S. Brox
Abstract:
Starting from earthquake fault dynamic equations, a correspondence between earthquake occurrence statistics in a seismic region before a major earthquake and eigenvalue statistics of a differential operator whose bound state eigenfunctions characterize the distribution of stress in the seismic region is derived. Modeling these eigenvalue statistics with a 2D Coulomb gas statistical physics model, previously reported deviation of seismic activation earthquake occurrence statistics from Gutenberg-Richter statistics in time intervals preceding the major earthquake is derived. It also explains how statistical physics modeling predicts a finite-dimensional nonlinear dynamic system that describes real-time velocity model evolution in the region undergoing seismic activation and how this prediction can be tested experimentally.Keywords: seismic activation, statistical physics, geodynamics, signal processing
Procedia PDF Downloads 173689 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations
Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang
Abstract:
Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.Keywords: source identification, ordinary differential equations, label propagation, complex networks
Procedia PDF Downloads 203688 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods
Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin
Abstract:
Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.Keywords: Burgers' equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile
Procedia PDF Downloads 1693687 A Trapezoidal-Like Integrator for the Numerical Solution of One-Dimensional Time Dependent Schrödinger Equation
Authors: Johnson Oladele Fatokun, I. P. Akpan
Abstract:
In this paper, the one-dimensional time dependent Schrödinger equation is discretized by the method of lines using a second order finite difference approximation to replace the second order spatial derivative. The evolving system of stiff ordinary differential equation (ODE) in time is solved numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10-4 in the interval of consideration. The performance of the method as compared to an existing scheme is considered favorable.Keywords: Schrodinger’s equation, partial differential equations, method of lines (MOL), stiff ODE, trapezoidal-like integrator
Procedia PDF Downloads 4183686 Continuous Differential Evolution Based Parameter Estimation Framework for Signal Models
Authors: Ammara Mehmood, Aneela Zameer, Muhammad Asif Zahoor Raja, Muhammad Faisal Fateh
Abstract:
In this work, the strength of bio-inspired computational intelligence based technique is exploited for parameter estimation for the periodic signals using Continuous Differential Evolution (CDE) by defining an error function in the mean square sense. Multidimensional and nonlinear nature of the problem emerging in sinusoidal signal models along with noise makes it a challenging optimization task, which is dealt with robustness and effectiveness of CDE to ensure convergence and avoid trapping in local minima. In the proposed scheme of Continuous Differential Evolution based Signal Parameter Estimation (CDESPE), unknown adjustable weights of the signal system identification model are optimized utilizing CDE algorithm. The performance of CDESPE model is validated through statistics based various performance indices on a sufficiently large number of runs in terms of estimation error, mean squared error and Thiel’s inequality coefficient. Efficacy of CDESPE is examined by comparison with the actual parameters of the system, Genetic Algorithm based outcomes and from various deterministic approaches at different signal-to-noise ratio (SNR) levels.Keywords: parameter estimation, bio-inspired computing, continuous differential evolution (CDE), periodic signals
Procedia PDF Downloads 3023685 A Hybrid Block Multistep Method for Direct Numerical Integration of Fourth Order Initial Value Problems
Authors: Adamu S. Salawu, Ibrahim O. Isah
Abstract:
Direct solution to several forms of fourth-order ordinary differential equations is not easily obtained without first reducing them to a system of first-order equations. Thus, numerical methods are being developed with the underlying techniques in the literature, which seeks to approximate some classes of fourth-order initial value problems with admissible error bounds. Multistep methods present a great advantage of the ease of implementation but with a setback of several functions evaluation for every stage of implementation. However, hybrid methods conventionally show a slightly higher order of truncation for any k-step linear multistep method, with the possibility of obtaining solutions at off mesh points within the interval of solution. In the light of the foregoing, we propose the continuous form of a hybrid multistep method with Chebyshev polynomial as a basis function for the numerical integration of fourth-order initial value problems of ordinary differential equations. The basis function is interpolated and collocated at some points on the interval [0, 2] to yield a system of equations, which is solved to obtain the unknowns of the approximating polynomial. The continuous form obtained, its first and second derivatives are evaluated at carefully chosen points to obtain the proposed block method needed to directly approximate fourth-order initial value problems. The method is analyzed for convergence. Implementation of the method is done by conducting numerical experiments on some test problems. The outcome of the implementation of the method suggests that the method performs well on problems with oscillatory or trigonometric terms since the approximations at several points on the solution domain did not deviate too far from the theoretical solutions. The method also shows better performance compared with an existing hybrid method when implemented on a larger interval of solution.Keywords: Chebyshev polynomial, collocation, hybrid multistep method, initial value problems, interpolation
Procedia PDF Downloads 1223684 A Study of a Plaque Inhibition Through Stenosed Bifurcation Artery considering a Biomagnetic Blood Flow and Elastic Walls
Authors: M. A. Anwar, K. Iqbal, M. Razzaq
Abstract:
Background and Objectives: This numerical study reflects the magnetic field's effect on the reduction of plaque formation due to stenosis in a stenosed bifurcated artery. The entire arterythe wall is assumed as linearly elastic, and blood flow is modeled as a Newtonian, viscous, steady, incompressible, laminar, biomagnetic fluid. Methods: An Arbitrary Lagrangian-Eulerian (ALE) technique is employed to formulate the hemodynamic flow in a bifurcated artery under the effect of the asymmetric magnetic field by two-way Fluid-structure interaction coupling. A stable P2P1 finite element pair is used to discretize thenonlinear system of partial differential equations. The resulting nonlinear system of algebraic equations is solved by the Newton Raphson method. Results: The numerical results for displacement, velocity magnitude, pressure, and wall shear stresses for Reynolds numbers, Re = 500, 1000, 1500, 2000, in the presence of magnetic fields are presented graphically. Conclusions: The numerical results show that the presence of the magnetic field influences the displacement and flows velocity magnitude considerably. The magnetic field reduces the flow separation, recirculation area adjacent to stenosis and gives rise to wall shear stress.Keywords: bifurcation, elastic walls, finite element, wall shear stress,
Procedia PDF Downloads 1793683 Smooth Second Order Nonsingular Terminal Sliding Mode Control for a 6 DOF Quadrotor UAV
Authors: V. Tabrizi, A. Vali, R. GHasemi, V. Behnamgol
Abstract:
In this article, a nonlinear model of an under actuated six degrees of freedom (6 DOF) quadrotor UAV is derived on the basis of the Newton-Euler formula. The derivation comprises determining equations of the motion of the quadrotor in three dimensions and approximating the actuation forces through the modeling of aerodynamic coefficients and electric motor dynamics. The robust nonlinear control strategy includes a smooth second order non-singular terminal sliding mode control which is applied to stabilizing this model. The control method is on the basis of super twisting algorithm for removing the chattering and producing smooth control signal. Also, nonsingular terminal sliding mode idea is used for introducing a nonlinear sliding variable that guarantees the finite time convergence in sliding phase. Simulation results show that the proposed algorithm is robust against uncertainty or disturbance and guarantees a fast and precise control signal.Keywords: quadrotor UAV, nonsingular terminal sliding mode, second order sliding mode t, electronics, control, signal processing
Procedia PDF Downloads 4403682 Dynamical Systems and Fibonacci Numbers
Authors: Vandana N. Purav
Abstract:
The Dynamical systems concept is a mathematical formalization for any fixed rule that describes the time dependence of a points position in its ambient space. e.g. pendulum of a clock, the number of fish each spring in a lake, the number of rabbits spring in an enclosure, etc. The Dynamical system theory used to describe the complex nature that is dynamical systems with differential equations called continuous dynamical system or dynamical system with difference equations called discrete dynamical system. The concept of dynamical system has its origin in Newtonian mechanics.Keywords: dynamical systems, Fibonacci numbers, Newtonian mechanics, discrete dynamical system
Procedia PDF Downloads 4923681 A Comparative Evaluation of Finite Difference Methods for the Extended Boussinesq Equations and Application to Tsunamis Modelling
Authors: Aurore Cauquis, Philippe Heinrich, Mario Ricchiuto, Audrey Gailler
Abstract:
In this talk, we look for an accurate time scheme to model the propagation of waves. Several numerical schemes have been developed to solve the extended weakly nonlinear weakly dispersive Boussinesq Equations. The temporal schemes used are two Lax-Wendroff schemes, second or third order accurate, two Runge-Kutta schemes of second and third order and a simplified third order accurate Lax-Wendroff scheme. Spatial derivatives are evaluated with fourth order accuracy. The numerical model is applied to two monodimensional benchmarks on a flat bottom. It is also applied to the simulation of the Algerian tsunami generated by a Mw=6 seism on the 18th March 2021. The tsunami propagation was highly dispersive and propagated across the Mediterranean Sea. We study here the effects of the order of temporal discretization on the accuracy of the results and on the time of computation.Keywords: numerical analysis, tsunami propagation, water wave, boussinesq equations
Procedia PDF Downloads 2413680 Displacement Solution for a Static Vertical Rigid Movement of an Interior Circular Disc in a Transversely Isotropic Tri-Material Full-Space
Authors: D. Mehdizadeh, M. Rahimian, M. Eskandari-Ghadi
Abstract:
This article is concerned with the determination of the static interaction of a vertically loaded rigid circular disc embedded at the interface of a horizontal layer sandwiched in between two different transversely isotropic half-spaces called as tri-material full-space. The axes of symmetry of different regions are assumed to be normal to the horizontal interfaces and parallel to the movement direction. With the use of a potential function method, and by implementing Hankel integral transforms in the radial direction, the government partial differential equation for the solely scalar potential function is transformed to an ordinary 4th order differential equation, and the mixed boundary conditions are transformed into a pair of integral equations called dual integral equations, which can be reduced to a Fredholm integral equation of the second kind, which is solved analytically. Then, the displacements and stresses are given in the form of improper line integrals, which is due to inverse Hankel integral transforms. It is shown that the present solutions are in exact agreement with the existing solutions for a homogeneous full-space with transversely isotropic material. To confirm the accuracy of the numerical evaluation of the integrals involved, the numerical results are compared with the solutions exists for the homogeneous full-space. Then, some different cases with different degrees of material anisotropy are compared to portray the effect of degree of anisotropy.Keywords: transversely isotropic, rigid disc, elasticity, dual integral equations, tri-material full-space
Procedia PDF Downloads 4403679 Effects of Variable Viscosity on Radiative MHD Flow in a Porous Medium Between Twovertical Wavy Walls
Authors: A. B. Disu, M. S. Dada
Abstract:
This study was conducted to investigate two dimensional heat transfer of a free convective-radiative MHD (Magneto-hydrodynamics) flow with temperature dependent viscosity and heat source of a viscous incompressible fluid in a porous medium between two vertical wavy walls. The fluid viscosity is assumed to vary as an exponential function of temperature. The flow is assumed to consist of a mean part and a perturbed part. The perturbed quantities were expressed in terms of complex exponential series of plane wave equation. The resultant differential equations were solved by Differential Transform Method (DTM). The numerical computations were presented graphically to show the salient features of the fluid flow and heat transfer characteristics. The skin friction and Nusselt number were also analyzed for various governing parameters.Keywords: differential transform method, MHD free convection, porous medium, two dimensional radiation, two wavy walls
Procedia PDF Downloads 4473678 Analytic Solutions of Solitary Waves in Three-Level Unbalanced Dense Media
Authors: Sofiane Grira, Hichem Eleuch
Abstract:
We explore the analytical soliton-pair solutions for unbalanced coupling between the two coherent lights and the atomic transitions in a dissipative three-level system in lambda configuration. The two allowed atomic transitions are interacting resonantly with two laser fields. For unbalanced coupling, it is possible to derive an explicit solution for non-linear differential equations describing the soliton-pair propagation in this three-level system with the same velocity. We suppose that the spontaneous emission rates from the excited state to both ground states are the same. In this work, we focus on such case where we consider the coupling between the transitions and the optical fields are unbalanced. The existence conditions for the soliton-pair propagations are determined. We will show that there are four possible configurations of the soliton-pair pulses. Two of them can be interpreted as a couple of solitons with same directions of polarization and the other two as soliton-pair with opposite directions of polarization. Due to the fact that solitons have stable shapes while propagating in the considered media, they are insensitive to noise and dispersion. Our results have potential applications in data transfer with the soliton-pair pulses, where a dissipative three-level medium could be a realistic model for the optical communication media.Keywords: non-linear differential equations, solitons, wave propagations, optical fiber
Procedia PDF Downloads 1363677 Direct Design of Steel Bridge Using Nonlinear Inelastic Analysis
Authors: Boo-Sung Koh, Seung-Eock Kim
Abstract:
In this paper, a direct design using a nonlinear inelastic analysis is suggested. Also, this paper compares the load carrying capacity obtained by a nonlinear inelastic analysis with experiment results to verify the accuracy of the results. The allowable stress design results of a railroad through a plate girder bridge and the safety factor of the nonlinear inelastic analysis were compared to examine the safety performance. As a result, the load safety factor for the nonlinear inelastic analysis was twice as high as the required safety factor under the allowable stress design standard specified in the civil engineering structure design standards for urban magnetic levitation railways, which further verified the advantages of the proposed direct design method.Keywords: direct design, nonlinear inelastic analysis, residual stress, initial geometric imperfection
Procedia PDF Downloads 5313676 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid
Authors: K. Jafar, R. Nazar, A. Ishak, I. Pop
Abstract:
The present analysis considers the steady stagnation point flow and heat transfer towards a permeable sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow, and a local heat generation within the boundary layer with a heat generation rate proportional to (T-T_inf)^p. Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the shrinking/stretching parameter lambda, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value lambda_c whose value depends on the value of M, K, and s. In the presence of internal heat absorbtion (Q<0), the surface heat transfer rate decreases with increasing p but increases with parameter Q and s, when the sheet is either stretched or shrunk.Keywords: magnetohydrodynamic (MHD), boundary layer flow, UCM fluid, stagnation point, shrinking sheet
Procedia PDF Downloads 3543675 A Semi-Implicit Phase Field Model for Droplet Evolution
Authors: M. H. Kazemi, D. Salac
Abstract:
A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables.Keywords: coalescence, leaky dielectric, numerical method, phase field, rising droplet, semi-implicit method
Procedia PDF Downloads 4823674 The Solution of Nonlinear Partial Differential Equation for The Phenomenon of Instability in Homogeneous Porous Media by Homotopy Analysis Method
Authors: Kajal K. Patel, M. N. Mehta, T. R. Singh
Abstract:
When water is injected in oil formatted area in secondary oil recovery process the instability occurs near common interface due to viscosity difference of injected water and native oil. The governing equation gives rise to the non-linear partial differential equation and its solution has been obtained by Homotopy analysis method with appropriate guess value of the solution together with some conditions and standard relations. The solution gives the average cross-sectional area occupied by the schematic fingers during the occurs of instability phenomenon. The numerical and graphical presentation has developed by using Maple software.Keywords: capillary pressure, homotopy analysis method, instability phenomenon, viscosity
Procedia PDF Downloads 4963673 Finite Element Modeling of Heat and Moisture Transfer in Porous Material
Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume
Abstract:
This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.Keywords: finite element method, heat transfer, moisture transfer, porous materials, wood
Procedia PDF Downloads 4003672 Annular Axi-Symmetric Stagnation Flow of Electrically Conducting Fluid on a Moving Cylinder in the Presence of Axial Magnetic Field
Authors: Deva Kanta Phukan
Abstract:
An attempt is made where an electrically conducting fluid is injected from a fixed outer cylindrical casing onto an inner moving cylindrical rod. A magnetic field is applied parallel to the axis of the cylindrical rod. The basic governing set of partial differential equations for conservation of mass and momentum are reduced to a set of non-linear ordinary differential equation by introducing similarity transformation, which are integrated numerically. A perturbation solution for the case of large magnetic parameter is derived for constant Reynolds number.Keywords: annular axi-symmetric stagnation flow, conducting fluid, magnetic field, moving cylinder
Procedia PDF Downloads 400