Search results for: fine adjustment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1497

Search results for: fine adjustment

1227 Unsafe Abortions in India: Questioning the Propitiousness of MTP Act

Authors: Suresh Sharma, Neeti Goutam

Abstract:

In India abortions are legal and with the exceedingly liberal and broadened law that was passed in 1971, “Medical Termination of Pregnancy Act” had opened a new window to Women’s’ freedom and choice over their fertility. This paper would like to focus on the factors responsible for or leading to unsafe abortion as well as such high incidence of abortion in India which can help in understanding the ways in which we can prevent this apathy. To study the intricacies involved in delivering safety to womanhood in terms of safe abortion practice which includes more trained personnel, detailed explanation and consequences of conducting an abortion, fine reporting, awareness regarding family planning measures and not only pressurizing them to sterilize immediately after an abortion but also prior to that informing them and lastly easy accessibility of Contraceptives with a educated and brief information on that. Data has been drawn from various sources such as National Family Household Survey (1, 2, 3), Health Management Information System and Annual Health Survey. To safeguard the interest of women when it comes to complications resulting from unsafe abortions, Reproductive Health laid its strict adherence to it in its guidelines. The Government could induce more measures in terms of family planning measures and increase in the number of skilled medical health force, chiefly in rural areas to prevent the illegality of abortions. But before that fine reporting on the number of abortions performed will give an insight to this very issue only then policies and programs will work much better in favor of women.

Keywords: abortion, MTP act, India, women

Procedia PDF Downloads 358
1226 Physicochemical and Biological Characterization of Fine Particulate Matter in Ambient Air in Capital City of Pakistan

Authors: Sabir Hussain, Mujtaba Hassan, Kashif Rasool, Asif Shahzad

Abstract:

Fine particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) was collected in Islamabad from November 2022 to January 2023, at urban sites. The average mass concentrations of PM2.5 varied, ranging from 90.5 to 133 μg m−3 in urban areas. Environmental scanning electron microscopy (ESEM) analysis revealed that Islamabad's PM2.5 comprised soot aggregates, ashes, minerals, bio-particles, and unidentified particles. Results from inductively coupled plasma atomic emission spectroscopy (ICP-OES) indicated a gradual increase in total elemental concentrations in Islamabad PM2.5 in winter, with relatively high levels in December. Significantly different elemental compositions were observed in urban PM2.5. Enrichment factor (EF) analysis suggested that elements such as K, Na, Ca, Mg, Al, Fe, Ba, and Sr were of natural origin, while As, Cu, Zn, Pb, Cd, Mn, Ni, and Se originated from anthropogenic sources. Plasmid DNA assays demonstrated varying levels of potential toxicity in Islamabad PM2.5 collected from urban sites, as well as across different seasons. Notably, the urban winter PM2.5 sample exhibited much stronger toxicity compared to other samples. The presence of heavy metals in Islamabad PM2.5, including Cu, Zn, Pb, Cd, Cr, Mn, and Ni, may have synergistic effects on human health.

Keywords: islamabad particulate matter pm2.5, scanning electron microscopy with energy-dispersive x-ray spectroscopy(sem-eds), fourier transform infrared spectroscopy(ftir), inductively coupled plasma optical emission spectroscopy(icp-oes)

Procedia PDF Downloads 80
1225 Effects of Work Stress and Chinese Indigenous Ren-Qing Shi-Ku Social Wisdom on Emotional Exhaustion, Work Satisfaction and Well-Being of Insurance Workers

Authors: Wang Chung-Kwei, Lo Kuo Ying

Abstract:

This study is aimed to examine main and moderation effect of Chinese traditional social wisdom ‘Ren-qing Shi-kuo’ on the adjustment of insurance workers. Rationale: Ren-qing Shi-ku as a social wisdom has been emphasized and practiced by collective-oriented Chinese for thousand years. The concept of‘Ren-qing Shi-ku’includes values, beliefs and behavior rituals, which helps Chinese to cope with interpersonal conflicts in a sophisticated and closely tied collective society. Based on interview and literature review, we found out Chinese still emphasized the importance of ‘Ren-qing Shi-ku’. The concepts contains five factors, including ‘proper emotion display’, ‘social ritual abiding’, ‘ make empathetic concession’, ‘harmonious and proper behavior’ and ‘tolerance for the interest of the whole’. We developed an indigenous ‘Ren-qing Shi-ku’scale based on interview data and a survey on social worker students. Research methods: We conduct a dyad survey between 294 insurance worker and their supervisors. Insurance workers’ response on ‘Ren-qing Shi-ku,emotion labor, emotional exhaustion, work stress and load, work satisfaction and well-being were collected. We also ask their supervisors to rate these workers ‘empathy, social rule abiding, work performance, and Ren-qing Shi-ku performance. Results: Students’self-ratings on Ren-qing Shi-ku scale are positively correlated with rating from their supervisors on all above indexes. Workers who have higher Ren-qing Shi-ku score also have lower work stress and emotion exhaustion, higher work satisfaction and well-being, more emotion deep acting. They also have higher work performance, social rule abiding, and Ren-qing Shi-ku performance rating from their supervisor. The finding of this study suggested Ren-qing Shi-ku is an effective indicator on insurance workers ‘adjustment. Since Ren-qing Shi-ku is trainable, we suggested that Ren-qing Shi-ku training might be beneficial to service industry in a collective-oriented culture.

Keywords: work stress, Ren-qing Shi-ku, emotional exhaustion, work satisfaction, well-being

Procedia PDF Downloads 476
1224 Oxygen Absorption Enhancement during Sulfite Forced Oxidation in the Presence of Nano-Particles

Authors: Zhao Bo

Abstract:

The TiO2-Na2SO3 and SiO2-Na2SO3 nano-fluids were prepared using ultrasonic dispertion method without any surfactant addition to study the influence of nano-fluids on the mass transfer during forced sulfite oxidation in a thermostatic stirred tank, and the kinetic viscosity of nano-fluids was measured. The influence of temperature (30 ℃ ~ 50 ℃), solid loading of fine particle (0 Kg/m³~1.0 Kg/m³), stirring speed (50 r/min ~ 400 r/min), and particle size (10 nm~100 nm) on the average oxygen absorption rate were investigated in detail. Both TiO2 nano-particles and SiO2 nano-particles could remarkably improve the gas-liquid mass transfer. Oxygen absorption enhancement factor increases with the increase of solid loading of nano-particles to a critical value and then decreases with further increase of solid loading under 30℃. Oxygen absorption rate together with absorption enhancement factor increases with stirring speed. However, oxygen absorption enhancement factor decreases with the increase of temperature due to aggregation of nano-particles. Further inherent relationship between particle size, loading, surface area, viscosity, stirring speed, temperature, adsorption, desorption, and mass transfer was discussed in depth by analyzing the interaction mechanism.

Keywords: fine particles, nano-fluid, mass transfer enhancement, solid loading

Procedia PDF Downloads 238
1223 The Effects of Different Types of Cement on the Permeability of Deep Mixing Columns

Authors: Mojebullah Wahidy, Murat Olgun

Abstract:

In this study, four different types of cement are used to investigate the permeability of DMC (Deep Mixing Column) in the clay. The clay used in this research is in the kaolin group, and the types of cement are; CEM I 42.5.R. normal portland cement, CEM II/A-M (P-L) pozzolan doped cement, CEM III/A 42.5 N blast furnace slag cement and DMFC-800 fine-grained portland cement. Firstly, some rheological tests are done on every cement, and a 0.9 water/cement ratio is selected as the appropriate ratio. This ratio is used to prepare the small-scale DMCs for all types of cement with %6, %9, %12, and %15, which are determined as the dry weight of the clay. For all the types of cement, three samples were prepared in every percentage and were kept on curing for 7, 14, and 28 days for permeability tests. As a result of the small-scale DMCs, permeability tests, a %12 selected for big-scale DMCs. A total of five big scales DMC were prepared by using a %12-cement and were kept for 28 days curing for permeability tests. The results of the permeability tests show that by increasing the cement percentage and curing time of all DMCs, the permeability coefficient (k) is decreased. Despite variable results in different cement ratios and curing time in general, samples treated by DMFC-800 fine-grained cement have the lowest permeability coefficient. Samples treated with CEM II and CEM I cement types were the second and third lowest permeable samples. The highest permeability coefficient belongs to the samples that were treated with CEM III cement type.

Keywords: deep mixing column, rheological test, DMFC-800, permeability test

Procedia PDF Downloads 78
1222 A New Direction of Urban Regeneration: Form-Based Urban Reconstruction through the Idea of Bricolage

Authors: Hyejin Song, Jin Baek

Abstract:

Based on the idea of bricolage that a new meaning beyond that of each of objects can be created through combination and juxtaposition of various objets, this study finds a way of morphological-recomposing of urban space through combination and juxtaposition of existing urban fabric and new fabric and suggests this idea as new direction of urban regeneration. This study sets concept of bricolage as a philosophical ground of interpreting contemporary urban situation. In this concept, urban objects such as buildings from various zeitgeists are positively considered as potential textures which can construct meaningful context. Seoul, as the city having long history and experiencing colonization and development, appears dynamic urban structure full of various objects from various periods. However, in contrast with successful plazas and streets in Europe, objects in Seoul do not make a meaningful context as public space due to thoughtless development. This study defines this situation as ‘disorgnized-fabric’. Following the concept of bricolage, to find the way for those existing scattered objects to be organized as a context of meaningful public space, this study firstly researches the case of successful public space by morphological analysis. Secondly, this study carefully explores urban space in Seoul, and draws figure-ground diagram to grasp the form of current urban fabric by various urban-objects. As a result of exploration, a lot of urban spaces from Myeong-dong, one of vibrant commercial district in Seoul, to declining residential area are judged as having potential fabric which can become meaningful context by just small adjustment of relationship between existing objects. This study also confirmed that by inserting a new object with consideration of form of existing fabric, it is possible to accord a new context as plaza to existing void which have broken as several parts. This study defines it as form-based urban reconstruction through the idea of bricolage, and suggests that it could be one of philosophical ground of successful urban regeneration.

Keywords: adjustment of relationship between existing objets, bricolage, morphological analysis of urban fabric, urban regeneration, urban reconstruction

Procedia PDF Downloads 318
1221 Sedimentological and Petrographical Studies on the Cored samples from Bentiu Formation Muglad Basin

Authors: Yousif M. Makeen

Abstract:

This study presents the results of the sedimentological and petrographical analyses on the cored samples from the Bentiu Formation. The cored intervals consist of thick beds of sandstone, which are sometimes intercalated with beds of fine-grained sandstone and, in a minor case, with a siltstone bed. Detailed sedimentological facies analysis revealed the presence of six facies types, which can be clarified in order of their great percentage occurrences as follows: (i) Massive sandstone, (ii) Planar cross-bedded sandstone, (iii) Trough cross-bedded sandstone, (iv) Fine laminated sandstone (v) Fine laminated siltstone and (vi) Horizontally parted sandstone. The petrographical analyses under the plane polarized microscope and the scanning electron microscope (SEM) for the sandstone lithofacies types that exist within the cored intervals allowed classifying these lithofacies into Kaolinitic Subfeldspathic Arenites. Among the detrital components, quartz grains are the most abundant (mainly monocrystalline quartz), followed by feldspars, micas, detrital and authigenic clays, and carbonaceous debris. However, traces of lithic fragments, iron oxides and heavy minerals were observed in some of the analyzed samples, where they occur in minor amounts. Kaolinite is present mainly as an authigenic component in most of the analyzed samples, while quartz overgrowths occur in variable amounts in most of the investigated samples. Carbonates (calcite & siderite) are present in considerable amounts. The grain roundness in most of the investigated sandstone samples ranges from well-rounded to round, and, in fewer samples, is sub-angular to angular. Most of the sandstone samples are moderately compacted and display point, concavo-convex and long grain contacts, whereas the sutured grain contacts, which reflect a higher degree of compaction, are relatively observed in lesser amounts, while the float grain contact has also been observed in minor quantity. Pore types in the analyzed samples are dominantly primary and secondary interparticle forms. Point-counted porosity values range from 19.6% to 30%. Average pore sizes are highly variable and range from 20 to 350 microns. Pore interconnectivity ranges from good to very good.

Keywords: sandstone, sedimentological facies, porosity, quartz overgrowths

Procedia PDF Downloads 48
1220 Psychosocial Experiences of Black Male Students in Public and Social Spaces on and around a Historically White South African Campus

Authors: Claudia P. Saunderson

Abstract:

Widening of participation in higher education globally has increased diversity of student populations. However, widening participation is more than mere access. Central to the debate about widening participation are social justice issues of authentic inclusion and appropriate support for success for all students in higher education (HE). Given the recent global campaign for 'Black Lives Matter' as well as the worldwide advocacy for justice in the George Floyd case, the importance of the experiences of Black men, were again poignantly foregrounded. The literature abounds with the negative experiences of Black male students in higher education. Much of this literature emanates from the Global North, with little systematic research on black male students' university experiences originating from the Global South. This research, therefore, explores the psychosocial experiences of Black male students at a historically white South African university. Not only are these students' educational or academic adjustment important, but so is their psychosocial adjustment to the institution. The psychosocial adjustment might include emotional well-being, motivation, as well as the student’s perception of how well he fits in or is made to feel welcome at the institution. The study draws on strands of critical race theory (CRT), co-cultural theory (CCT) as well as defining properties of micro-aggression theory (MAT). In the study, CRT, therefore, served as an overarching theory at the macro level, and it comments on the structural dynamics while MAT and CCT rather focussed on the impact of structural arrangements like racialization, at an individual and micro-level. These theories furthermore provided a coherent analytic framework for this study. Using a case study design, this qualitative study, employing focus groups and individual interviews, drew on the psychosocial experiences of twenty Black male students to explore how they navigate this specific historically white campus. The data were analyzed using thematic analysis that provided a systematic procedure for generating codes and themes from the qualitative data. The study found that the combination of race and gender-based micro-aggressions experienced by students included negative stereotyping, criminalization as well as racial profiling and that these experiences impede participants' ability to thrive at the institution. However, participants also shared positive perspectives about the institution. Some of the positive traits of the institution that the participants mentioned were well-aligned administration, good quality of education, as well as various funding opportunities. This study implies that if any HE institution values transformation, it necessitates the exploration and interrogation of potential aspects that are subtly hidden in the institutional culture and environment that might serve as barriers to the transformation process. This positioning is based on a social justice stance and believes that all students are equal and have the right to racially and culturally equitable and appropriate education and support.

Keywords: critical race theory, higher education transformation, micro-aggression, student experience

Procedia PDF Downloads 138
1219 Ontology Expansion via Synthetic Dataset Generation and Transformer-Based Concept Extraction

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology expansion, synthetic dataset, transformer fine-tuning, concept extraction, DOLCE, BERT, taxonomy, LLM, NER

Procedia PDF Downloads 14
1218 In-Context Meta Learning for Automatic Designing Pretext Tasks for Self-Supervised Image Analysis

Authors: Toktam Khatibi

Abstract:

Self-supervised learning (SSL) includes machine learning models that are trained on one aspect and/or one part of the input to learn other aspects and/or part of it. SSL models are divided into two different categories, including pre-text task-based models and contrastive learning ones. Pre-text tasks are some auxiliary tasks learning pseudo-labels, and the trained models are further fine-tuned for downstream tasks. However, one important disadvantage of SSL using pre-text task solving is defining an appropriate pre-text task for each image dataset with a variety of image modalities. Therefore, it is required to design an appropriate pretext task automatically for each dataset and each downstream task. To the best of our knowledge, the automatic designing of pretext tasks for image analysis has not been considered yet. In this paper, we present a framework based on In-context learning that describes each task based on its input and output data using a pre-trained image transformer. Our proposed method combines the input image and its learned description for optimizing the pre-text task design and its hyper-parameters using Meta-learning models. The representations learned from the pre-text tasks are fine-tuned for solving the downstream tasks. We demonstrate that our proposed framework outperforms the compared ones on unseen tasks and image modalities in addition to its superior performance for previously known tasks and datasets.

Keywords: in-context learning (ICL), meta learning, self-supervised learning (SSL), vision-language domain, transformers

Procedia PDF Downloads 80
1217 Rethinking the Value of Pancreatic Cyst CEA Levels from Endoscopic Ultrasound Fine-Needle Aspiration (EUS-FNA): A Longitudinal Analysis

Authors: Giselle Tran, Ralitza Parina, Phuong T. Nguyen

Abstract:

Background/Aims: Pancreatic cysts (PC) have recently become an increasingly common entity, often diagnosed as incidental findings on cross-sectional imaging. Clinically, management of the lesions is difficult because of uncertainties in their potential for malignant degeneration. Prior series have reported that carcinoembryonic antigen (CEA), a biomarker collected from cyst fluid aspiration, has a high diagnostic accuracy for discriminating between mucinous and non-mucinous lesions, at the patient’s initial presentation. To the author’s best knowledge, no prior studies have reported PC CEA levels obtained from endoscopic ultrasound fine-needle aspiration (EUS-FNA) over years of serial EUS surveillance imaging. Methods: We report a consecutive retrospective series of 624 patients who underwent EUS evaluation for a PC between 11/20/2009 and 11/13/2018. Of these patients, 401 patients had CEA values obtained at the point of entry. Of these, 157 patients had two or more CEA values obtained over the course of their EUS surveillance. Of the 157 patients (96 F, 61 M; mean age 68 [range, 62-76]), the mean interval of EUS follow-up was 29.7 months [3.5-128]. The mean number of EUS procedures was 3 [2-7]. To assess CEA value fluctuations, we defined an appreciable increase in CEA as "spikes" – two-times increase in CEA on a subsequent EUS-FNA of the same cyst, with the second CEA value being greater than 1000 ng/mL. Using this definition, cysts with a spike in CEA were compared to those without a spike in a bivariate analysis to determine if a CEA spike is associated with poorer outcomes and the presence of high-risk features. Results: Of the 157 patients analyzed, 29 had a spike in CEA. Of these 29 patients, 5 had a cyst with size increase >0.5cm (p=0.93); 2 had a large cyst, >3cm (p=0.77); 1 had a cyst that developed a new solid component (p=0.03); 7 had a cyst with a solid component at any time during surveillance (p=0.08); 21 had a complex cyst (p=0.34); 4 had a cyst categorized as "Statistically Higher Risk" based on molecular analysis (p=0.11); and 0 underwent surgical resection (p=0.28). Conclusion: With serial EUS imaging in the surveillance of PC, an increase in CEA level defined as a spike did not predict poorer outcomes. Most notably, a spike in CEA did not correlate with the number of patients sent to surgery or patients with an appreciable increase in cyst size. A spike in CEA did not correlate with the development of a solid nodule within the PC nor progression on molecular analysis. Future studies should focus on the selected use of CEA analysis when patients undergo EUS surveillance evaluation for PCs.

Keywords: carcinoembryonic antigen (CEA), endoscopic ultrasound (EUS), fine-needle aspiration (FNA), pancreatic cyst, spike

Procedia PDF Downloads 142
1216 Controlling Shape and Position of Silicon Micro-nanorolls Fabricated using Fine Bubbles during Anodization

Authors: Yodai Ashikubo, Toshiaki Suzuki, Satoshi Kouya, Mitsuya Motohashi

Abstract:

Functional microstructures such as wires, fins, needles, and rolls are currently being applied to variety of high-performance devices. Under these conditions, a roll structure (silicon micro-nanoroll) was formed on the surface of the silicon substrate via fine bubbles during anodization using an extremely diluted hydrofluoric acid (HF + H₂O). The as-formed roll had a microscale length and width of approximately 1 µm. The number of rolls was 3-10 times and the thickness of the film forming the rolls was about 10 nm. Thus, it is promising for applications as a distinct device material. These rolls functioned as capsules and/or pipelines. To date, number of rolls and roll length have been controlled by anodization conditions. In general, controlling the position and roll winding state is required for device applications. However, it has not been discussed. Grooves formed on silicon surface before anodization might be useful control the bubbles. In this study, we investigated the effect of the grooves on the position and shape of the roll. The surfaces of the silicon wafers were anodized. The starting material was p-type (100) single-crystalline silicon wafers. The resistivity of the wafer is 5-20 ∙ cm. Grooves were formed on the surface of the substrate before anodization using sandpaper and diamond pen. The average width and depth of the grooves were approximately 1 µm and 0.1 µm, respectively. The HF concentration {HF/ (HF + C₂H5OH + H₂O)} was 0.001 % by volume. The C2H5OH concentration {C₂H5OH/ (HF + C₂H5OH + H₂O)} was 70 %. A vertical single-tank cell and Pt cathode were used for anodization. The silicon roll was observed by field-emission scanning electron microscopy (FE-SEM; JSM-7100, JEOL). The atomic bonding state of the rolls was evaluated using X-ray photoelectron spectroscopy (XPS; ESCA-3400, Shimadzu). For straight groove, the rolls were formed along the groove. This indicates that the orientation of the rolls can be controlled by the grooves. For lattice-like groove, the rolls formed inside the lattice and along the long sides. In other words, the aspect ratio of the lattice is very important for the roll formation. In addition, many rolls were formed and winding states were not uniform when the lattice size is too large. On the other hand, no rolls were formed for small lattice. These results indicate that there is the optimal size of lattice for roll formation. In the future, we are planning on formation of rolls using groove formed by lithography technique instead of sandpaper and the pen. Furthermore, the rolls included nanoparticles will be formed for nanodevices.

Keywords: silicon roll, anodization, fine bubble, microstructure

Procedia PDF Downloads 19
1215 Reducing the Chemical Activity of Ceramic Casting Molds for Producing Decorated Glass Moulds

Authors: Nilgun Kuskonmaz

Abstract:

Ceramic molding can produce castings with fine detail, smooth surface and high degree of dimensional accuracy. All these features are the key factors for producing decorated glass moulds. In the ceramic mold casting process, the fundamental parameters affecting the mold-metal reactions are the composition and the properties of the refractory materials used in the production of ceramic mold. As a result of the reactions taking place between the liquid metal and mold surface, it is not possible to achieve a perfect surface quality, a fine surface detail and maintain a high standard dimensional tolerances. The present research examines the effects of the binder composition on the structural and physical properties of the zircon ceramic mold. In the experiment, the ceramic slurry was prepared by mixing the refractory powders (zircon(ZrSiO4), mullit(3Al2O32SiO2) and alumina (Al2O3)) with the low alkaline silica (ethyl silicate (C8H20O4Si)) and acidic type gelling material suitable binder and gelling agent. This was followed by pouring that ceramic slurry on to a silicon pattern. After being gelled, the mold was removed from the silicon pattern and dried. Then, the ceramic mold was subjected to the reaction sintering at 1600°C for 2 hours in the furnace. The stainless steel (SS) was cast into the sintered ceramic mold. At the end of this process it was observed that the surface quality of decorated glass mold.

Keywords: ceramic mold, stainless steel casting, decorated glass mold

Procedia PDF Downloads 263
1214 Life Stage Customer Segmentation by Fine-Tuning Large Language Models

Authors: Nikita Katyal, Shaurya Uppal

Abstract:

This paper tackles the significant challenge of accurately classifying customers within a retailer’s customer base. Accurate classification is essential for developing targeted marketing strategies that effectively engage this important demographic. To address this issue, we propose a method that utilizes Large Language Models (LLMs). By employing LLMs, we analyze the metadata associated with product purchases derived from historical data to identify key product categories that act as distinguishing factors. These categories, such as baby food, eldercare products, or family-sized packages, offer valuable insights into the likely household composition of customers, including families with babies, families with kids/teenagers, families with pets, households caring for elders, or mixed households. We segment high-confidence customers into distinct categories by integrating historical purchase behavior with LLM-powered product classification. This paper asserts that life stage segmentation can significantly enhance e-commerce businesses’ ability to target the appropriate customers with tailored products and campaigns, thereby augmenting sales and improving customer retention. Additionally, the paper details the data sources, model architecture, and evaluation metrics employed for the segmentation task.

Keywords: LLMs, segmentation, product tags, fine-tuning, target segments, marketing communication

Procedia PDF Downloads 23
1213 Hematological Malignancies in Children and Parental Occupational Exposure

Authors: H. Kalboussi, A. Aloui, W. Boughattas, M. Maoua, A. Brahem, S. Chatti, O. El Maalel, F. Debbabi, N. Mrizak, Y. Ben Youssef, A. Khlif, I. Bougmiza

Abstract:

Background: In recent decades, the incidence of children's hematological malignancies has been increasing worldwide including Tunisia. Their severity is reflected in the importance of the medical, social and economic impact. This increase remains fully unexplained, and the involvement of genetic, environmental and occupational factors is strongly suspected. Materials and Methods: Our study is a cross-sectional survey of the type case-control conducted in the University Hospital of Farhat Hached of Sousse during the period ranging between 1 July 2011 and 30 June 2012,and which included children with acute leukemia compared to children unharmed by neoplastic disease . Cases and controls were matched by age and gender. Our objective was to: - Describe the socio-occupational characteristics of the parents of children with acute leukemia. - Identify potential occupational factors implicated in the genesis of acute leukemia. Result: The number of acute leukemia cases in the Hematology Service and day hospital of the University Hospital of Farhat Hached during the study period was 66 cases divided into in 40 boys and 26 girls with a sex ratio of 1.53. Our cases and controls were matched by age and gender. The risk of incidence of leukemia in children from smoking fathers was higher (p = 0.02, OR = 2.24, IC = [1.11 - 4.52]). The risk of incidence of leukemia in children from alcoholic fathers was higher with p = 0,009, OR = 3.9; CI = [1.33 - 11.39]. After adjusting different variables, the difference persisted significantly with pa = 0.03 and ORa = 3.5; ICa = [1.09 -11.6]. 25.7 % of cases had a family history of blood disease and neoplasia, whereas no control presented that. The difference was statistically significant (p = 0.006), OR = 1.46, IC = [1.38 - 1.56]. The parental occupational exposures associated to the occurrence of acute leukemia in children were: - Pesticides with a statistically significant difference (p = 0.03), OR = 2.94, IC = [1.06 - 8.13]. This difference persisted after adjustment with different variables pa = 0.01, ORa 3.75; ICa = [1.27 - 11.03]. - Cement without a statistically non-significant difference (p = 0.2). This difference has become significant after adjustment with the different variables pa = 0.03; ORa = 2.67; ICa = [1.06 - 6.7]. Conclusion: Parental exposure to occupational risk factors may play a role in the pathogenesis of acute leukemia in children.

Keywords: hematological malignancies, children, parents, occupational exposure

Procedia PDF Downloads 318
1212 The Achievement Model of University Social Responsibility

Authors: Le Kang

Abstract:

On the research question of 'how to achieve USR', this contribution reflects the concept of university social responsibility, identify three achievement models of USR as the society - diversified model, the university-cooperation model, the government - compound model, also conduct a case study to explore characteristics of Chinese achievement model of USR. The contribution concludes with discussion of how the university, government and society balance demands and roles, make necessarily strategic adjustment and innovative approach to repair the shortcomings of each achievement model.

Keywords: modern university, USR, achievement model, compound model

Procedia PDF Downloads 758
1211 Chemistry and Sources of Solid Biofuel Derived Ambient Aerosols during Cooking and Non-Cooking Hours in Rural Area of Khairatpur, North-Central India

Authors: Sudha Shukla, Bablu Kumar, Gyan Prakash Gupta, U. C. Kulshrestha

Abstract:

Air pollutants emitted from solid biofuels during cooking are the major contributors to poor air quality, respiratory problems, and radiative forcing, etc. in rural areas of most of developing countries. The present study reports the chemical characteristics and sources of ambient aerosols and traces gases during cooking and non-cooking hours emitted during biofuel combustion in a village in North-Central India. Fine aerosol samples along with gaseous species (Sox, NOx, and NH₃) were collected during September 2010-March 2011 at Khairatpur village (KPV) which is located in the Uttar Pradesh state in North-Central India. Results indicated that most of the major ions in aerosols and Sox, NOx, and NH₃ gases were found to be higher during cooking hours as compared to non-cooking hours suggesting that solid biofuel combustion is an important source of air pollution. Results of Principal Component Analysis (PCA) revealed that combustion of solid biofuel, vehicular emissions, and brick kilns were the major sources of fine aerosols and trace gases in the village. A health survey was conducted to find out the relation between users of biofuels and their health effects and the results revealed that most of the women in the village were suffering from diseases associated with biofuel combustion during cooking.

Keywords: ambient aerosols, biofuel combustion, cooking, health survey, rural area

Procedia PDF Downloads 240
1210 Flow Field Optimization for Proton Exchange Membrane Fuel Cells

Authors: Xiao-Dong Wang, Wei-Mon Yan

Abstract:

The flow field design in the bipolar plates affects the performance of the proton exchange membrane (PEM) fuel cell. This work adopted a combined optimization procedure, including a simplified conjugate-gradient method and a completely three-dimensional, two-phase, non-isothermal fuel cell model, to look for optimal flow field design for a single serpentine fuel cell of size 9×9 mm with five channels. For the direct solution, the two-fluid method was adopted to incorporate the heat effects using energy equations for entire cells. The model assumes that the system is steady; the inlet reactants are ideal gases; the flow is laminar; and the porous layers such as the diffusion layer, catalyst layer and PEM are isotropic. The model includes continuity, momentum and species equations for gaseous species, liquid water transport equations in the channels, gas diffusion layers, and catalyst layers, water transport equation in the membrane, electron and proton transport equations. The Bulter-Volumer equation was used to describe electrochemical reactions in the catalyst layers. The cell output power density Pcell is maximized subjected to an optimal set of channel heights, H1-H5, and channel widths, W2-W5. The basic case with all channel heights and widths set at 1 mm yields a Pcell=7260 Wm-2. The optimal design displays a tapered characteristic for channels 1, 3 and 4, and a diverging characteristic in height for channels 2 and 5, producing a Pcell=8894 Wm-2, about 22.5% increment. The reduced channel heights of channels 2-4 significantly increase the sub-rib convection and widths for effectively removing liquid water and oxygen transport in gas diffusion layer. The final diverging channel minimizes the leakage of fuel to outlet via sub-rib convection from channel 4 to channel 5. Near-optimal design without huge loss in cell performance but is easily manufactured is tested. The use of a straight, final channel of 0.1 mm height has led to 7.37% power loss, while the design with all channel widths to be 1 mm with optimal channel heights obtained above yields only 1.68% loss of current density. The presence of a final, diverging channel has greater impact on cell performance than the fine adjustment of channel width at the simulation conditions set herein studied.

Keywords: optimization, flow field design, simplified conjugate-gradient method, serpentine flow field, sub-rib convection

Procedia PDF Downloads 296
1209 Integer Programming-Based Generation of Difficulty Level for a Racing Game

Authors: Sangchul Kim, Dosaeng Park

Abstract:

It is one of the important design issues to provide various levels of difficulty in order to suit the skillfulness of an individual. In this paper we propose an integer programming-based method for selecting a mixture of challenges for a racing game that meet a given degree of difficulty. The proposed method can also be used to dynamically adjust the difficulty of the game during the progression of playing. By experiments, it is shown that our method performs well enough to generate games with various degrees of difficulty that match the perception of players.

Keywords: level generation, level adjustment, racing game, ip

Procedia PDF Downloads 374
1208 Concrete Mix Design Using Neural Network

Authors: Rama Shanker, Anil Kumar Sachan

Abstract:

Basic ingredients of concrete are cement, fine aggregate, coarse aggregate and water. To produce a concrete of certain specific properties, optimum proportion of these ingredients are mixed. The important factors which govern the mix design are grade of concrete, type of cement and size, shape and grading of aggregates. Concrete mix design method is based on experimentally evolved empirical relationship between the factors in the choice of mix design. Basic draw backs of this method are that it does not produce desired strength, calculations are cumbersome and a number of tables are to be referred for arriving at trial mix proportion moreover, the variation in attainment of desired strength is uncertain below the target strength and may even fail. To solve this problem, a lot of cubes of standard grades were prepared and attained 28 days strength determined for different combination of cement, fine aggregate, coarse aggregate and water. An artificial neural network (ANN) was prepared using these data. The input of ANN were grade of concrete, type of cement, size, shape and grading of aggregates and output were proportions of various ingredients. With the help of these inputs and outputs, ANN was trained using feed forward back proportion model. Finally trained ANN was validated, it was seen that it gave the result with/ error of maximum 4 to 5%. Hence, specific type of concrete can be prepared from given material properties and proportions of these materials can be quickly evaluated using the proposed ANN.

Keywords: aggregate proportions, artificial neural network, concrete grade, concrete mix design

Procedia PDF Downloads 389
1207 Smartphone-Based Human Activity Recognition by Machine Learning Methods

Authors: Yanting Cao, Kazumitsu Nawata

Abstract:

As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.

Keywords: smart sensors, human activity recognition, artificial intelligence, SVM

Procedia PDF Downloads 144
1206 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner

Authors: Beier Zhu, Rui Zhang, Qi Song

Abstract:

Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.

Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization

Procedia PDF Downloads 194
1205 Effects of Particle Size Distribution on Mechanical Strength and Physical Properties in Engineered Quartz Stone

Authors: Esra Arici, Duygu Olmez, Murat Ozkan, Nurcan Topcu, Furkan Capraz, Gokhan Deniz, Arman Altinyay

Abstract:

Engineered quartz stone is a composite material comprising approximately 90 wt.% fine quartz aggregate with a variety of particle size ranges and `10 wt.% unsaturated polyester resin (UPR). In this study, the objective is to investigate the influence of particle size distribution on mechanical strength and physical properties of the engineered stone slabs. For this purpose, granular quartz with two particle size ranges of 63-200 µm and 100-300 µm were used individually and mixed with a difference in ratios of mixing. The void volume of each granular packing was measured in order to define the amount of filler; quartz powder with the size of less than 38 µm, and UPR required filling inter-particle spaces. Test slabs were prepared using vibration-compression under vacuum. The study reports that both impact strength and flexural strength of samples increased as the mix ratio of the particle size range of 63-200 µm increased. On the other hand, the values of water absorption rate, apparent density and abrasion resistance were not affected by the particle size distribution owing to vacuum compaction. It is found that increasing the mix ratio of the particle size range of 63-200 µm caused the higher porosity. This led to increasing in the amount of the binder paste needed. It is also observed that homogeneity in the slabs was improved with the particle size range of 63-200 µm.

Keywords: engineered quartz stone, fine quartz aggregate, granular packing, mechanical strength, particle size distribution, physical properties.

Procedia PDF Downloads 147
1204 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition

Procedia PDF Downloads 156
1203 Two-Stage Estimation of Tropical Cyclone Intensity Based on Fusion of Coarse and Fine-Grained Features from Satellite Microwave Data

Authors: Huinan Zhang, Wenjie Jiang

Abstract:

Accurate estimation of tropical cyclone intensity is of great importance for disaster prevention and mitigation. Existing techniques are largely based on satellite imagery data, and research and utilization of the inner thermal core structure characteristics of tropical cyclones still pose challenges. This paper presents a two-stage tropical cyclone intensity estimation network based on the fusion of coarse and fine-grained features from microwave brightness temperature data. The data used in this network are obtained from the thermal core structure of tropical cyclones through the Advanced Technology Microwave Sounder (ATMS) inversion. Firstly, the thermal core information in the pressure direction is comprehensively expressed through the maximal intensity projection (MIP) method, constructing coarse-grained thermal core images that represent the tropical cyclone. These images provide a coarse-grained feature range wind speed estimation result in the first stage. Then, based on this result, fine-grained features are extracted by combining thermal core information from multiple view profiles with a distributed network and fused with coarse-grained features from the first stage to obtain the final two-stage network wind speed estimation. Furthermore, to better capture the long-tail distribution characteristics of tropical cyclones, focal loss is used in the coarse-grained loss function of the first stage, and ordinal regression loss is adopted in the second stage to replace traditional single-value regression. The selection of tropical cyclones spans from 2012 to 2021, distributed in the North Atlantic (NA) regions. The training set includes 2012 to 2017, the validation set includes 2018 to 2019, and the test set includes 2020 to 2021. Based on the Saffir-Simpson Hurricane Wind Scale (SSHS), this paper categorizes tropical cyclone levels into three major categories: pre-hurricane, minor hurricane, and major hurricane, with a classification accuracy rate of 86.18% and an intensity estimation error of 4.01m/s for NA based on this accuracy. The results indicate that thermal core data can effectively represent the level and intensity of tropical cyclones, warranting further exploration of tropical cyclone attributes under this data.

Keywords: Artificial intelligence, deep learning, data mining, remote sensing

Procedia PDF Downloads 63
1202 The Persistence of Abnormal Return on Assets: An Exploratory Analysis of the Differences between Industries and Differences between Firms by Country and Sector

Authors: José Luis Gallizo, Pilar Gargallo, Ramon Saladrigues, Manuel Salvador

Abstract:

This study offers an exploratory statistical analysis of the persistence of annual profits across a sample of firms from different European Union (EU) countries. To this end, a hierarchical Bayesian dynamic model has been used which enables the annual behaviour of those profits to be broken down into a permanent structural and a transitory component, while also distinguishing between general effects affecting the industry as a whole to which each firm belongs and specific effects affecting each firm in particular. This breakdown enables the relative importance of those fundamental components to be more accurately evaluated by country and sector. Furthermore, Bayesian approach allows for testing different hypotheses about the homogeneity of the behaviour of the above components with respect to the sector and the country where the firm develops its activity. The data analysed come from a sample of 23,293 firms in EU countries selected from the AMADEUS data-base. The period analysed ran from 1999 to 2007 and 21 sectors were analysed, chosen in such a way that there was a sufficiently large number of firms in each country sector combination for the industry effects to be estimated accurately enough for meaningful comparisons to be made by sector and country. The analysis has been conducted by sector and by country from a Bayesian perspective, thus making the study more flexible and realistic since the estimates obtained do not depend on asymptotic results. In general terms, the study finds that, although the industry effects are significant, more important are the firm specific effects. That importance varies depending on the sector or the country in which the firm carries out its activity. The influence of firm effects accounts for around 81% of total variation and display a significantly lower degree of persistence, with adjustment speeds oscillating around 34%. However, this pattern is not homogeneous but depends on the sector and country analysed. Industry effects depends also on sector and country analysed have a more marginal importance, being significantly more persistent, with adjustment speeds oscillating around 7-8% with this degree of persistence being very similar for most of sectors and countries analysed.

Keywords: dynamic models, Bayesian inference, MCMC, abnormal returns, persistence of profits, return on assets

Procedia PDF Downloads 401
1201 Challenges in the Characterization of Black Mass in the Recovery of Graphite from Spent Lithium Ion Batteries

Authors: Anna Vanderbruggen, Kai Bachmann, Martin Rudolph, Rodrigo Serna

Abstract:

Recycling of lithium-ion batteries has attracted a lot of attention in recent years and focuses primarily on valuable metals such as cobalt, nickel, and lithium. Despite the growth in graphite consumption and the fact that it is classified as a critical raw material in the European Union, USA, and Australia, there is little work focusing on graphite recycling. Thus, graphite is usually considered waste in recycling treatments, where graphite particles are concentrated in the “black mass”, a fine fraction below 1mm, which also contains the foils and the active cathode particles such as LiCoO2 or LiNiMnCoO2. To characterize the material, various analytical methods are applied, including X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Atomic Absorption Spectrometry (AAS), and SEM-based automated mineralogy. The latter consists of the combination of a scanning electron microscopy (SEM) image analysis and energy-dispersive X-ray spectroscopy (EDS). It is a powerful and well-known method for primary material characterization; however, it has not yet been applied to secondary material such as black mass, which is a challenging material to analyze due to fine alloy particles and to the lack of an existing dedicated database. The aim of this research is to characterize the black mass depending on the metals recycling process in order to understand the liberation mechanisms of the active particles from the foils and their effect on the graphite particle surfaces and to understand their impact on the subsequent graphite flotation. Three industrial processes were taken into account: purely mechanical, pyrolysis-mechanical, and mechanical-hydrometallurgy. In summary, this article explores various and common challenges for graphite and secondary material characterization.

Keywords: automated mineralogy, characterization, graphite, lithium ion battery, recycling

Procedia PDF Downloads 247
1200 High Performance Concrete Using “BAUT” (Metal Aggregates) the Gateway to New Concrete Technology for Mega Structures

Authors: Arjun, Gautam, Sanjeev Naval

Abstract:

Concrete technology has been changing rapidly and constantly since its discovery. Concrete is the most widely used man-made construction material, versatility of making concrete is the 2nd largest consumed material on earth. In this paper an effort has been made to use metal aggregates in concrete has been discussed, the metal aggregates has been named as “BAUT” which had outstandingly qualities to resist shear, tension and compression forces. In this paper, COARSE BAUT AGGREGATES (C.B.A.) 10mm & 20mm and FINE BAUT AGGREGATES (F.B.A.) 3mm were divided and used for making high performance concrete (H.P.C). This “BAUT” had cutting edge technology through draft and design by the use of Auto CAD, ANSYS software can be used effectively In this research paper we study high performance concrete (H.P.C) with “BAUT” and consider the grade of M65 and finally we achieved the result of 90-95 Mpa (high compressive strength) for mega structures and irregular structures where center of gravity (CG) is not balanced. High Performance BAUT Concrete is the extraordinary qualities like long-term performance, no sorptivity by BAUT AGGREGATES, better rheological, mechanical and durability proportion that conventional concrete. This high strength BAUT concrete using “BAUT” is applied in the construction of mega structure like skyscrapers, dam, marine/offshore structures, nuclear power plants, bridges, blats and impact resistance structures. High Performance BAUT Concrete which is a controlled concrete possesses invariable high strength, reasonable workability and negligibly permeability as compare to conventional concrete by the mix of Super Plasticizers (SMF), silica fume and fly ash.

Keywords: BAUT, High Strength Concrete, High Performance Concrete, Fine BAUT Aggregate, Coarse BAUT Aggregate, metal aggregates, cutting edge technology

Procedia PDF Downloads 502
1199 Count of Trees in East Africa with Deep Learning

Authors: Nubwimana Rachel, Mugabowindekwe Maurice

Abstract:

Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.

Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization

Procedia PDF Downloads 72
1198 Electronic Structure Studies of Mn Doped La₀.₈Bi₀.₂FeO₃ Multiferroic Thin Film Using Near-Edge X-Ray Absorption Fine Structure

Authors: Ghazala Anjum, Farooq Hussain Bhat, Ravi Kumar

Abstract:

Multiferroic materials are vital for new application and memory devices, not only because of the presence of multiple types of domains but also as a result of cross correlation between coexisting forms of magnetic and electrical orders. In spite of wide studies done on multiferroic bulk ceramic materials their realization in thin film form is yet limited due to some crucial problems. During the last few years, special attention has been devoted to synthesis of thin films like of BiFeO₃. As they allow direct integration of the material into the device technology. Therefore owing to the process of exploration of new multiferroic thin films, preparation, and characterization of La₀.₈Bi₀.₂Fe₀.₇Mn₀.₃O₃ (LBFMO3) thin film on LaAlO₃ (LAO) substrate with LaNiO₃ (LNO) being the buffer layer has been done. The fact that all the electrical and magnetic properties are closely related to the electronic structure makes it inevitable to study the electronic structure of system under study. Without the knowledge of this, one may never be sure about the mechanism responsible for different properties exhibited by the thin film. Literature review reveals that studies on change in atomic and the hybridization state in multiferroic samples are still insufficient except few. The technique of x-ray absorption (XAS) has made great strides towards the goal of providing such information. It turns out to be a unique signature to a given material. In this milieu, it is time honoured to have the electronic structure study of the elements present in the LBFMO₃ multiferroic thin film on LAO substrate with buffer layer of LNO synthesized by RF sputtering technique. We report the electronic structure studies of well characterized LBFMO3 multiferroic thin film on LAO substrate with LNO as buffer layer using near-edge X-ray absorption fine structure (NEXAFS). Present exploration has been performed to find out the valence state and crystal field symmetry of ions present in the system. NEXAFS data of O K- edge spectra reveals a slight shift in peak position along with growth in intensities of low energy feature. Studies of Mn L₃,₂- edge spectra indicates the presence of Mn³⁺/Mn⁴⁺ network apart from very small contribution from Mn²⁺ ions in the system that substantiates the magnetic properties exhibited by the thin film. Fe L₃,₂- edge spectra along with spectra of reference compound reveals that Fe ions are present in +3 state. Electronic structure and valence state are found to be in accordance with the magnetic properties exhibited by LBFMO/LNO/LAO thin film.

Keywords: magnetic, multiferroic, NEXAFS, x-ray absorption fine structure, XMCD, x-ray magnetic circular dichroism

Procedia PDF Downloads 158