Search results for: construction site groundwater
6173 A Conceptual Framework and a Mathematical Equation for Managing Construction-Material Waste and Cost Overruns
Authors: Saidu Ibrahim, Winston M. W. Shakantu
Abstract:
The problem of construction material waste remains unresolved, as a significant percentage of the materials delivered to some project sites end up as waste which might result in additional project cost. Cost overrun is a problem which affects 90% of the completed projects in the world. The argument on how to eliminate it has been on-going for the past 70 years, but there is neither substantial improvement nor significant solution for mitigating its detrimental effects. Research evidence has proposed various construction cost overruns and material-waste management approaches; nonetheless, these studies failed to give a clear indication on the framework and the equation for managing construction material waste and cost overruns. Hence, this research aims to develop a conceptual framework and a mathematical equation for managing material waste and cost overrun in the construction industry. The paper adopts the desktop methodological approach. This involves comparing the causes of material waste and those of cost overruns from the literature to determine the possible relationship. The review revealed a relationship between material waste and cost overrun that; increase in material waste would result to a corresponding increase in the amount of cost overrun at both the pre-contract and the post contract stages of a project. It was found from the equation that achieving an effective construction material waste management must ensure a “Good Quality-of-Planning, Estimating, and Design Management” and a “Good Quality- of-Construction, Procurement and Site Management”; a decrease in “Design Complexity” which would reduce “Material Waste” and subsequently reduce the amount of cost overrun by 86.74%. The conceptual framework and the mathematical equation developed in this study are recommended to the professionals of the construction industry.Keywords: conceptual framework, cost overrun, material waste, project stags
Procedia PDF Downloads 2986172 Sustainable Approach for Strategic Planning of Construction of Buildings using Multi-Criteria Decision Making Tools
Authors: Kishor Bhagwat, Gayatri Vyas
Abstract:
Construction industry is earmarked with complex processes depending on the nature and scope of the project. In recent years, developments in this sector are remarkable and have resulted in both positive and negative impacts on the environment and human being. Sustainable construction can be looked upon as one of the solution to overcome the negative impacts since sustainable construction is a vast concept, which includes many parameters, and sometimes the use of multi-criteria decision making [MCDM] tools becomes necessary. The main objective of this study is to determine the weightage of sustainable building parameters with the help of MCDM tools. Questionnaire survey was conducted to examine the perspective of respondents on the importance of weights of the criterion, and the respondents were architects, green building consultants, and civil engineers. This paper presents an overview of research related to Indian and international green building rating systems and MCDM. The results depict that economy, environmental health, and safety, site selection, climatic condition, etc., are important parameters in sustainable construction.Keywords: green building, sustainability, multi-criteria decision making method [MCDM], analytical hierarchy process [AHP], technique for order preference by similarity to an ideal solution [TOPSIS], entropy
Procedia PDF Downloads 996171 Determination the Effects of Physico-Chemical Parameters on Groundwater Status by Water Quality Index
Authors: Samaneh Abolli, Mahdi Ahmadi Nasab, Kamyar Yaghmaeian, Mahmood Alimohammadi
Abstract:
The quality of drinking water, in addition to the presence of physicochemical parameters, depends on the type and geographical location of water sources. In this study, groundwater quality was investigated by sampling total dissolved solids (TDS), electrical conductivity (EC), total hardness (TH), Cl, Ca²⁺, and Mg²⁺ parameters in 13 sites, and 40 water samples were sent to the laboratory. Electrometric, titration, and spectrophotometer methods were used. In the next step, the water quality index (WQI) was used to investigate the impact and weight of each parameter in the groundwater. The results showed that only the mean of magnesium ion (40.88 mg/l) was lower than the guidelines of World Health Organization (WHO). Interpreting the WQI based on the WHO guidelines showed that the statuses of 21, 11, and 7 samples were very poor, poor, and average quality, respectively, and one sample had excellent quality. Among the studied parameters, the means of EC (2,087.49 mS/cm) and Cl (1,015.87 mg/l) exceeded the global and national limits. Classifying water quality of TH was very hard (87.5%), hard (7.5%), and moderate (5%), respectively. Based on the geographical distribution, the drinking water index in sites 4 and 11 did not have acceptable quality. Chloride ion was identified as the responsible pollutant and the most important ion for raising the index. The outputs of statistical tests and Spearman correlation had significant and direct correlation (p < 0.05, r > 0.7) between TDS, EC, and chloride, EC and chloride, as well as TH, Ca²⁺, and Mg²⁺.Keywords: water quality index, groundwater, chloride, GIS, Garmsar
Procedia PDF Downloads 1026170 Causes of Construction Delays in Qatar Construction Projects
Authors: Murat Gunduz, Mohanad H. A. AbuHassan
Abstract:
Construction industry mainly focuses on the superstructure, infrastructure, and oil and gas industry. The development of infrastructure projects in developing countries attracted a lot of foreign construction contractors, consultants, suppliers and diversified workforce to interfere and to be evolved in such huge investment. Reducing worksite delays in such projects require knowledge and attention. Therefore, it is important to identify the influencing delay attributes affecting construction projects. The significant project factors affecting construction delays were investigated. Data collection was carried out through an online web survey system to capture significant factors. Significant factors were determined with importance index and relevant recommendations are made. The output of the data analysis would lead the industry experts better assess the impact of construction delays on construction projects.Keywords: construction industry, delays, importance index, frequency index
Procedia PDF Downloads 3646169 Impact of Collieries on Groundwater in Damodar River Basin
Authors: Rajkumar Ghosh
Abstract:
The industrialization of coal mining and related activities has a significant impact on groundwater in the surrounding areas of the Damodar River. The Damodar River basin, located in eastern India, is known as the "Ruhr of India" due to its abundant coal reserves and extensive coal mining and industrial operations. One of the major consequences of collieries on groundwater is the contamination of water sources. Coal mining activities often involve the excavation and extraction of coal through underground or open-pit mining methods. These processes can release various pollutants and chemicals into the groundwater, including heavy metals, acid mine drainage, and other toxic substances. As a result, the quality of groundwater in the Damodar River region has deteriorated, making it unsuitable for drinking, irrigation, and other purposes. The high concentration of heavy metals, such as arsenic, lead, and mercury, in the groundwater has posed severe health risks to the local population. Prolonged exposure to contaminated water can lead to various health problems, including skin diseases, respiratory issues, and even long-term ailments like cancer. The contamination has also affected the aquatic ecosystem, harming fish populations and other organisms dependent on the river's water. Moreover, the excessive extraction of groundwater for industrial processes, including coal washing and cooling systems, has resulted in a decline in the water table and depletion of aquifers. This has led to water scarcity and reduced availability of water for agricultural activities, impacting the livelihoods of farmers in the region. Efforts have been made to mitigate these issues through the implementation of regulations and improved industrial practices. However, the historical legacy of coal industrialization continues to impact the groundwater in the Damodar River area. Remediation measures, such as the installation of water treatment plants and the promotion of sustainable mining practices, are essential to restore the quality of groundwater and ensure the well-being of the affected communities. In conclusion, the coal industrialization in the Damodar River surrounding has had a detrimental impact on groundwater. This research focuses on soil subsidence induced by the over-exploitation of ground water for dewatering open pit coal mines. Soil degradation happens in arid and semi-arid regions as a result of land subsidence in coal mining region, which reduces soil fertility. Depletion of aquifers, contamination, and water scarcity are some of the key challenges resulting from these activities. It is crucial to prioritize sustainable mining practices, environmental conservation, and the provision of clean drinking water to mitigate the long-lasting effects of collieries on the groundwater resources in the region.Keywords: coal mining, groundwater, soil subsidence, water table, damodar river
Procedia PDF Downloads 806168 Study of Cathodic Protection for Trunk Pipeline of Al-Garraf Oil Field
Authors: Maysoon Khalil Askar
Abstract:
The delineation of possible areas of corrosion along the external face of an underground oil pipeline in Trunk line of Al- Garraf oil field was investigated using the horizontal electrical resistivity profiling technique and study the contribution of pH, Moisture Content in Soil and Presence chlorides, sulfates and total dissolve salts in soil and water. The test sites represent a physical and chemical properties of soils. The hydrogen-ion concentration of soil and groundwater range from 7.2 to 9.6, and the resistivity values of the soil along the pipeline were obtained using the YH302B model resistivity meter having values between 1588 and 720 Ohm-cm. the chloride concentration in soil and groundwater is high (more than 1000 ppm), total soulable salt is more than 5000 ppm, and sulphate range from 0.17% and 0.98% in soil and more than 600 ppm in groundwater. The soil is poor aeration, the soil texture is fine (clay and silt soil), the water content is high (the groundwater is close to surface), the chloride and sulphate is high in the soil and groundwater, the total soulable salt is high in ground water and finally the soil electric resistivity is low that the soil is very corrosive and there is the possibility of the pipeline failure. These methods applied in the study are quick, economic and efficient for detecting along buried pipelines which need to be protected. Routine electrical geophysical investigations along buried oil pipelines should be undertaken for the early detection and prevention of pipeline failure with its attendant environmental, human and economic consequences.Keywords: soil resistivity, corrosion, cathodic protection, chloride concentration, water content
Procedia PDF Downloads 4386167 Evaluation of the Quality of Groundwater in the Zone of the Irrigated Perimeter Guelma-Bouchegouf, Northeast of Algeria
Authors: M. Benhamza, M. Touati, M. Aissaoui
Abstract:
The Guelma-Bouchegouf irrigated area is located in the north-east of the country; it extends about 80 km. It was commissioned in 1996, with an irrigable area of 9250 ha, it spreads on both banks of the Seybouse Wadi and it is subdivided into five autonomous distribution sectors. In order to assess the state of groundwater quality, physico-chemical and organic analyzes were carried out during the low water period in November 2017, at the level of fourteen wells in the Guelma-Bouchegouf irrigation area. The interpretation of the results of the chemical analyzes shows that the waters of the study area belong to two dominant chemical facies: sulphated-chlorinated-calcium and Sulfated-chlorinated-sodium. The mineral quality of the groundwater in the study area shows that Ca²⁺, Cl⁻ and SO₄²⁻ indicate little to significant pollution, Na⁺ and Mg²⁺ show moderate to significant mineralization of water, closely correlated with very high conductivities. NO₃⁻ and NH⁴⁺ show little to significant pollution throughout the study area. Phosphate represents a significant pollution, with excessive values exceeding the allowable standard. Phosphate concentrations indicate pollution caused by agricultural practices in the irrigated area, following the use of phosphates in the form of chemical fertilizers or pesticides.Keywords: Algeria, groundwater, irrigated perimeter, pollution
Procedia PDF Downloads 1216166 Florida’s Groundwater and Surface Water System Reliability in Terms of Climate Change and Sea-Level Rise
Authors: Rahman Davtalab
Abstract:
Florida is one of the most vulnerable states to natural disasters among the 50 states of the USA. The state exposed by tropical storms, hurricanes, storm surge, landslide, etc. Besides, the mentioned natural phenomena, global warming, sea-level rise, and other anthropogenic environmental changes make a very complicated and unpredictable system for decision-makers. In this study, we tried to highlight the effects of climate change and sea-level rise on surface water and groundwater systems for three different geographical locations in Florida; Main Canal of Jacksonville Beach (in the northeast of Florida adjacent to the Atlantic Ocean), Grace Lake in central Florida, far away from surrounded coastal line, and Mc Dill in Florida and adjacent to Tampa Bay and Mexican Gulf. An integrated hydrologic and hydraulic model was developed and simulated for all three cases, including surface water, groundwater, or a combination of both. For the case study of Main Canal-Jacksonville Beach, the investigation showed that a 76 cm sea-level rise in time horizon 2060 could increase the flow velocity of the tide cycle for the main canal's outlet and headwater. This case also revealed how the sea level rise could change the tide duration, potentially affecting the coastal ecosystem. As expected, sea-level rise can raise the groundwater level. Therefore, for the Mc Dill case, the effect of groundwater rise on soil storage and the performance of stormwater retention ponds is investigated. The study showed that sea-level rise increased the pond’s seasonal high water up to 40 cm by time horizon 2060. The reliability of the retention pond is dropped from 99% for the current condition to 54% for the future. The results also proved that the retention pond could not retain and infiltrate the designed treatment volume within 72 hours, which is a significant indication of increasing pollutants in the future. Grace Lake case study investigates the effects of climate change on groundwater recharge. This study showed that using the dynamically downscaled data of the groundwater recharge can decline up to 24% by the mid-21st century.Keywords: groundwater, surface water, Florida, retention pond, tide, sea level rise
Procedia PDF Downloads 1856165 Identification of Factors Affecting Labor Productivity in Construction Projects of Iran
Authors: Elham Dehghan, A. Shirzadi Javid, Mohsen Tadayon
Abstract:
Labor productivity is very important and gained special concerns among professionals in the construction industry, worldwide. Productivity improvements on labors achieve higher cost savings with minimal investment. Due to the fact that profit margins are small on construction projects, cost savings associated with productivity are crucial to become a successful contractor. This research program studies and highlights the factors affecting labor productivity in Iranian construction industry. A questionnaire was used to gather the relevant data from respondents who involve in managing various types of projects in wide areas in Iran. It involved ranking 57 predefined factors divided into 5 categories: Human/Labor; Financial; Management; Equipments/Materials and Environmental. Total 62 feedbacks were analyzed through the Relative Importance Index (RII) technique. The top ten factors affecting construction labor productivity in Iran are: 1) Professional capability of contractor project manager, 2) skills of contractor’s project management team, 3) professional capability of owner project manager, 4) professional capability of Consulting Project manager, 5) discipline working, 6) delay payments by the owner, 7) material shortages, 8) delays in delivery of materials, 9) turnover power of the owner, 10) poor site management. Recommendations have been made in the study to address these factors. The research has direct benefits to key stakeholders in Iranian construction industry.Keywords: Iranian construction projects, labor, productivity, relative importance index
Procedia PDF Downloads 2646164 Interior Noise Reduction of Construction Equipment Vehicle
Authors: Pradeep Jawale, Sharad Supare, Sachin Kumar Jain, Nagesh Walke
Abstract:
One can witness the constant development and redevelopment of cities throughout the world. Construction equipment vehicles (CEVs) are commonly used on the construction site. However, noise pollution from construction sites due to the use of CEV has become a major problem for many cities. The construction equipment employed, which includes excavators and bulldozers, is one of the main causes of these elevated noise levels. The construction workers possibly will face a potential risk to their auditory health and well-being due to the noise levels they are exposed to. Different countries have imposed exterior and operator noise limits for construction equipment vehicles, enabling them to control noise pollution from CEVs. In this study, the operator ear level noise of the identified vehicle is higher than the benchmark vehicle by 8 dB(A). It was a tough time for the NVH engineer to beat the interior noise level of the benchmark vehicle. Initially, the noise source identification technique was used to identify the dominant sources for increasing the interior noise of the test vehicle. It was observed that the transfer of structure-borne and air-borne noise to the cabin was the major issue with the vehicle. It was foremost required to address the issue without compromising the overall performance of the vehicle. Surprisingly, the steering pump and radiator fan were identified as the major dominant sources than typical conventional sources like powertrain, intake, and exhaust. Individual sources of noise were analyzed in detail, and optimizations were made to minimize the noise at the source. As a result, the significant noise reduction achieved inside the vehicle and the overall in-cab noise level for the vehicle became a new benchmark in the market.Keywords: interior noise, noise reduction, CEV, noise source identification
Procedia PDF Downloads 466163 Application of RS and GIS Technique for Identifying Groundwater Potential Zone in Gomukhi Nadhi Sub Basin, South India
Authors: Punitha Periyasamy, Mahalingam Sudalaimuthu, Sachikanta Nanda, Arasu Sundaram
Abstract:
India holds 17.5% of the world’s population but has only 2% of the total geographical area of the world where 27.35% of the area is categorized as wasteland due to lack of or less groundwater. So there is a demand for excessive groundwater for agricultural and non agricultural activities to balance its growth rate. With this in mind, an attempt is made to find the groundwater potential zone in Gomukhi river sub basin of Vellar River basin, TamilNadu, India covering an area of 1146.6 Sq.Km consists of 9 blocks from Peddanaickanpalayam to Villupuram fall in the sub basin. The thematic maps such as Geology, Geomorphology, Lineament, Landuse, and Landcover and Drainage are prepared for the study area using IRS P6 data. The collateral data includes rainfall, water level, soil map are collected for analysis and inference. The digital elevation model (DEM) is generated using Shuttle Radar Topographic Mission (SRTM) and the slope of the study area is obtained. ArcGIS 10.1 acts as a powerful spatial analysis tool to find out the ground water potential zones in the study area by means of weighted overlay analysis. Each individual parameter of the thematic maps are ranked and weighted in accordance with their influence to increase the water level in the ground. The potential zones in the study area are classified viz., Very Good, Good, Moderate, Poor with its aerial extent of 15.67, 381.06, 575.38, 174.49 Sq.Km respectively.Keywords: ArcGIS, DEM, groundwater, recharge, weighted overlay
Procedia PDF Downloads 4446162 Evaluation of the Conditions of Managed Aquifer Recharge in the West African Basement Area
Authors: Palingba Aimé Marie Doilkom, Mahamadou Koïta, Jean-michel Vouillamoz, Angelbert Biaou
Abstract:
Most African populations rely on groundwater in rural areas for their consumption. Indeed, in the face of climate change and strong demographic growth, groundwater, particularly in the basement, is increasingly in demand. The question of the sustainability of water resources in this type of environment is therefore becoming a major issue. Groundwater recharge can be natural or artificial. Unlike natural recharge, which often results from the natural infiltration of surface water (e.g. a share of rainfall), artificial recharge consists of causing water infiltration through appropriate developments to artificially replenish the water stock of an aquifer. Artificial recharge is, therefore, one of the measures that can be implemented to secure water supply, combat the effects of climate change, and, more generally, contribute to improving the quantitative status of groundwater bodies. It is in this context that the present research is conducted with the aim of developing artificial recharge in order to contribute to the sustainability of basement aquifers in a context of climatic variability and constantly increasing water needs of populations. In order to achieve the expected results, it is therefore important to determine the characteristics of the infiltration basins and to identify the areas suitable for their implementation. The geometry of the aquifer was reproduced, and the hydraulic properties of the aquifer were collected and characterized, including boundary conditions, hydraulic conductivity, effective porosity, recharge, Van Genuchten parameters, and saturation indices. The aquifer of the Sanon experimental site is made up of three layers, namely the saprolite, the fissured horizon, and the healthy basement. Indeed, the saprolite and the fissured medium were considered for the simulations. The first results with FEFLOW model show that the water table reacts continuously for the first 100 days before stabilizing. The hydraulic charge increases by an average of 1 m. The further away from the basin, the less the water table reacts. However, if a variable hydraulic head is imposed on the basins, it can be seen that the response of the water table is not uniform over time. The lower the basin hydraulic head, the less it affects the water table. These simulations must be continued by improving the characteristics of the basins in order to obtain the appropriate characteristics for a good recharge.Keywords: basement area, FEFLOW, infiltration basin, MAR
Procedia PDF Downloads 766161 Associated Problems with the Open Dump Site and Its Possible Solutions
Authors: Pangkaj Kumar Mahanta, Md. Rafizul Islam
Abstract:
The rapid growth of the population causes a substantial amount of increase in household waste all over the world. Waste management is becoming one of the most challenging phenomena in the present day. The most environmentally friendly final disposal process of waste is sanitary landfilling, which is practiced in most developing countries. However, in Southeast Asia, most of the final disposal point is an open dump site. Due to the ignominy of proper management of waste and monitoring, the surrounding environment gets polluted more by the open dump site in comparison with a sanitary landfill. Khulna is 3rd largest metropolitan city in Bangladesh, having a population of around 1.5 million and producing approximately 450 tons per day of Municipal Solid Waste. The Municipal solid waste of Khulna city is disposed of in Rajbandh open dump site. The surrounding air is being polluted by the gas produced in the open dump site. Also, the open dump site produces leachate, which contains various heavy metals like Cadmium (Cd), Chromium (Cr), Lead (Pb), Manganese (Mn), Mercury (Hg), Strontium (Sr), etc. Leachate pollutes the soil as well as the groundwater of the open dump site and also the surrounding area through seepage. Moreover, during the rainy season, the surface water is polluted by leachate runoff. Also, the plastic waste flowing out from the open dump site through various drivers pollutes the nearby environment. The health risk assessment associated with heavy metals was carried out by computing the chronic daily intake (CDI), hazard quotient (HQ), and hazard index (HI) via different exposure pathways following the USEPA guidelines. For ecological risk, potential contamination index (Cp), Contamination factor (CF), contamination load index (PLI), numerical integrated contamination factor (NICF), enrichment factor (EF), ecological risk index (ER), and potential ecological risk index (PERI) were computed. The health risk and ecological risk assessment results reveal that some heavy metals possess strong health and ecological risk. In addition, the child faces higher harmful health risks from several heavy metals than the adult for all the exposure pathways and media. The conversion of an open dump site into a sanitary landfill and a proper management system can reduce the problems associated with an open dump site. In the sanitary landfill, the produced gas will be managed properly to save the surrounding atmosphere from being polluted. The seepage of leachate can be minimized by installing a compacted clay layer (CCL) as a baseline and leachate collection in a sanitary landfill to save the underlying soil layer and surrounding water bodies from leachate. Another important component of a sanitary landfill is the conversion of plastic waste to energy will minimize the plastic pollution in the landfill area and also the surrounding soil and water bodies. Also, in the sanitary landfill, the bio-waste can be used to make compost to reduce the volume of bio-waste and proper utilization of the landfill area.Keywords: ecological risk, health risk, open dump site, sanitary landfill
Procedia PDF Downloads 1936160 Sustainable Mangrove Environment and Biodiversity of Gastropods and Crabs: A Case Study on the Effect of Mangrove Replantation under Ecotourism and Restoration in Ko Libong, Trang, Thailand
Authors: Wah Wah Min
Abstract:
The relative abundance and diversities of gastropods and crabs were assessed for mangrove areas of Ko Libong, Kantang district, Trang, Thailand in June 2022. Two sample sites (I and II) were studied. The site I was replanted under ecotourism, whereas site II represented the protected natural restored mangroves. This study is aimed to assess faunal diversity and how it could become re-established and resemble to natural restored mangroves. There was one sample plot at each study site with the dimension (10m x 25m) in study site I and (20m x 30m) in site II. The sample was randomly taken from each plot by using a quadrate measuring at (1 m2) in site I and (3m2) in site II; there were four quadrates in total of each site. The species richness (S), Shannon Index (H’) and Evenness Index (J’), vegetative measurements and physico-chemical parameters were calculated for each site. Seventeen gastropod species belonged to 11 families and six crab species under two families, which were collected in both study sites. Overall, in gastropod species, the highest relative abundance of Nerita planospira exhibited (53.45%, category C) with lower population density (1.61 individuals/m2), whichwas observed in study site II and for crab species, Parasesarma plicatum (83.33%, category C) with lower population density (0.33 individuals/m2). The diversity indices of gastropod species at the study site I was calculated higher indicating by (S= 12, H’= 2.27, J’ and SDI=0.91) compared to study site II (S= 7, H’= 1.22, J’ and SDI=0.63, 0.62). For the crabs, (S= 4, H’=1.33, J’ and SDI=0.96, 0.9) in study site I and (S= 2, H’=0.64, J’ and SDI=0.92, 0.67) in site II. Overall, the higher species diversity indices of study site I can be categorized “very equally” with a very good category according to evenness criteria (>0.81). This can be gained by increasing restoration sites through an ecotourism replanting program for achieving the goals of sustainable development for mangrove conservation and long-term studies are required to confirm this hypothesis.Keywords: biodiversity, ecotourism, restoration, population
Procedia PDF Downloads 1236159 Hydrogeological Appraisal of Karacahisar Coal Field (Western Turkey): Impacts of Mining on Groundwater Resources Utilized for Water Supply
Authors: Sukran Acikel, Mehmet Ekmekci, Otgonbayar Namkhai
Abstract:
Lignite coal fields in western Turkey generally occurs in tensional Neogene basins bordered by major faults. Karacahisar coal field in Mugla province of western Turkey is a large Neogene basin filled with alternation of silisic and calcerous layers. The basement of the basin is composed of mainly karstified carbonate rocks of Mesozoic and schists of Paleozoic age. The basement rocks are exposed at highlands surrounding the basin. The basin fill deposits forms shallow, low yield and local aquifers whereas karstic carbonate rock masses forms the major aquifer in the region. The karstic aquifer discharges through a spring zone issuing at intersection of two major faults. Municipal water demand in Bodrum city, a touristic attraction area is almost totally supplied by boreholes tapping the karstic aquifer. A well field has been constructed on the eastern edge of the coal basin, which forms a ridge separating two Neogene basins. A major concern was raised about the plausible impact of mining activities on groundwater system in general and on water supply well field in particular. The hydrogeological studies carried out in the area revealed that the coal seam is located below the groundwater level. Mining operations will be affected by groundwater inflow to the pits, which will require dewatering measures. Dewatering activities in mine sites have two-sided effects: a) lowers the groundwater level at and around the pit for a safe and effective mining operation, b) continuous dewatering causes expansion of cone of depression to reach a spring, stream and/or well being utilized by local people, capturing their water. Plausible effect of mining operations on the flow of the spring zone was another issue of concern. Therefore, a detailed representative hydrogeological conceptual model of the site was developed on the basis of available data and field work. According to the hydrogeological conceptual model, dewatering of Neogene layers will not hydraulically affect the water supply wells, however, the ultimate perimeter of the open pit will expand to intersect the well field. According to the conceptual model, the coal seam is separated from the bottom by a thick impervious clay layer sitting on the carbonate basement. Therefore, the hydrostratigraphy does not allow a hydraulic interaction between the mine pit and the karstic carbonate rock aquifer. However, the structural setting in the basin suggests that deep faults intersecting the basement and the Neogene sequence will most probably carry the deep groundwater up to a level above the bottom of the pit. This will require taking necessary measure to lower the piezometric level of the carbonate rock aquifer along the faults. Dewatering the carbonate rock aquifer will reduce the flow to the spring zone. All findings were put together to recommend a strategy for safe and effective mining operation.Keywords: conceptual model, dewatering, groundwater, mining operation
Procedia PDF Downloads 4006158 Study of Sub-Surface Flow in an Unconfined Carbonate Aquifer in a Tropical Karst Area in Indonesia: A Modeling Approach Using Finite Difference Groundwater Model
Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas
Abstract:
Due to its porous nature, karst terrains – geomorphologically developed from dissolved formations, is vulnerable to water shortage and deteriorated water quality. Therefore, a solid comprehension on sub-surface flow of karst landscape is essential to assess the long-term availability of groundwater resources. In this paper, a single-continuum model using a finite difference model, MODLFOW, was constructed to represent an unconfined carbonate aquifer in a tropical karst island of Rote in Indonesia. The model, spatially discretized in 20 x 20 m grid cells, was calibrated and validated using available groundwater level and atmospheric variables. In the calibration and validation steps, Parameter Estimation (PEST) and geostatistical pilot point methods were employed to estimate hydraulic conductivity and specific yield values. The results show that the model is able to represent the sub-surface flow indicated by good model performances both in calibration and validation steps. The final model can be used as a robust representation of the system for future study on climate and land use scenarios.Keywords: carbonate aquifer, karst, sub-surface flow, groundwater model
Procedia PDF Downloads 1486157 Modeling the Effects of Leachate-Impacted Groundwater on the Water Quality of a Large Tidal River
Authors: Emery Coppola Jr., Marwan Sadat, Il Kim, Diane Trube, Richard Kurisko
Abstract:
Contamination sites like landfills often pose significant risks to receptors like surface water bodies. Surface water bodies are often a source of recreation, including fishing and swimming, which not only enhances their value but also serves as a direct exposure pathway to humans, increasing their need for protection from water quality degradation. In this paper, a case study presents the potential effects of leachate-impacted groundwater from a large closed sanitary landfill on the surface water quality of the nearby Raritan River, situated in New Jersey. The study, performed over a two year period, included in-depth field evaluation of both the groundwater and surface water systems, and was supplemented by computer modeling. The analysis required delineation of a representative average daily groundwater discharge from the Landfill shoreline into the large, highly tidal Raritan River, with a corresponding estimate of daily mass loading of potential contaminants of concern. The average daily groundwater discharge into the river was estimated from a high-resolution water level study and a 24-hour constant-rate aquifer pumping test. The significant tidal effects induced on groundwater levels during the aquifer pumping test were filtered out using an advanced algorithm, from which aquifer parameter values were estimated using conventional curve match techniques. The estimated hydraulic conductivity values obtained from individual observation wells closely agree with tidally-derived values for the same wells. Numerous models were developed and used to simulate groundwater contaminant transport and surface water quality impacts. MODFLOW with MT3DMS was used to simulate the transport of potential contaminants of concern from the down-gradient edge of the Landfill to the Raritan River shoreline. A surface water dispersion model based upon a bathymetric and flow study of the river was used to simulate the contaminant concentrations over space within the river. The modeling results helped demonstrate that because of natural attenuation, the Landfill does not have a measurable impact on the river, which was confirmed by an extensive surface water quality study.Keywords: groundwater flow and contaminant transport modeling, groundwater/surface water interaction, landfill leachate, surface water quality modeling
Procedia PDF Downloads 2606156 Delineation of Fracture Zones for Investigation of Groundwater Potentials Using Vertical Electrical Sounding in a Sedimentary Complex Terrain
Authors: M. N. Yahaya, K. A. Salako, U. Z. Magawata
Abstract:
Vertical electrical sounding (VES) method was used to investigate the groundwater potential at the southern part of Gulumbe district, Kebbi State, north-western part of Nigeria. The study was carried out with the aim of determining the subsurface layer’s parameters (resistivity and thickness) and uses the same to characterize the groundwater potential of the study area. The Schlumberger configuration was used for data acquisition. A total number of thirty-three (33) sounding points (VES) were surveyed over six profiles. The software IPI2WIN was used to obtain n-layered geo-electric sections. The geo-electric section drawn from the results of the interpretation revealed that three subsurface layers could be delineated, which comprise of top soil, sand, sandstone, coarse sand, limestone, and gravelly sand. The results of the resistivity sounding were correlated with the lithological logs of nearby boreholes that expose cross-section geologic units around the study area. We found out that the area is dominated by three subsurface layers. The coarse sand layers constituted the aquifer zones in the majority of sounding stations. Thus, this present study concluded that the depth of any borehole in the study area should be located between the depth of 18.5 to 39 m. The study further classified the VES points penetrated based on their conductivity content as highly suitable, suitable, moderately suitably, and poor zones for groundwater exploration. Hence, from this research, we recommended that boreholes can be sited in high conductivity zones across VES 2, 11, 13, 16, 20, 21, 27, and 33, respectively.Keywords: vertical electrical sounding, resistivity, geo-electric, resistivity, aquifer and groundwater
Procedia PDF Downloads 1646155 Assessing Indicators, Challenges and Benefits of Sustainable Procurement in Construction Projects
Authors: Taha Anjamrooz, Sareh Rajabi, Salwa Bheiry
Abstract:
Procurement is a key process in construction project management. The present construction procurement practices have been extensively analyzed for disregarding sustainability in the project life cycle. Currently, there is a gap of information on status-quo of sustainable procurement in construction field. Thus, the aim of this study is to review sustainable procurement practices in the construction field. Disregard of three sustainability pillars is one of the major drawbacks of present construction procurement practices. Sustainable procurement is a developing idea that can enhance procurement practices and improve the sustainability performance of the construction projects. At present, sustainable procurement is still not entirely used in the construction projects. A comprehensive literature review indicated that the construction industry is still not entirely informed about the benefits and challenges of using sustainable procurement, and about important indicators that play major impacts on those benefits and challenges. This study assesses the major indicator, benefits and challenges encountered in applying sustainable procurement in the construction industry. In addition, this study investigates understanding of construction professionals on the benefits and challenges of utilizing sustainable procurement for construction projects through selected indicators that are categorized according to society and community needs.Keywords: sustainability, sustainable development, sustainable procurement, procurement, construction industry
Procedia PDF Downloads 1946154 Saline Water Transgression into Fresh Coastal Groundwater in the Confined Aquifer of Lagos, Nigeria
Authors: Babatunde Adebo, Adedeji Adetoyinbo
Abstract:
Groundwater is an important constituent of the hydrological cycle and plays a vital role in augmenting water supply to meet the ever-increasing needs of people for domestic, agricultural and industrial purposes. Unfortunately, this important resource has in most cases been contaminated due to the advancement of seawater into the fresh groundwater. This is due to the high volume of water being abstracted in these areas as a result of a high population of coastal dwellers. The knowledge of salinity level and intrusion of saltwater into the freshwater aquifer is, therefore, necessary for groundwater monitoring and prediction in the coastal areas. In this work, an advection-dispersion saltwater intrusion model is used to study and simulate saltwater intrusion in a typical coastal aquifer. The aquifer portion was divided into a grid with elements and nodes. Map of the study area indicating well locations were overlain on the grid system such that these locations coincide with the nodes. Chlorides at these well were considered as initial nodal salinities. Results showed a highest and lowest increase in simulated chloride of 37.89 mg/L and 0.8 mg/L respectively. It also revealed that the chloride concentration of most of the considered well might climb unacceptable level in the next few years, if the current abstraction rate continues unabated.Keywords: saltwater intrusion, coastal aquifer, nodal salinity, chloride concentration
Procedia PDF Downloads 2406153 Geochemical and Geostructural Characteristics of the Groundwater System and the Role of Faults in Groundwater Movement at the Hammamet Basin, Tebessa Area (Northeast of Algeria)
Authors: Iklass Hamaili, Fehdi Chemseddine
Abstract:
Morphostructural, hydrogeological and hydrochemical approaches were applied in this study to characterize the groundwater system of Hammamet Plain, Eastern part of Algeria and its potential for exploitation. The analysis of the fractures in several Mountains forming the natural boundaries of Hammamet plain, with faults of markedly different sizes and joints measured at 21 stations, demonstrate the presence of two principal directions of fractures (NNW-SSE and NNE-SSW). From a hydrogeological standpoint, these two mountains constitute a unit limited by faults-oriented ENE-WSW, NNW-SSE and NNE-SSW. Specifically, fractures of the latter two directions influence the compartmentalization and the hydrogeological functioning of this unit. According to the degree of fracturing and/or karstification, two basic types of aquiferous behavior have been distinguished: fissured aquifer (Essen Mountain and Troubia Mountain), and porous aquifer (Hammamet basin). After sampling and measurement operations, the quantity of chemical components was determined. Thus, the study of the hydrochemical characteristics of this groundwater shows on Piper’s diagram that the majority of them are mainly HCO₃- and Ca₂+ water types. The ionic speciation and mineral dissolution/precipitation were calculated by PHREEQC package software. The chemical composition of the water is influenced by the dissolution and/or precipitation processes during the water-rock interaction and by the cationic exchange reactions between groundwater and alluvial sediments. The high content of CO₂ in the water samples suggests that they circulate in a geochemical opened system.Keywords: aquifer, hydrogeology, hydrochemistry, Hammamet, Tebessa, Algeria
Procedia PDF Downloads 186152 Production and Recycling of Construction and Demolition Waste
Authors: Vladimira Vytlacilova
Abstract:
Recycling of construction and demolition waste (C&DW) and their new reuse in structures is one of the solutions of environmental problems. Construction and demolition waste creates a major portion of total solid waste production in the world and most of it is used in landfills all the time. The paper deals with the situation of the recycling of the building and demolition waste in the Czech Republic during the recent years. The paper is dealing with questions of C&D waste recycling, it also characterizes construction and demolition waste in general, furthermore it analyses production of construction waste and subsequent production of recycled materials.Keywords: Recycling, Construction and demolition waste, Recycled rubble, Waste management
Procedia PDF Downloads 3036151 Life Cycle Assessment of Mass Timber Structure, Construction Process as System Boundary
Authors: Mahboobeh Hemmati, Tahar Messadi, Hongmei Gu
Abstract:
Today, life cycle assessment (LCA) is a leading method in mitigating the environmental impacts emerging from the building sector. In this paper, LCA is used to quantify the Green House Gas (GHG) emissions during the construction phase of the largest mass timber residential structure in the United States, Adohi Hall. This building is a 200,000 square foot 708-bed complex located on the campus of the University of Arkansas. The energy used for buildings’ operation is the most dominant source of emissions in the building industry. Lately, however, the efforts were successful at increasing the efficiency of building operation in terms of emissions. As a result, the attention is now shifted to the embodied carbon, which is more noticeable in the building life cycle. Unfortunately, most of the studies have, however, focused on the manufacturing stage, and only a few have addressed to date the construction process. Specifically, less data is available about environmental impacts associated with the construction of mass timber. This study presents, therefore, an assessment of the environmental impact of the construction processes based on the real and newly built mass timber building mentioned above. The system boundary of this study covers modules A4 and A5 based on building LCA standard EN 15978. Module A4 includes material and equipment transportation. Module A5 covers the construction and installation process. This research evolves through 2 stages: first, to quantify materials and equipment deployed in the building, and second, to determine the embodied carbon associated with running equipment for construction materials, both transported to, and installed on, the site where the edifice is built. The Global Warming Potential (GWP) of the building is the primary metric considered in this research. The outcomes of this study bring to the front a better understanding of hotspots in terms of emission during the construction process. Moreover, the comparative analysis of the mass timber construction process with that of a theoretically similar steel building will enable an effective assessment of the environmental efficiency of mass timber.Keywords: construction process, GWP, LCA, mass timber
Procedia PDF Downloads 1666150 An Assessment of Floodplain Vegetation Response to Groundwater Changes Using the Soil & Water Assessment Tool Hydrological Model, Geographic Information System, and Machine Learning in the Southeast Australian River Basin
Authors: Newton Muhury, Armando A. Apan, Tek N. Marasani, Gebiaw T. Ayele
Abstract:
The changing climate has degraded freshwater availability in Australia that influencing vegetation growth to a great extent. This study assessed the vegetation responses to groundwater using Terra’s moderate resolution imaging spectroradiometer (MODIS), Normalised Difference Vegetation Index (NDVI), and soil water content (SWC). A hydrological model, SWAT, has been set up in a southeast Australian river catchment for groundwater analysis. The model was calibrated and validated against monthly streamflow from 2001 to 2006 and 2007 to 2010, respectively. The SWAT simulated soil water content for 43 sub-basins and monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) were applied in the machine learning tool, Waikato Environment for Knowledge Analysis (WEKA), using two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The assessment shows that different types of vegetation response and soil water content vary in the dry and wet seasons. The WEKA model generated high positive relationships (r = 0.76, 0.73, and 0.81) between NDVI values of all vegetation in the sub-basins against soil water content (SWC), the groundwater flow (GW), and the combination of these two variables, respectively, during the dry season. However, these responses were reduced by 36.8% (r = 0.48) and 13.6% (r = 0.63) against GW and SWC, respectively, in the wet season. Although the rainfall pattern is highly variable in the study area, the summer rainfall is very effective for the growth of the grass vegetation type. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater
Procedia PDF Downloads 1016149 Interactive Planning of Suburban Apartment Buildings
Authors: J. Koiso-Kanttila, A. Soikkeli, A. Aapaoja
Abstract:
Construction in Finland is focusing increasingly on renovation instead of conventional new construction, and this trend will continue to grow in the coming years and decades. Renovation of the large number of suburban residential apartment buildings built in the 1960s and 1970s poses a particular challenge. However, renovation projects are demanding for the residents of these buildings, since they usually are uninitiated in construction issues. On the other hand, renovation projects generally apply the operating models of new construction. Nevertheless, the residents of an existing residential apartment building are some of the best experts on the site. Thus, in this research project we applied a relational model in developing and testing at case sites a planning process that employs interactive planning methods. Current residents, housing company managers, the city zoning manager, the contractor’s and prefab element supplier’s representatives, professional designers and researchers all took part in the planning. The entire interactive planning process progressed phase by phase as the participants’ and designers’ concerted discussion and ideation process, so that the end result was a renovation plan desired by the residents.Keywords: apartment building renovation, interactive planning, project alliance, user-orientedness
Procedia PDF Downloads 3856148 Physicochemical and Bacteriological Assessment of Water Resources in Ughelli and Its Environs, Delta State Nigeria
Authors: M. O. Eyankware, D. O. Ufomata
Abstract:
Groundwater samples were collected from Otovwodo-Ughelli and Environ with the aim of assessing groundwater quality of the area. Twenty (20) water samples from Boreholes (BH) (six) and Hand Dug Wells (HDW) (fourteen) were randomly sampled and were analysed for different physiochemical and bacteriological parameters. The following 16 parameters have been considered viz: pH, electrical conductivity, temperature, total hardness, total dissolved solids, dissolved oxygen, biological oxygen demand, phosphate, sulphate, chloride, nitrate, calcium, sodium, chloride, magnesium, and total suspended solids. On comparing the results against drinking quality standards laid by World Health Organization and Nigeria industrial standard, it was found that the water quality parameters were not above the (WHO, 2011 and NIS, 2007) permissible limit. Microbial analysis reveals the presence of coliform and E.coli in two hand-dug well (HDW7 and 13) and one borehole well (BH20). These contaminations are perhaps traceable to have originated from human activities (septic tanks, latrines, dumpsites) and have affected the quality of groundwater in Otovwodo-Ughelli. From the piper trilinear diagram, the dominant ionic species is alkali bicarbonate water type, with bicarbonate as the predominant ion (Na+ + K+)-HCO3.Keywords: groundwater, surface water, Ughelli, Nigeria industrial standard, who standard
Procedia PDF Downloads 4446147 Developing an Interpretive Plan for Qubbet El-Hawa North Archaeological Site in Aswan, Egypt
Authors: Osama Amer Mohyeldin Mohamed
Abstract:
Qubbet el-Hawa North (QHN) is an example of an archaeological site in West-Aswan and It has not opened to the public yet and has been under excavation since its discovery in 2013 as a result of the illegal digging that happened in many sites in Egypt because of the unstable situation and the absence of security. The site has the potential to be one of the most attractive sites in Aswan. Moreover, it deserves to be introduced to the visitors in a good manner appropriate to its great significance. Both interpretation and presentation are crucial inseparable tools that communicate the archaeological site's significance to the public and raise their awareness. Moreover, it helps them to understand the past and appreciate archaeological assets. People will never learn or see anything from ancient remains unless it is explained. They would only look at it as ancient and charming. They expect a story, and more than knowledge, authenticity, or even supporting preservation actions, they want to enjoy and be entertained. On the other hand, a lot of archaeologists believe that planning an archaeological site for entertaining visitors deteriorates it and affects its authenticity. Thus, it represents a challenge to design a model for visitors’ experience that meets their expectations and needs while safeguarding the site’s integrity. The article presents a proposal for an interpretation plan for the site of Qubbet el-Hawa North.Keywords: heritage interpretation and presentation, archaeological site management, qubbet el-hawa North, local community engagement, accessibility
Procedia PDF Downloads 286146 An Insight Into the Effective Distribution of Lineaments Over Sheared Terrains to Hydraulically Characterize the Shear Zones in Hard Rock Aquifer System
Authors: Tamal Sur, Tapas Acharya
Abstract:
Identifying the water resource in hard crystalline rock terrain has been a huge challenge over the decades as it is considered a poor groundwater province area. Over the years, usage of satellite imagery for the delineation of groundwater potential zone in sheared hard rock terrain has been occasionally successful. In numerous circumstances, it has been observed that groundwater potential zone delineated by satellite imagery study has failed to yield satisfactory result on its own. The present study discusses the fact that zones having a high concentration of lineaments oblique to the general trend of shear fabric could be good groundwater potential zones within a shear zone in crystalline fractured rock aquifer system. Due to this fact, the density of lineaments and the number of intersecting lineaments increases over that particular region, making it a suitable locale for good groundwater recharge, which is mostly composed of Precambrian metamorphic rocks i.e., quartzite, granite gneisses, porphyroclastic granite-gneiss, quartzo-feldspathic-granite-gneiss, mylonitic granites, quartz-biotite-granite gneiss and some phyllites of Purulia district of West Bengal, NE India. This study aims to construct an attempt to demonstrate the relationship of the high amount of lineament accumulation and their intersection with high groundwater fluctuation zones, i.e., good groundwater potential zones. On the basis of that, an effort has been made to characterize the shear zones with respect to their groundwater potentiality. Satellite imagery data (IRS-P6 LISS IV standard FCC image) analysis reveals the bifurcating nature of North Purulia shear zone (NPSZ) and South Purulia shear zone (SPSZ) over the study area. Careful analysis of lineament rose diagrams, lineament density map, lineament intersection density map, and frequency diagrams for water table depths with an emphasis on high water table fluctuations exhibit the fact that different structural features existing over North and South Purulia shear zones can affect the nature of hydraulic potential of that region.Keywords: crystalline hard rock terrain, groundwater recharge, hydrogeology, lineaments, shear zone, water table fluctuation
Procedia PDF Downloads 876145 Hydrogeophysical Investigations And Mapping of Ingress Channels Along The Blesbokspruit Stream In The East Rand Basin Of The Witwatersrand, South Africa
Authors: Melvin Sethobya, Sithule Xanga, Sechaba Lenong, Lunga Nolakana, Gbenga Adesola
Abstract:
Mining has been the cornerstone of the South African economy for the last century. Most of the gold mining in South Africa was conducted within the Witwatersrand basin, which contributed to the rapid growth of the city of Johannesburg and capitulated the city to becoming the business and wealth capital of the country. But with gradual depletion of resources, a stoppage in the extraction of underground water from mines and other factors relating to survival of the mining operations over a lengthy period, most of the mines were abandoned and left to pollute the local waterways and groundwater with toxins, heavy metal residue and increased acid mine drainage ensued. The Department of Mineral Resources and Energy commissioned a project whose aim is to monitor, maintain, and mitigate the adverse environmental impacts of polluted water mine water flowing into local streams affecting local ecosystems and livelihoods downstream. As part of mitigation efforts, the diagnosis and monitoring of groundwater or surface water polluted sites has become important. Geophysical surveys, in particular, Resistivity and Magnetics surveys, were selected as some of most suitable techniques for investigation of local ingress points along of one the major streams cutting through the Witwatersrand basin, namely the Blesbokspruit, which is found in the eastern part of the basin. The aim of the surveys was to provide information that could be used to assist in determining possible water loss/ ingress from the Blesbokspriut stream. Modelling of geophysical surveys results offered an in-depth insight into the interaction and pathways of polluted water through mapping of possible ingress channels near the Blesbokspruit. The resistivity - depth profile of the surveyed site exhibit a three(3) layered model with low resistivity values (10 to 200 Ω.m) overburden, which is underlain by a moderate resistivity weathered layer (>300 Ω.m), which sits on a more resistive crystalline bedrock (>500 Ω.m). Two locations of potential ingress channels were mapped across the two traverses at the site. The magnetic survey conducted at the site mapped a major NE-SW trending regional linearment with a strong magnetic signature, which was modeled to depth beyond 100m, with the potential to act as a conduit for dispersion of stream water away from the stream, as it shared a similar orientation with the potential ingress channels as mapped using the resistivity method.Keywords: eletrictrical resistivity, magnetics survey, blesbokspruit, ingress
Procedia PDF Downloads 636144 Using Vertical Electrical Soundings Data to Investigate and Assess Groundwater Resources for Irrigation in the Canal Command Area
Authors: Vijaya Pradhan, S. M. Deshpande, D. G. Regulwar
Abstract:
Intense hydrogeological research has been prompted by the rising groundwater demand in typical hard rock terrain. In the current study, groundwater resources for irrigation in the canal command of the Jayakwadi Reservoir in the Indian state of Maharashtra are located using Vertical Electrical Soundings (VES). A Computer Resistivity Monitor is used to monitor the geoelectric field (CRM). Using Schlumberger setups, the investigation was carried out at seven different places in the region. Plotting of the sounding curves is the outcome of the data processing. The underlying layers and groundwater potential in the research region have been examined by analyzing these curves using curve-matching techniques, also known as partial curve matching. IPIWin2 is used to examine the relationship between resistivity and electrode spacing. The resistivity value in a geological formation is significantly reduced when groundwater is present. Up to a depth of 35 meters, the resistivity readings are minimal; beyond that, they continuously increase, suggesting a lack of water in deeper strata. As a result, the wells may only receive water up to a depth of 35 meters. In addition, the trap may occasionally fracture at deeper depths, retaining a limited amount of water in the cracks and producing a low yield. According to the findings, weathered basalt or soil make up the top layer (5–10 m), which is followed by a layer of amygdaloidal basalt (10–35 m) that is somewhat cracked and either hard basalt or compact basalt underneath.Keywords: vertical electrical soundings (VES), resistivity, electrode spacing, Schlumberger configurations, partial curve matching.
Procedia PDF Downloads 23