Search results for: robust and damaged structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9412

Search results for: robust and damaged structure

9412 Analysis of Steel Beam-Column Joints Under Seismic Loads

Authors: Mizam Doğan

Abstract:

Adapazarı railway car factory, the only railway car factory of Turkey, was constructed in 1950. It was a steel design and it had filled beam sections and truss beam systems. Columns were steel profiles and box sections. The factory was damaged heavily on Izmit Earthquake and closed. In this earthquake 90% of damaged structures are reinforced concrete, the others are %7 prefabricated and 3% steel construction. As can be seen in statistical data, damaged industrial buildings in this earthquake were generally reinforced concrete and prefabricated structures. Adapazari railway car factory is the greatest steel structure damaged in the earthquake. This factory has 95% of the total damaged steel structure area. In this paper; earthquake damages on beams and columns of the factory are studied by considering TS648 'Turkish Standard Building Code for Steel Structures' and also damaged connection elements as welds, rivets and bolts are examined. A model similar to the damaged system is made and high-stress zones are searched. These examinations, conclusions, suggestions are explained by damage photos and details.

Keywords: column-beam connection, seismic analysis, seismic load, steel structure

Procedia PDF Downloads 277
9411 Comparison of Reserve Strength Ratio and Capacity Curve Parameters of Offshore Platforms with Distinct Bracing Arrangements

Authors: Aran Dezhban, Hooshang Dolatshahi Pirooz

Abstract:

The phenomenon of corrosion, especially in the Persian Gulf region, is the main cause of the deterioration of offshore platforms, due to the high corrosion of its water. This phenomenon occurs mostly in the area of water spraying, threatening the members of the first floor of the jacket, legs, and piles in this area. In the current study, the effect of bracing arrangement on the Capacity Curve and Reserve Strength Ratio of Fixed-Type Offshore Platforms is investigated. In order to continue the operation of the platform, two modes of robust and damaged structures are considered, while checking the adequacy of the platform capacity based on the allowable values of API RP-2SIM regulations. The platform in question is located in the Persian Gulf, which is modeled on the OpenSEES software. In this research, the Nonlinear Pushover Analysis has been used. After validation, the Capacity Curve of the studied platforms is obtained and then their Reserve Strength Ratio is calculated. Results are compared with the criteria in the API-2SIM regulations.

Keywords: fixed-type jacket structure, structural integrity management, nonlinear pushover analysis, robust and damaged structure, reserve strength ration, capacity curve

Procedia PDF Downloads 115
9410 Strengthening of Concrete Slabs with Steel Beams

Authors: Mizam Doğan

Abstract:

In service life; structures can be damaged if they are subjected to dead and live loads which are greater than design values. For preventing this case; possible loads must be correctly calculated, structure must be designed according to determined loads, and structure must not be used out of its function. If loading case of the structure changes when its function changes; it must be reinforced for continuing it is new function. Reinforcement is a process that is made by increasing the existing strengths of structural system elements of the structure as reinforced concrete walls, beams, and slabs. Reinforcement can be done by casting reinforced concrete, placing steel and fiber structural elements. In this paper, reinforcing of columns and slabs of a structure of which function is changed is studied step by step. This reinforcement is made for increasing vertical and lateral load carrying capacity of the building. Not for repairing damaged structural system.

Keywords: strengthening, RC slabs, seismic load, steel beam, structural irregularity

Procedia PDF Downloads 260
9409 Design of Structural Health Monitoring System for a Damaged Reinforced Concrete Bridge

Authors: Muhammad Fawad

Abstract:

Monitoring and structural health assessment are the primary requirements for the performance evaluation of damaged bridges. This paper highlights the case study of a damaged Reinforced Concrete (RC) bridge structure where the Finite element (FE) modelling of this structure was done using the material properties extracted by the in-situ testing. Analysis was carried out to evaluate the bridge damage. On the basis of FE analysis results, this study proposes a proper Structural Health Monitoring (SHM) system that will extend the life cycle of the bridge with minimal repair costs and reduced risk of failure. This system is based on the installation of three different types of sensors: Liquid Levelling sensors (LLS) for measurement of vertical displacement, Distributed Fiber Optic Sensors (DFOS) for crack monitoring, and Weigh in Motion (WIM) devices for monitoring of moving loads on the bridge.

Keywords: bridges, reinforced concrete, finite element method, structural health monitoring, sensors

Procedia PDF Downloads 105
9408 Urban Search, Rescue and Rapid Field Assessment of Damaged and Collapsed Building Structures

Authors: Abid I. Abu-Tair, Gavin M. Wilde, John M. Kinuthia

Abstract:

Urban Search and Rescue (USAR) is a functional capability that has been developed to allow the United Kingdom Fire and Rescue Service to deal with ‘major incidents’ primarily involving structural collapse. The nature of the work undertaken by USAR means that staying out of a damaged or collapsed building structure is not usually an option for search and rescue personnel. As a result, there is always a risk that they could become victims. For this paper, a systematic and investigative review using desk research was undertaken to explore the role which structural engineering can play in assisting search and rescue personnel to conduct structural assessments when in the field. The focus is on how search and rescue personnel can assess damaged and collapsed building structures, not just in terms of the structural damage that may be countered, but also in relation to structural stability. Natural disasters, accidental emergencies, acts of terrorism and other extreme events can vary significantly in nature and ferocity, and can cause a wide variety of damage to building structures. It is not possible or, even realistic, to provide search and rescue personnel with definitive guidelines and procedures to assess damaged and collapsed building structures as there are too many variables to consider. However, understanding what implications damage may have upon the structural stability of a building structure will enable search and rescue personnel to judge better and quantify the risk from a life-safety standpoint. It is intended that this will allow search and rescue personnel to make informed decisions and ensure every effort is made to mitigate risk so that they do not become victims.

Keywords: damaged and collapsed building structures, life safety, quantifying risk, search and rescue personnel, structural assessments in the field

Procedia PDF Downloads 393
9407 Experimental Investigation of Damaged Reinforced Concrete Beams Repaired with Carbon Fibre Reinforced Polymer (CFRP) Strip under Impact Loading

Authors: M. Al-Farttoosi, M. Y. Rafiq, J. Summerscales, C. Williams

Abstract:

Many buildings and bridges are damaged due to impact loading, explosions, terrorist attacks and wars. Most of the damaged structures members such as beams, columns and slabs are not totally failed and it can be repaired. Nowadays, carbon fibre reinforced polymer CFRP has been wildly used in strengthening and retrofitting the structures members. CFRP can rector the load carrying capacity of the damaged structures members to make them serviceable. An experimental investigation was conducted to investigate the impact behaviour of the damaged beams repaired with CFRP. The tested beams had different degrees of damage and near surface mounted technique NSM was used to install the CFRP. A heavy drop weight impact test machine was used to conduct the experimental work. The study investigated the impact strength, stiffness, cracks and deflection of the CFRP repaired beams. The results show that CFRP significantly increased the impact resistance of the damaged beams. CFRP increased the damaged beams stiffness and reduced the deflection. The results showed that the NSM technique is more effective in repairing beams and preventing the debonding of the CFRP.

Keywords: damaged, concrete, impact, repaired

Procedia PDF Downloads 344
9406 Structural Health Monitoring and Damage Structural Identification Using Dynamic Response

Authors: Reza Behboodian

Abstract:

Monitoring the structural health and diagnosing their damage in the early stages has always been one of the topics of concern. Nowadays, research on structural damage detection methods based on vibration analysis is very extensive. Moreover, these methods can be used as methods of permanent and timely inspection of structures and prevent further damage to structures. Non-destructive methods are the low-cost and economical methods for determining the damage of structures. In this research, a non-destructive method for detecting and identifying the failure location in structures based on dynamic responses resulting from time history analysis is proposed. When the structure is damaged due to the reduction of stiffness, and due to the applied loads, the displacements in different parts of the structure were increased. In the proposed method, the damage position is determined based on the calculation of the strain energy difference in each member of the damaged structure and the healthy structure at any time. Defective members of the structure are indicated by the amount of strain energy relative to the healthy state. The results indicated that the proper accuracy and performance of the proposed method for identifying failure in structures.

Keywords: failure, time history analysis, dynamic response, strain energy

Procedia PDF Downloads 133
9405 Deformation Characteristics of Fire Damaged and Rehabilitated Normal Strength Concrete Beams

Authors: Yeo Kyeong Lee, Hae Won Min, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin

Abstract:

Fire incidents have been steadily increased over the last year according to national emergency management agency of South Korea. Even though most of the fire incidents with property damage have been occurred in building, rehabilitation has not been properly done with consideration of structure safety. Therefore, this study aims at evaluating rehabilitation effects on fire damaged normal strength concrete beams through experiments and finite element analyses. For the experiments, reinforced concrete beams were fabricated having designed concrete strength of 21 MPa. Two different cover thicknesses were used as 40 mm and 50 mm. After cured, the fabricated beams were heated for 1hour or 2hours according to ISO-834 standard time-temperature curve. Rehabilitation was done by removing the damaged part of cover thickness and filling polymeric mortar into the removed part. Both fire damaged beams and rehabilitated beams were tested with four point loading system to observe structural behaviors and the rehabilitation effect. To verify the experiment, finite element (FE) models for structural analysis were generated using commercial software ABAQUS 6.10-3. For the rehabilitated beam models, integrated temperature-structural analyses were performed in advance to obtain geometries of the fire damaged beams. In addition to the fire damaged beam models, rehabilitated part was added with material properties of polymeric mortar. Three dimensional continuum brick elements were used for both temperature and structural analyses. The same loading and boundary conditions as experiments were implemented to the rehabilitated beam models and non-linear geometrical analyses were performed. Test results showed that maximum loads of the rehabilitated beams were 8~10% higher than those of the non-rehabilitated beams and even 1~6 % higher than those of the non-fire damaged beam. Stiffness of the rehabilitated beams were also larger than that of non-rehabilitated beams but smaller than that of the non-fire damaged beams. In addition, predicted structural behaviors from the analyses also showed good rehabilitation effect and the predicted load-deflection curves were similar to the experimental results. From this study, both experiments and analytical results demonstrated good rehabilitation effect on the fire damaged normal strength concrete beams. For the further, the proposed analytical method can be used to predict structural behaviors of rehabilitated and fire damaged concrete beams accurately without suffering from time and cost consuming experimental process.

Keywords: fire, normal strength concrete, rehabilitation, reinforced concrete beam

Procedia PDF Downloads 508
9404 Synthesis of the Robust Regulators on the Basis of the Criterion of the Maximum Stability Degree

Authors: S. A. Gayvoronsky, T. A. Ezangina

Abstract:

The robust control system objects with interval-undermined parameters is considers in this paper. Initial information about the system is its characteristic polynomial with interval coefficients. On the basis of coefficient estimations of quality indices and criterion of the maximum stability degree, the methods of synthesis of a robust regulator parametric is developed. The example of the robust stabilization system synthesis of the rope tension is given in this article.

Keywords: interval polynomial, controller synthesis, analysis of quality factors, maximum degree of stability, robust degree of stability, robust oscillation, system accuracy

Procedia PDF Downloads 302
9403 Overview and Post Damage Analysis of Nepal Earthquake 2015

Authors: Vipin Kumar Singhal, Rohit Kumar Mittal, Pavitra Ranjan Maiti

Abstract:

Damage analysis is one of the preliminary activities to be done after an earthquake so as to enhance the seismic building design technologies and prevent similar type of failure in future during earthquakes. This research article investigates the damage pattern and most probable reason of failure by observing photographs of seven major buildings collapsed/damaged which were evenly spread over the region during Mw7.8, Nepal earthquake 2015 followed by more than 400 aftershocks of Mw4 with one aftershock reaching a magnitude of Mw7.3. Over 250,000 buildings got damaged, and more than 9000 people got injured in this earthquake. Photographs of these buildings were collected after the earthquake and the cause of failure was estimated along with the severity of damage and comment on the reparability of structure has been made. Based on observations, it was concluded that the damage in reinforced concrete buildings was less compared to masonry structures. The number of buildings damaged was high near Kathmandu region due to high building density in that region. This type of damage analysis can be used as a cost effective and quick method for damage assessment during earthquakes.

Keywords: Nepal earthquake, damage analysis, damage assessment, damage scales

Procedia PDF Downloads 374
9402 Damage Localization of Deterministic-Stochastic Systems

Authors: Yen-Po Wang, Ming-Chih Huang, Ming-Lian Chang

Abstract:

A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective.

Keywords: damage locating vectors, deterministic-stochastic subspace system, shaking table tests, system identification

Procedia PDF Downloads 327
9401 Robust ANOVA: An Illustrative Study in Horticultural Crop Research

Authors: Dinesh Inamadar, R. Venugopalan, K. Padmini

Abstract:

An attempt has been made in the present communication to elucidate the efficacy of robust ANOVA methods to analyze horticultural field experimental data in the presence of outliers. Results obtained fortify the use of robust ANOVA methods as there was substantiate reduction in error mean square, and hence the probability of committing Type I error, as compared to the regular approach.

Keywords: outliers, robust ANOVA, horticulture, cook distance, type I error

Procedia PDF Downloads 390
9400 Investigation of Rehabilitation Effects on Fire Damaged High Strength Concrete Beams

Authors: Eun Mi Ryu, Ah Young An, Ji Yeon Kang, Yeong Soo Shin, Hee Sun Kim

Abstract:

As the number of fire incidents has been increased, fire incidents significantly damage economy and human lives. Especially when high strength reinforced concrete is exposed to high temperature due to a fire, deterioration occurs such as loss in strength and elastic modulus, cracking, and spalling of the concrete. Therefore, it is important to understand risk of structural safety in building structures by studying structural behaviors and rehabilitation of fire damaged high strength concrete structures. This paper aims at investigating rehabilitation effect on fire damaged high strength concrete beams using experimental and analytical methods. In the experiments, flexural specimens with high strength concrete are exposed to high temperatures according to ISO 834 standard time temperature curve. After heated, the fire damaged reinforced concrete (RC) beams having different cover thicknesses and fire exposure time periods are rehabilitated by removing damaged part of cover thickness and filling polymeric mortar into the removed part. From four-point loading test, results show that maximum loads of the rehabilitated RC beams are 1.8~20.9% higher than those of the non-fire damaged RC beam. On the other hand, ductility ratios of the rehabilitated RC beams are decreased than that of the non-fire damaged RC beam. In addition, structural analyses are performed using ABAQUS 6.10-3 with same conditions as experiments to provide accurate predictions on structural and mechanical behaviors of rehabilitated RC beams. For the rehabilitated RC beam models, integrated temperature–structural analyses are performed in advance to obtain geometries of the fire damaged RC beams. After spalled and damaged parts are removed, rehabilitated part is added to the damaged model with material properties of polymeric mortar. Three dimensional continuum brick elements are used for both temperature and structural analyses. The same loading and boundary conditions as experiments are implemented to the rehabilitated beam models and nonlinear geometrical analyses are performed. Structural analytical results show good rehabilitation effects, when the result predicted from the rehabilitated models are compared to structural behaviors of the non-damaged RC beams. In this study, fire damaged high strength concrete beams are rehabilitated using polymeric mortar. From four point loading tests, it is found that such rehabilitation is able to make the structural performance of fire damaged beams similar to non-damaged RC beams. The predictions from the finite element models show good agreements with the experimental results and the modeling approaches can be used to investigate applicability of various rehabilitation methods for further study.

Keywords: fire, high strength concrete, rehabilitation, reinforced concrete beam

Procedia PDF Downloads 445
9399 Investigation of Fire Damaged Reinforced Concrete Walls with Axial Force

Authors: Hyun Ah Yoon, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin

Abstract:

Reinforced concrete (RC) shear wall system of residential buildings is popular in South Korea. RC walls are subjected to axial forces in common and the effect of axial forces on the strength loss of the fire damaged walls has not been investigated. This paper aims at investigating temperature distribution on fire damaged concrete walls having different axial loads. In the experiments, a variable of specimens is axial force ratio. RC walls are fabricated with 150mm of wall thicknesses, 750mm of lengths and 1,300mm of heights having concrete strength of 24MPa. After curing, specimens are heated on one surface with ISO-834 standard time-temperature curve for 2 hours and temperature distributions during the test are measured using thermocouples inside the walls. The experimental results show that the temperature of the RC walls exposed to fire increases as axial force ratio increases. To verify the experiments, finite element (FE) models are generated for coupled temperature-structure analyses. The analytical results of thermal behaviors are in good agreement with the experimental results. The predicted displacement of the walls decreases when the axial force increases. 

Keywords: axial force ratio, fire, reinforced concrete wall, residual strength

Procedia PDF Downloads 461
9398 Using Atomic Force Microscope to Investigate the Influence of UVA Radiation and HA on Cell Behaviour and Elasticity of Dermal Fibroblasts

Authors: Pei-Hsiu Chiang, Ling Hong Huang, Hsin-I Chang

Abstract:

In this research, we used UVA irradiation, which can penetrate into dermis and fibroblasts, the most abundant cells in dermis, to investigate the effect of UV light on dermis, such as inflammation, ECM degradation and elasticity loss. Moreover, this research is focused on the influence of hyaluronic acid (HA) on UVA treated dermal fibroblasts. We aim to establish whether HA can effectively relief ECM degradation, and restore the elasticity of UVA-damaged fibroblasts. Prolonged exposure to UVA radiation can damage fibroblasts and led variation in cell morphology and reduction in cell viability. Besides, UVA radiation can induce IL-1β expression on fibroblasts and then promote MMP-1 and MMP-3 expression, which can accelerate ECM degradation. On the other hand, prolonged exposure to UVA radiation reduced collagen and elastin synthesis on fibroblasts. Due to the acceleration of ECM degradation and the reduction of ECM synthesis, Atomic force microscope (AFM) was used to analyze the elasticity reduction on UVA-damaged fibroblasts. UVA irradiation causes photoaging on fibroblasts. UVA damaged fibroblasts with HA treatment can down-regulate the gene expression of MMP-1, MMP-3, and then slow down ECM degradation. On the other hand, HA may restore elastin and collagen synthesis in UV-damaged fibroblasts. Based on the slowdown of ECM degradation, UVA-damaged fibroblast elasticity can be effectively restored by HA treatment. In summary, HA can relief the photoaging conditions on fibroblasts, but may not be able to return fibroblasts to normal, healthy state. Although HA cannot fully recover UVA-damaged fibroblasts, HA is still potential for repairing photoaging skin.

Keywords: atomic force microscope, hyaluronic acid, UVA radiation, dermal fibroblasts

Procedia PDF Downloads 391
9397 Quantitative Structure Activity Relationship Model for Predicting the Aromatase Inhibition Activity of 1,2,3-Triazole Derivatives

Authors: M. Ouassaf, S. Belaidi

Abstract:

Aromatase is an estrogen biosynthetic enzyme belonging to the cytochrome P450 family, which catalyzes the limiting step in the conversion of androgens to estrogens. As it is relevant for the promotion of tumor cell growth. A set of thirty 1,2,3-triazole derivatives was used in the quantitative structure activity relationship (QSAR) study using regression multiple linear (MLR), We divided the data into two training and testing groups. The results showed a good predictive ability of the MLR model, the models were statistically robust internally (R² = 0.982) and the predictability of the model was tested by several parameters. including external criteria (R²pred = 0.851, CCC = 0.946). The knowledge gained in this study should provide relevant information that contributes to the origins of aromatase inhibitory activity and, therefore, facilitates our ongoing quest for aromatase inhibitors with robust properties.

Keywords: aromatase inhibitors, QSAR, MLR, 1, 2, 3-triazole

Procedia PDF Downloads 115
9396 Magneto-Rheological Damper Based Semi-Active Robust H∞ Control of Civil Structures with Parametric Uncertainties

Authors: Vedat Senol, Gursoy Turan, Anders Helmersson, Vortechz Andersson

Abstract:

In developing a mathematical model of a real structure, the simulation results of the model may not match the real structural response. This is a general problem that arises during dynamic motion of the structure, which may be modeled by means of parameter variations in the stiffness, damping, and mass matrices. These changes in parameters need to be estimated, and the mathematical model is updated to obtain higher control performances and robustness. In this study, a linear fractional transformation (LFT) is utilized for uncertainty modeling. Further, a general approach to the design of an H∞ control of a magneto-rheological damper (MRD) for vibration reduction in a building with mass, damping, and stiffness uncertainties is presented.

Keywords: uncertainty modeling, structural control, MR Damper, H∞, robust control

Procedia PDF Downloads 138
9395 Robust Variable Selection Based on Schwarz Information Criterion for Linear Regression Models

Authors: Shokrya Saleh A. Alshqaq, Abdullah Ali H. Ahmadini

Abstract:

The Schwarz information criterion (SIC) is a popular tool for selecting the best variables in regression datasets. However, SIC is defined using an unbounded estimator, namely, the least-squares (LS), which is highly sensitive to outlying observations, especially bad leverage points. A method for robust variable selection based on SIC for linear regression models is thus needed. This study investigates the robustness properties of SIC by deriving its influence function and proposes a robust SIC based on the MM-estimation scale. The aim of this study is to produce a criterion that can effectively select accurate models in the presence of vertical outliers and high leverage points. The advantages of the proposed robust SIC is demonstrated through a simulation study and an analysis of a real dataset.

Keywords: influence function, robust variable selection, robust regression, Schwarz information criterion

Procedia PDF Downloads 139
9394 The Role of Bone Marrow Stem Cells Transplantation in the Repair of Damaged Inner Ear in Albino Rats

Authors: Ahmed Gaber Abdel Raheem, Nashwa Ahmed Mohamed

Abstract:

Introduction: Sensorineural hearing loss (SNHL) is largely caused by the degeneration of the cochlea. Therapeutic options for SNHL are limited to hearing aids and cochlear implants. The cell transplantation approach to the regeneration of hair cells has gained considerable attention because stem cells are believed to accumulate in the damaged sites and have the potential for the repair of damaged tissues. The aim of the work: was to assess the use of bone marrow transplantation in repair of damaged inner ear hair cells in rats after the damage had been inflicted by Amikacin injection. Material and Methods: Thirty albino rats were used in this study. They were divided into three groups. Each group ten rats. Group I: used as control. Group II: Were given Amikacin- intratympanic injection till complete loss of hearing function. This could be assessed by Distortion product Otoacoustic Emission (DPOAEs) and / or auditory brain stem evoked potential (ABR). GroupIII: were given intra-peritoneal injection of bone marrow stem cell after complete loss of hearing caused by Amikacin. Clinical assessment was done using DPOAEs and / or auditory brain stem evoked potential (ABR), before and after bone marrow injection. Histological assessment of the inner ear was done by light and electron microscope. Also, Detection of stem cells in the inner ear by immunohistochemistry. Results: Histological examination of the specimens showed promising improvement in the structure of cochlea that may be responsible for the improvement of hearing function in rats detected by DPOAEs and / or ABR. Conclusion: Bone marrow stem cells transplantation might be useful for the treatment of SNHL.

Keywords: amikacin, hair cells, sensorineural hearing loss, stem cells

Procedia PDF Downloads 449
9393 Numerical and Comparative Analysis between Two Composite Plates Notched in Different Shapes and Repaired by Composite

Authors: Amari Khaoula, Berrahou Mohamed

Abstract:

The topic of our article revolves around a numerical and comparative analysis between two notched Boron/epoxy plates that are U-shaped and the other V-shaped, cracked, and repaired by a rectangular patch of the same composite material; the finite element method was used for the analytical study and comparison of the results obtained for determining the optimal shape of notch which will give a longer life to the repair. In this context, we studied the variation of the stress intensity factor, the evolution of the damaged area, and the calculation of the ratio of the damaged area according to the crack length and the concentration of the Von Mises stresses as a function of the lengths of the paths. According to the results obtained, we conclude that the notch plate U is the optimal one than notch plate V because it has lower values either for the stress intensity factor (SIF), damaged area ratio (Dᵣ), or the Von Mises stresses.

Keywords: the notch U, the notch V, the finite element method FEM, comparison, rectangular patch, composite, stress intensity factor, damaged area ratio, Von Mises stresses

Procedia PDF Downloads 100
9392 Experimental Investigation on Tsunami Acting on Bridges

Authors: Iman Mazinani, Zubaidah Ismail, Ahmad Mustafa Hashim, Amir Reza Saba

Abstract:

Two tragic tsunamis that devastated the west coast of Sumatra Island, Indonesia in 2004 and North East Japan in 2011 had damaged bridges to various extents. Tsunamis have resulted in the catastrophic deterioration of infrastructures i.e. coastal structures, utilities and transportation facilities. A bridge structure performs vital roles to enable people to perform activities related to their daily needs and for development. A damaged bridge needs to be repaired expeditiously. In order to understand the effects of tsunami forces on bridges, experimental tests are carried out to measure the characteristics of hydrodynamic force at various wave heights. Coastal bridge models designed at a 1:40 scale are used in a 24.0 m long hydraulic flume with a cross section of 1.5 m by 2.0 m. The horizontal forces and uplift forces in all cases show that forces increase nonlinearly with increasing wave amplitude.

Keywords: tsunami, bridge, horizontal force, uplift force

Procedia PDF Downloads 305
9391 Study on Seismic Assessment of Earthquake-Damaged Reinforced Concrete Buildings

Authors: Fu-Pei Hsiao, Fung-Chung Tu, Chien-Kuo Chiu

Abstract:

In this work, to develop a method for detailed assesses of post-earthquake seismic performance for RC buildings in Taiwan, experimental data for several column specimens with various failure modes (flexural failure, flexural-shear failure, and shear failure) are used to derive reduction factors of seismic capacity for specified damage states. According to the damage states of RC columns and their corresponding seismic reduction factors suggested by experimental data, this work applies the detailed seismic performance assessment method to identify the seismic capacity of earthquake-damaged RC buildings. Additionally, a post-earthquake emergent assessment procedure is proposed that can provide the data needed for decision about earthquake-damaged buildings in a region with high seismic hazard. Finally, three actual earthquake-damaged school buildings in Taiwan are used as a case study to demonstrate application of the proposed assessment method.

Keywords: seismic assessment, seismic reduction factor, residual seismic ratio, post-earthquake, reinforced concrete, building

Procedia PDF Downloads 400
9390 Post-Earthquake Road Damage Detection by SVM Classification from Quickbird Satellite Images

Authors: Moein Izadi, Ali Mohammadzadeh

Abstract:

Detection of damaged parts of roads after earthquake is essential for coordinating rescuers. In this study, an approach is presented for the semi-automatic detection of damaged roads in a city using pre-event vector maps and both pre- and post-earthquake QuickBird satellite images. Damage is defined in this study as the debris of damaged buildings adjacent to the roads. Some spectral and texture features are considered for SVM classification step to detect damages. Finally, the proposed method is tested on QuickBird pan-sharpened images from the Bam City earthquake and the results show that an overall accuracy of 81% and a kappa coefficient of 0.71 are achieved for the damage detection. The obtained results indicate the efficiency and accuracy of the proposed approach.

Keywords: SVM classifier, disaster management, road damage detection, quickBird images

Procedia PDF Downloads 623
9389 Behavior of Steel Moment Frames Subjected to Impact Load

Authors: Hyungoo Kang, Minsung Kim, Jinkoo Kim

Abstract:

This study investigates the performance of a 2D and 3D steel moment frame subjected to vehicle collision at a first story column using LS-DYNA. The finite element models of vehicles provided by the National Crash Analysis Center (NCAC) are used for numerical analysis. Nonlinear dynamic time history analysis of the 2D and 3D model structures are carried out based on the arbitrary column removal scenario, and the vertical displacement of the damaged structures are compared with that obtained from collision analysis. The analysis results show that the model structure remains stable when the speed of the vehicle is 40km/h. However, at the speed of 80 and 120km/h both the 2D and 3D structures collapse by progressive collapse. The vertical displacement of the damaged joint obtained from collision analysis is significantly larger than the displacement computed based on the arbitrary column removal scenario.

Keywords: vehicle collision, progressive collapse, FEM, LS-DYNA

Procedia PDF Downloads 342
9388 Alternative Robust Estimators for the Shape Parameters of the Burr XII Distribution

Authors: Fatma Zehra Doğru, Olcay Arslan

Abstract:

In this paper, we propose alternative robust estimators for the shape parameters of the Burr XII distribution. We provide a small simulation study and a real data example to illustrate the performance of the proposed estimators over the ML and the LS estimators.

Keywords: burr xii distribution, robust estimator, m-estimator, least squares

Procedia PDF Downloads 428
9387 Variogram Fitting Based on the Wilcoxon Norm

Authors: Hazem Al-Mofleh, John Daniels, Joseph McKean

Abstract:

Within geostatistics research, effective estimation of the variogram points has been examined, particularly in developing robust alternatives. The parametric fit of these variogram points which eventually defines the kriging weights, however, has not received the same attention from a robust perspective. This paper proposes the use of the non-linear Wilcoxon norm over weighted non-linear least squares as a robust variogram fitting alternative. First, we introduce the concept of variogram estimation and fitting. Then, as an alternative to non-linear weighted least squares, we discuss the non-linear Wilcoxon estimator. Next, the robustness properties of the non-linear Wilcoxon are demonstrated using a contaminated spatial data set. Finally, under simulated conditions, increasing levels of contaminated spatial processes have their variograms points estimated and fit. In the fitting of these variogram points, both non-linear Weighted Least Squares and non-linear Wilcoxon fits are examined for efficiency. At all levels of contamination (including 0%), using a robust estimation and robust fitting procedure, the non-weighted Wilcoxon outperforms weighted Least Squares.

Keywords: non-linear wilcoxon, robust estimation, variogram estimation, wilcoxon norm

Procedia PDF Downloads 458
9386 Assessment of the Number of Damaged Buildings from a Flood Event Using Remote Sensing Technique

Authors: Jaturong Som-ard

Abstract:

The heavy rainfall from 3rd to 22th January 2017 had swamped much area of Ranot district in southern Thailand. Due to heavy rainfall, the district was flooded which had a lot of effects on economy and social loss. The major objective of this study is to detect flooding extent using Sentinel-1A data and identify a number of damaged buildings over there. The data were collected in two stages as pre-flooding and during flood event. Calibration, speckle filtering, geometric correction, and histogram thresholding were performed with the data, based on intensity spectral values to classify thematic maps. The maps were used to identify flooding extent using change detection, along with the buildings digitized and collected on JOSM desktop. The numbers of damaged buildings were counted within the flooding extent with respect to building data. The total flooded areas were observed as 181.45 sq.km. These areas were mostly occurred at Ban khao, Ranot, Takhria, and Phang Yang sub-districts, respectively. The Ban khao sub-district had more occurrence than the others because this area is located at lower altitude and close to Thale Noi and Thale Luang lakes than others. The numbers of damaged buildings were high in Khlong Daen (726 features), Tha Bon (645 features), and Ranot sub-district (604 features), respectively. The final flood extent map might be very useful for the plan, prevention and management of flood occurrence area. The map of building damage can be used for the quick response, recovery and mitigation to the affected areas for different concern organization.

Keywords: flooding extent, Sentinel-1A data, JOSM desktop, damaged buildings

Procedia PDF Downloads 192
9385 Erythrophagocytic Role of Mast Cells in vitro and in vivo during Oxidative Stress

Authors: Priyanka Sharma, Niti Puri

Abstract:

Anemia develops when blood lacks enough healthy erythrocytes. Past studies indicated that anemia, inflammatory process, and oxidative stress are interconnected. Erythrocytes are continuously exposed to reactive oxygen species (ROS) during circulation, due to normal aerobic cellular metabolism and also pathology of inflammatory diseases. Systemic mastocytosis and genetic depletion of mast cells have been shown to affect anaemia. In the present study, we attempted to reveal whether mast cells have a direct role in clearance or erythrophagocytosis of normal or oxidatively damaged erythrocytes. Murine erythrocytes were treated with tert-butyl hydroperoxidase (t-BHP), an agent that induces oxidative damage and mimics in vivo oxidative stress. Normal and oxidatively damaged erythrocytes were labeled with carboxyfluorescein succinimidyl ester (CFSE) to track erythrophagocytosis. We show, for the first time, direct erythrophagocytosis of oxidatively damaged erythrocytes in vitro by RBL-2H3 mast cells as well as in vivo by murine peritoneal mast cells. Also, activated mast cells, as may be present in inflammatory conditions, showed a significant increase in the uptake of oxidatively damaged erythrocytes than resting mast cells. This suggests the involvement of mast cells in erythrocyte clearance during oxidative stress or inflammatory disorders. Partial inhibition of phagocytosis by various inhibitors indicated that this process may be controlled by several pathways. Hence, our study provides important evidence for involvement of mast cells in severe anemia due to inflammation and oxidative stress and might be helpful to circumvent the adverse anemic disorders.

Keywords: mast cells, anemia, erythrophagocytosis, oxidatively damaged erythrocytes

Procedia PDF Downloads 254
9384 Attribute Index and Classification Method of Earthquake Damage Photographs of Engineering Structure

Authors: Ming Lu, Xiaojun Li, Bodi Lu, Juehui Xing

Abstract:

Earthquake damage phenomenon of each large earthquake gives comprehensive and profound real test to the dynamic performance and failure mechanism of different engineering structures. Cognitive engineering structure characteristics through seismic damage phenomenon are often far superior to expensive shaking table experiments. After the earthquake, people will record a variety of different types of engineering damage photos. However, a large number of earthquake damage photographs lack sufficient information and reduce their using value. To improve the research value and the use efficiency of engineering seismic damage photographs, this paper objects to explore and show seismic damage background information, which includes the earthquake magnitude, earthquake intensity, and the damaged structure characteristics. From the research requirement in earthquake engineering field, the authors use the 2008 China Wenchuan M8.0 earthquake photographs, and provide four kinds of attribute indexes and classification, which are seismic information, structure types, earthquake damage parts and disaster causation factors. The final object is to set up an engineering structural seismic damage database based on these four attribute indicators and classification, and eventually build a website providing seismic damage photographs.

Keywords: attribute index, classification method, earthquake damage picture, engineering structure

Procedia PDF Downloads 765
9383 Sustainability: Effect of Earthquake in Micro Hydro Sector, a Case Study of Micro Hydro Projects in Northern Part of Kavre District, Nepal

Authors: Ram Bikram Thapa, Ganesh Lama

Abstract:

The Micro Hydro is one of the successful technology in Rural Nepal. Kavre is one of the pioneer district of sustainability of Micro Hydro Projects. A total of 30 Micro Hydro projects have been constructed with producing 700 KW of energy in northern side of the Kavre district. This study shows that 67% of projects have been affected by devastating earthquake in April and May, 2015. Out of them 23% are completely damaged. Most of the structures are failure like Penstock 71%, forebay 21%, powerhouse 7% have been completely damaged and 91% Canal & 44% Intake structures have been partially damaged by the earthquake. This paper empathizes that the engineering design is the vital component for sustainability of Micro Hydro Projects. This paper recommended that technicians should be considered the safety factor of earthquake and provision of disaster recovery fund during design of Micro Hydro Projects.

Keywords: micro hydro, earthquake, structural failure, sustainability

Procedia PDF Downloads 348