Search results for: prior and posterior distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6891

Search results for: prior and posterior distribution

6891 New Estimation in Autoregressive Models with Exponential White Noise by Using Reversible Jump MCMC Algorithm

Authors: Suparman Suparman

Abstract:

A white noise in autoregressive (AR) model is often assumed to be normally distributed. In application, the white noise usually do not follows a normal distribution. This paper aims to estimate a parameter of AR model that has a exponential white noise. A Bayesian method is adopted. A prior distribution of the parameter of AR model is selected and then this prior distribution is combined with a likelihood function of data to get a posterior distribution. Based on this posterior distribution, a Bayesian estimator for the parameter of AR model is estimated. Because the order of AR model is considered a parameter, this Bayesian estimator cannot be explicitly calculated. To resolve this problem, a method of reversible jump Markov Chain Monte Carlo (MCMC) is adopted. A result is a estimation of the parameter AR model can be simultaneously calculated.

Keywords: autoregressive (AR) model, exponential white Noise, bayesian, reversible jump Markov Chain Monte Carlo (MCMC)

Procedia PDF Downloads 355
6890 Residual Lifetime Estimation for Weibull Distribution by Fusing Expert Judgements and Censored Data

Authors: Xiang Jia, Zhijun Cheng

Abstract:

The residual lifetime of a product is the operation time between the current time and the time point when the failure happens. The residual lifetime estimation is rather important in reliability analysis. To predict the residual lifetime, it is necessary to assume or verify a particular distribution that the lifetime of the product follows. And the two-parameter Weibull distribution is frequently adopted to describe the lifetime in reliability engineering. Due to the time constraint and cost reduction, a life testing experiment is usually terminated before all the units have failed. Then the censored data is usually collected. In addition, other information could also be obtained for reliability analysis. The expert judgements are considered as it is common that the experts could present some useful information concerning the reliability. Therefore, the residual lifetime is estimated for Weibull distribution by fusing the censored data and expert judgements in this paper. First, the closed-forms concerning the point estimate and confidence interval for the residual lifetime under the Weibull distribution are both presented. Next, the expert judgements are regarded as the prior information and how to determine the prior distribution of Weibull parameters is developed. For completeness, the cases that there is only one, and there are more than two expert judgements are both focused on. Further, the posterior distribution of Weibull parameters is derived. Considering that it is difficult to derive the posterior distribution of residual lifetime, a sample-based method is proposed to generate the posterior samples of Weibull parameters based on the Monte Carlo Markov Chain (MCMC) method. And these samples are used to obtain the Bayes estimation and credible interval for the residual lifetime. Finally, an illustrative example is discussed to show the application. It demonstrates that the proposed method is rather simple, satisfactory, and robust.

Keywords: expert judgements, information fusion, residual lifetime, Weibull distribution

Procedia PDF Downloads 142
6889 Bayesian Analysis of Change Point Problems Using Conditionally Specified Priors

Authors: Golnaz Shahtahmassebi, Jose Maria Sarabia

Abstract:

In this talk, we introduce a new class of conjugate prior distributions obtained from conditional specification methodology. We illustrate the application of such distribution in Bayesian change point detection in Poisson processes. We obtain the posterior distribution of model parameters using a general bivariate distribution with gamma conditionals. Simulation from the posterior is readily implemented using a Gibbs sampling algorithm. The Gibbs sampling is implemented even when using conditional densities that are incompatible or only compatible with an improper joint density. The application of such methods will be demonstrated using examples of simulated and real data.

Keywords: change point, bayesian inference, Gibbs sampler, conditional specification, gamma conditional distributions

Procedia PDF Downloads 189
6888 Novel Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we propose a novel inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multi-class. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.

Keywords: bayesian rule, gaussian process classification model with multiclass, gaussian process prior, human action classification, laplace approximation, variational EM algorithm

Procedia PDF Downloads 334
6887 An Estimating Parameter of the Mean in Normal Distribution by Maximum Likelihood, Bayes, and Markov Chain Monte Carlo Methods

Authors: Autcha Araveeporn

Abstract:

This paper is to compare the parameter estimation of the mean in normal distribution by Maximum Likelihood (ML), Bayes, and Markov Chain Monte Carlo (MCMC) methods. The ML estimator is estimated by the average of data, the Bayes method is considered from the prior distribution to estimate Bayes estimator, and MCMC estimator is approximated by Gibbs sampling from posterior distribution. These methods are also to estimate a parameter then the hypothesis testing is used to check a robustness of the estimators. Data are simulated from normal distribution with the true parameter of mean 2, and variance 4, 9, and 16 when the sample sizes is set as 10, 20, 30, and 50. From the results, it can be seen that the estimation of MLE, and MCMC are perceivably different from the true parameter when the sample size is 10 and 20 with variance 16. Furthermore, the Bayes estimator is estimated from the prior distribution when mean is 1, and variance is 12 which showed the significant difference in mean with variance 9 at the sample size 10 and 20.

Keywords: Bayes method, Markov chain Monte Carlo method, maximum likelihood method, normal distribution

Procedia PDF Downloads 356
6886 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset

Procedia PDF Downloads 353
6885 Fem Models of Glued Laminated Timber Beams Enhanced by Bayesian Updating of Elastic Moduli

Authors: L. Melzerová, T. Janda, M. Šejnoha, J. Šejnoha

Abstract:

Two finite element (FEM) models are presented in this paper to address the random nature of the response of glued timber structures made of wood segments with variable elastic moduli evaluated from 3600 indentation measurements. This total database served to create the same number of ensembles as was the number of segments in the tested beam. Statistics of these ensembles were then assigned to given segments of beams and the Latin Hypercube Sampling (LHS) method was called to perform 100 simulations resulting into the ensemble of 100 deflections subjected to statistical evaluation. Here, a detailed geometrical arrangement of individual segments in the laminated beam was considered in the construction of two-dimensional FEM model subjected to in four-point bending to comply with the laboratory tests. Since laboratory measurements of local elastic moduli may in general suffer from a significant experimental error, it appears advantageous to exploit the full scale measurements of timber beams, i.e. deflections, to improve their prior distributions with the help of the Bayesian statistical method. This, however, requires an efficient computational model when simulating the laboratory tests numerically. To this end, a simplified model based on Mindlin’s beam theory was established. The improved posterior distributions show that the most significant change of the Young’s modulus distribution takes place in laminae in the most strained zones, i.e. in the top and bottom layers within the beam center region. Posterior distributions of moduli of elasticity were subsequently utilized in the 2D FEM model and compared with the original simulations.

Keywords: Bayesian inference, FEM, four point bending test, laminated timber, parameter estimation, prior and posterior distribution, Young’s modulus

Procedia PDF Downloads 283
6884 Bayesian Estimation under Different Loss Functions Using Gamma Prior for the Case of Exponential Distribution

Authors: Md. Rashidul Hasan, Atikur Rahman Baizid

Abstract:

The Bayesian estimation approach is a non-classical estimation technique in statistical inference and is very useful in real world situation. The aim of this paper is to study the Bayes estimators of the parameter of exponential distribution under different loss functions and then compared among them as well as with the classical estimator named maximum likelihood estimator (MLE). In our real life, we always try to minimize the loss and we also want to gather some prior information (distribution) about the problem to solve it accurately. Here the gamma prior is used as the prior distribution of exponential distribution for finding the Bayes estimator. In our study, we also used different symmetric and asymmetric loss functions such as squared error loss function, quadratic loss function, modified linear exponential (MLINEX) loss function and non-linear exponential (NLINEX) loss function. Finally, mean square error (MSE) of the estimators are obtained and then presented graphically.

Keywords: Bayes estimator, maximum likelihood estimator (MLE), modified linear exponential (MLINEX) loss function, Squared Error (SE) loss function, non-linear exponential (NLINEX) loss function

Procedia PDF Downloads 384
6883 New Segmentation of Piecewise Moving-Average Model by Using Reversible Jump MCMC Algorithm

Authors: Suparman

Abstract:

This paper addresses the problem of the signal segmentation within a Bayesian framework by using reversible jump MCMC algorithm. The signal is modelled by piecewise constant Moving-Average (MA) model where the numbers of segments, the position of change-point, the order and the coefficient of the MA model for each segment are unknown. The reversible jump MCMC algorithm is then used to generate samples distributed according to the joint posterior distribution of the unknown parameters. These samples allow calculating some interesting features of the posterior distribution. The performance of the methodology is illustrated via several simulation results.

Keywords: piecewise, moving-average model, reversible jump MCMC, signal segmentation

Procedia PDF Downloads 227
6882 Application of Mathematical Models for Conducting Long-Term Metal Fume Exposure Assessments for Workers in a Shipbuilding Factory

Authors: Shu-Yu Chung, Ying-Fang Wang, Shih-Min Wang

Abstract:

To conduct long-term exposure assessments are important for workers exposed to chemicals with chronic effects. However, it usually encounters with several constrains, including cost, workers' willingness, and interference to work practice, etc., leading to inadequate long-term exposure data in the real world. In this study, an integrated approach was developed for conducting long-term exposure assessment for welding workers in a shipbuilding factory. A laboratory study was conducted to yield the fume generation rates under various operating conditions. The results and the measured environmental conditions were applied to the near field/far field (NF/FF) model for predicting long term fume exposures via the Monte Carlo simulation. Then, the predicted long-term concentrations were used to determine the prior distribution in Bayesian decision analysis (BDA). Finally, the resultant posterior distributions were used to assess the long-term exposure and serve as basis for initiating control strategies for shipbuilding workers. Results show that the NF/FF model was a suitable for predicting the exposures of metal contents containing in welding fume. The resultant posterior distributions could effectively assess the long-term exposures of shipbuilding welders. Welders' long-term Fe, Mn and Pb exposures were found with high possibilities to exceed the action level indicating preventive measures should be taken for reducing welders' exposures immediately. Though the resultant posterior distribution can only be regarded as the best solution based on the currently available predicting and monitoring data, the proposed integrated approach can be regarded as a possible solution for conducting long term exposure assessment in the field.

Keywords: Bayesian decision analysis, exposure assessment, near field and far field model, shipbuilding industry, welding fume

Procedia PDF Downloads 140
6881 Ensemble Sampler For Infinite-Dimensional Inverse Problems

Authors: Jeremie Coullon, Robert J. Webber

Abstract:

We introduce a Markov chain Monte Carlo (MCMC) sam-pler for infinite-dimensional inverse problems. Our sam-pler is based on the affine invariant ensemble sampler, which uses interacting walkers to adapt to the covariance structure of the target distribution. We extend this ensem-ble sampler for the first time to infinite-dimensional func-tion spaces, yielding a highly efficient gradient-free MCMC algorithm. Because our ensemble sampler does not require gradients or posterior covariance estimates, it is simple to implement and broadly applicable. In many Bayes-ian inverse problems, Markov chain Monte Carlo (MCMC) meth-ods are needed to approximate distributions on infinite-dimensional function spaces, for example, in groundwater flow, medical imaging, and traffic flow. Yet designing efficient MCMC methods for function spaces has proved challenging. Recent gradi-ent-based MCMC methods preconditioned MCMC methods, and SMC methods have improved the computational efficiency of functional random walk. However, these samplers require gradi-ents or posterior covariance estimates that may be challenging to obtain. Calculating gradients is difficult or impossible in many high-dimensional inverse problems involving a numerical integra-tor with a black-box code base. Additionally, accurately estimating posterior covariances can require a lengthy pilot run or adaptation period. These concerns raise the question: is there a functional sampler that outperforms functional random walk without requir-ing gradients or posterior covariance estimates? To address this question, we consider a gradient-free sampler that avoids explicit covariance estimation yet adapts naturally to the covariance struc-ture of the sampled distribution. This sampler works by consider-ing an ensemble of walkers and interpolating and extrapolating between walkers to make a proposal. This is called the affine in-variant ensemble sampler (AIES), which is easy to tune, easy to parallelize, and efficient at sampling spaces of moderate dimen-sionality (less than 20). The main contribution of this work is to propose a functional ensemble sampler (FES) that combines func-tional random walk and AIES. To apply this sampler, we first cal-culate the Karhunen–Loeve (KL) expansion for the Bayesian prior distribution, assumed to be Gaussian and trace-class. Then, we use AIES to sample the posterior distribution on the low-wavenumber KL components and use the functional random walk to sample the posterior distribution on the high-wavenumber KL components. Alternating between AIES and functional random walk updates, we obtain our functional ensemble sampler that is efficient and easy to use without requiring detailed knowledge of the target dis-tribution. In past work, several authors have proposed splitting the Bayesian posterior into low-wavenumber and high-wavenumber components and then applying enhanced sampling to the low-wavenumber components. Yet compared to these other samplers, FES is unique in its simplicity and broad applicability. FES does not require any derivatives, and the need for derivative-free sam-plers has previously been emphasized. FES also eliminates the requirement for posterior covariance estimates. Lastly, FES is more efficient than other gradient-free samplers in our tests. In two nu-merical examples, we apply FES to challenging inverse problems that involve estimating a functional parameter and one or more scalar parameters. We compare the performance of functional random walk, FES, and an alternative derivative-free sampler that explicitly estimates the posterior covariance matrix. We conclude that FES is the fastest available gradient-free sampler for these challenging and multimodal test problems.

Keywords: Bayesian inverse problems, Markov chain Monte Carlo, infinite-dimensional inverse problems, dimensionality reduction

Procedia PDF Downloads 154
6880 Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data

Authors: Wanhyun Cho, Soonja Kang, Sanggoon Kim, Soonyoung Park

Abstract:

We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered an efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior distribution for various parameters and latent function by using the variational Bayesian approximations and important sampling method, and next we derived a predictive distribution of latent function needed to classify new samples. The proposed model is applied to classify the synthetic multivariate dataset in order to verify the performance of our model. Experiment result shows that our model is more accurate than the other approximation methods.

Keywords: multinomial dirichlet classification model, Gaussian process priors, variational Bayesian approximation, importance sampling, approximate posterior distribution, marginal likelihood evidence

Procedia PDF Downloads 444
6879 Estimation and Forecasting with a Quantile AR Model for Financial Returns

Authors: Yuzhi Cai

Abstract:

This talk presents a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. We establish that the joint posterior distribution of the model parameters and future values is well defined. The associated MCMC algorithm for parameter estimation and forecasting converges to the posterior distribution quickly. We also present a combining forecasts technique to produce more accurate out-of-sample forecasts by using a weighted sequence of fitted QAR models. A moving window method to check the quality of the estimated conditional quantiles is developed. We verify our methodology using simulation studies and then apply it to currency exchange rate data. An application of the method to the USD to GBP daily currency exchange rates will also be discussed. The results obtained show that an unequally weighted combining method performs better than other forecasting methodology.

Keywords: combining forecasts, MCMC, quantile modelling, quantile forecasting, predictive density functions

Procedia PDF Downloads 347
6878 Spontaneous Reformation of Dehiscent Frontal Sinus Wall after Endoscopic Removal of Mucocele

Authors: Tan Dexian Arthur, James Wei Ming Kwek, Ian Loh, Lee Tee Sin

Abstract:

Statement of the Problem: Mucoceles most commonly affect the frontal sinus, which results from chronic obstruction of the sinus ostium or cystic dilatation of mucous glands with ductal obstruction. They are known to cause bony erosion of the sinus walls, which can lead to large defects. These defects were typically managed by obliteration or cranialization of the frontal sinus. Although short term outcomes of conservative management of significant posterior table defects from fractures are promising, there have been no studies on the long-term outcomes of large dehiscences in the posterior wall of the frontal sinus. Methodology & Findings : Computed Tomography (CT) Paranasal Sinuses images were analyzed and found complete spontaneous osteogenesis of a large dehiscent frontal sinus posterior wall, secondary to a large mucocele, 9 years from functional endoscopic sinus surgery with the defect managed conservatively. Conclusion & Significance: The dura is well known for its osteogenic properties. Prior studies have showed that dura could induce osteogenesis in cutaneous tissue in the absence of other central nervous system structures. It was also demonstrated that osteogenesis and chondrogenesis were possible in zygomatic fractures by transplanting neonatal dura grafts to the bony defects in rats. Extrapolating from these studies, the authors postulate that the presence of dura beneath the bony deformity of the posterior frontal sinus wall had likely initiated the osteogenesis and restored the bony defect in the patient. In our literature review, we did not find any reports of spontaneous osteogenesis of large frontal sinus defects. While our experience is incidental, it reinforces the osteogenetic potential of an intact dura and further highlights that selected large defects of the posterior wall of the frontal sinus can be conservatively managed.

Keywords: paranasal sinus mucocele, mucocele, osteogenesis, dehiscence

Procedia PDF Downloads 64
6877 A Posterior Predictive Model-Based Control Chart for Monitoring Healthcare

Authors: Yi-Fan Lin, Peter P. Howley, Frank A. Tuyl

Abstract:

Quality measurement and reporting systems are used in healthcare internationally. In Australia, the Australian Council on Healthcare Standards records and reports hundreds of clinical indicators (CIs) nationally across the healthcare system. These CIs are measures of performance in the clinical setting, and are used as a screening tool to help assess whether a standard of care is being met. Existing analysis and reporting of these CIs incorporate Bayesian methods to address sampling variation; however, such assessments are retrospective in nature, reporting upon the previous six or twelve months of data. The use of Bayesian methods within statistical process control for monitoring systems is an important pursuit to support more timely decision-making. Our research has developed and assessed a new graphical monitoring tool, similar to a control chart, based on the beta-binomial posterior predictive (BBPP) distribution to facilitate the real-time assessment of health care organizational performance via CIs. The BBPP charts have been compared with the traditional Bernoulli CUSUM (BC) chart by simulation. The more traditional “central” and “highest posterior density” (HPD) interval approaches were each considered to define the limits, and the multiple charts were compared via in-control and out-of-control average run lengths (ARLs), assuming that the parameter representing the underlying CI rate (proportion of cases with an event of interest) required estimation. Preliminary results have identified that the BBPP chart with HPD-based control limits provides better out-of-control run length performance than the central interval-based and BC charts. Further, the BC chart’s performance may be improved by using Bayesian parameter estimation of the underlying CI rate.

Keywords: average run length (ARL), bernoulli cusum (BC) chart, beta binomial posterior predictive (BBPP) distribution, clinical indicator (CI), healthcare organization (HCO), highest posterior density (HPD) interval

Procedia PDF Downloads 201
6876 A Bayesian Model with Improved Prior in Extreme Value Problems

Authors: Eva L. Sanjuán, Jacinto Martín, M. Isabel Parra, Mario M. Pizarro

Abstract:

In Extreme Value Theory, inference estimation for the parameters of the distribution is made employing a small part of the observation values. When block maxima values are taken, many data are discarded. We developed a new Bayesian inference model to seize all the information provided by the data, introducing informative priors and using the relations between baseline and limit parameters. Firstly, we studied the accuracy of the new model for three baseline distributions that lead to a Gumbel extreme distribution: Exponential, Normal and Gumbel. Secondly, we considered mixtures of Normal variables, to simulate practical situations when data do not adjust to pure distributions, because of perturbations (noise).

Keywords: bayesian inference, extreme value theory, Gumbel distribution, highly informative prior

Procedia PDF Downloads 198
6875 Improving Flash Flood Forecasting with a Bayesian Probabilistic Approach: A Case Study on the Posina Basin in Italy

Authors: Zviad Ghadua, Biswa Bhattacharya

Abstract:

The Flash Flood Guidance (FFG) provides the rainfall amount of a given duration necessary to cause flooding. The approach is based on the development of rainfall-runoff curves, which helps us to find out the rainfall amount that would cause flooding. An alternative approach, mostly experimented with Italian Alpine catchments, is based on determining threshold discharges from past events and on finding whether or not an oncoming flood has its magnitude more than some critical discharge thresholds found beforehand. Both approaches suffer from large uncertainties in forecasting flash floods as, due to the simplistic approach followed, the same rainfall amount may or may not cause flooding. This uncertainty leads to the question whether a probabilistic model is preferable over a deterministic one in forecasting flash floods. We propose the use of a Bayesian probabilistic approach in flash flood forecasting. A prior probability of flooding is derived based on historical data. Additional information, such as antecedent moisture condition (AMC) and rainfall amount over any rainfall thresholds are used in computing the likelihood of observing these conditions given a flash flood has occurred. Finally, the posterior probability of flooding is computed using the prior probability and the likelihood. The variation of the computed posterior probability with rainfall amount and AMC presents the suitability of the approach in decision making in an uncertain environment. The methodology has been applied to the Posina basin in Italy. From the promising results obtained, we can conclude that the Bayesian approach in flash flood forecasting provides more realistic forecasting over the FFG.

Keywords: flash flood, Bayesian, flash flood guidance, FFG, forecasting, Posina

Procedia PDF Downloads 136
6874 Bayesian Flexibility Modelling of the Conditional Autoregressive Prior in a Disease Mapping Model

Authors: Davies Obaromi, Qin Yongsong, James Ndege, Azeez Adeboye, Akinwumi Odeyemi

Abstract:

The basic model usually used in disease mapping, is the Besag, York and Mollie (BYM) model and which combines the spatially structured and spatially unstructured priors as random effects. Bayesian Conditional Autoregressive (CAR) model is a disease mapping method that is commonly used for smoothening the relative risk of any disease as used in the Besag, York and Mollie (BYM) model. This model (CAR), which is also usually assigned as a prior to one of the spatial random effects in the BYM model, successfully uses information from adjacent sites to improve estimates for individual sites. To our knowledge, there are some unrealistic or counter-intuitive consequences on the posterior covariance matrix of the CAR prior for the spatial random effects. In the conventional BYM (Besag, York and Mollie) model, the spatially structured and the unstructured random components cannot be seen independently, and which challenges the prior definitions for the hyperparameters of the two random effects. Therefore, the main objective of this study is to construct and utilize an extended Bayesian spatial CAR model for studying tuberculosis patterns in the Eastern Cape Province of South Africa, and then compare for flexibility with some existing CAR models. The results of the study revealed the flexibility and robustness of this alternative extended CAR to the commonly used CAR models by comparison, using the deviance information criteria. The extended Bayesian spatial CAR model is proved to be a useful and robust tool for disease modeling and as a prior for the structured spatial random effects because of the inclusion of an extra hyperparameter.

Keywords: Besag2, CAR models, disease mapping, INLA, spatial models

Procedia PDF Downloads 279
6873 Ponticuli of Atlas Vertebra: A Study in South Coastal Region of Andhra Pradesh

Authors: Hema Lattupalli

Abstract:

Introduction: A bony bridge extends from the lateral mass of the atlas to postero medial margin of vertebral artery groove, termed as a posterior bridge of atlas or posterior ponticulus. The foramen formed by the bridge is called as arcuate foramen or retroarticulare superior. Another bony bridge sometimes extends laterally from lateral mass to posterior root of transverse foramen forming and additional groove for vertebral artery, above and behind foramen transversarium called Lateral bridge or ponticulus lateralis. When both posterior and lateral are present together it is called as Posterolateral ponticuli. Aim and Objectives: The aim of the present study is to detect the presence of such Bridge or Ponticuli called as Lateral, Posterior and Posterolateral reported by earlier investigators in atlas vertebrae. Material and Methods: The study was done on 100 Atlas vertebrae from the Department of Anatomy Narayana Medical College Nellore, and also from SVIMS Tirupati was collected over a period of 2 years. The parameters that were studied include the presence of ponticuli, complete and incomplete and right and left side ponticuli. They were observed for all these parameters and the results were documented and photographed. Results: Ponticuli were observed in 25 (25%) of atlas vertebrae. Posterior ponticuli were found in 16 (16%), Lateral in 01 (01%) and Posterolateral in 08(08%) of the atlas vertebrae. Complete ponticuli were present in 09 (09%) and incomplete ponticuli in 16 (16%) of the atlas vertebrae. Bilateral ponticuli were seen in 10 (10%) and unilateral ponticuli were seen in 15 (15%) of the atlas vertebrae. Right side ponticuli were seen in 04 (04%) and Left side ponticuli in 05 (05%) of the atlas vertebrae respectively. Interpretation and Conclusion: In the present study posterior complete ponticuli were said to be more than the lateral complete ponticuli. The presence of Bilateral Incomplete Posterior ponticuli is higher and also Atlantic ponticuli. The present study is to say that knowledge of normal anatomy and variations in the atlas vertebra is very much essential to the neurosurgeons giving a message that utmost care is needed to perform surgeries related to craniovertebral regions. This is additional information to the Anatomists, Neurosurgeons and Radiologist. This adds an extra page to the literature.

Keywords: atlas vertebra, ponticuli, posterior arch, arcuate foramen

Procedia PDF Downloads 369
6872 Effect of Retained Posterior Horn of Medial Meniscus on Functional Outcome of ACL Reconstructed Knees

Authors: Kevin Syam, Devendra K. Chauhan, Mandeep Singh Dhillon

Abstract:

Background: The posterior horn of medial meniscus (PHMM) is a secondary stabilizer against anterior translation of tibia. Cadaveric studies have revealed increased strain on the ACL graft and greater instrumented laxity in Posterior horn deficient knees. Clinical studies have shown higher prevalence of radiological OA after ACL reconstruction combined with menisectomy. However, functional outcomes in ACL reconstructed knee in the absence of Posterior horn is less discussed, and specific role of posterior horn is ill-documented. This study evaluated functional and radiological outcomes in posterior horn preserved and posterior horn sacrificed ACL reconstructed knees. Materials: Of the 457 patients who had ACL reconstruction done over a 6 year period, 77 cases with minimum follow up of 18 months were included in the study after strict exclusion criteria (associated lateral meniscus injury, other ligamentous injuries, significant cartilage degeneration, repeat injury and contralateral knee injuries were excluded). 41 patients with intact menisci were compared with 36 patients with absent posterior horn of medial meniscus. Radiological and clinical tests for instability were conducted, and knees were evaluated using subjective International Knee Documentation Committee (IKDC) score and the Orthopadische Arbeitsgruppe Knie score (OAK). Results: We found a trend towards significantly better overall outcome (OAK) in cases with intact PHMM at average follow-up of 43.03 months (p value 0.082). Cases with intact PHMM had significantly better objective stability (p value 0.004). No significant differences were noted in the subjective IKDC score (p value 0.526) and the functional OAK outcome (category D) (p value 0.363). More cases with absent posterior horn had evidence of radiological OA (p value 0.022) even at mid-term follow-up. Conclusion: Even though the overall OAK and subjective IKDC scores did not show significant difference between the two subsets, the poorer outcomes in terms of objective stability and radiological OA noted in the absence of PHMM, indicates the importance of preserving this important part of the meniscus.

Keywords: ACL, functional outcome, knee, posterior of medial meniscus

Procedia PDF Downloads 359
6871 Application of Hyperbinomial Distribution in Developing a Modified p-Chart

Authors: Shourav Ahmed, M. Gulam Kibria, Kais Zaman

Abstract:

Control charts graphically verify variation in quality parameters. Attribute type control charts deal with quality parameters that can only hold two states, e.g., good or bad, yes or no, etc. At present, p-control chart is most commonly used to deal with attribute type data. In construction of p-control chart using binomial distribution, the value of proportion non-conforming must be known or estimated from limited sample information. As the probability distribution of fraction non-conforming (p) is considered in hyperbinomial distribution unlike a constant value in case of binomial distribution, it reduces the risk of false detection. In this study, a statistical control chart is proposed based on hyperbinomial distribution when prior estimate of proportion non-conforming is unavailable and is estimated from limited sample information. We developed the control limits of the proposed modified p-chart using the mean and variance of hyperbinomial distribution. The proposed modified p-chart can also utilize additional sample information when they are available. The study also validates the use of modified p-chart by comparing with the result obtained using cumulative distribution function of hyperbinomial distribution. The study clearly indicates that the use of hyperbinomial distribution in construction of p-control chart yields much accurate estimate of quality parameters than using binomial distribution.

Keywords: binomial distribution, control charts, cumulative distribution function, hyper binomial distribution

Procedia PDF Downloads 279
6870 Effect of Prone Trunk Extension on Scapular and Thoracic Kinematics, and Activity during Scapular Posterior Tilting Exercise in Subjects with Round Shoulder Posture

Authors: A-Reum Shin, Heon-Seock Cynn, Ji-Hyun Lee, Da-Eun Kim

Abstract:

Round shoulder posture (RSP) is a position of scapular protraction and elevation, which may appear as scapular winging, and humeral internal rotation. Flexed posture (FP) may also affect RSP because FP is characterized by hyperkyphosis, forward head posture, and height reduction. The aim of this study was to investigate the effect of scapular posterior tilting exercise with prone trunk extension on round shoulder posture, activities of lower trapezius and serratus anterior, flexed posture, and thoracic erector spinae activity in subjects with round shoulder posture. Fifteen subjects with round shoulder posture were recruited in this study. Activities of lower trapezius, serratus anterior and thoracic erector spinae were measured during both scapular posterior tilting exercise and scapular posterior tilting exercise with prone trunk extension using electromyography, and round shoulder posture and flexed posture were measured immediately after each exercises using caliper. When the prone trunk extension was applied, the round shoulder posture and flexed posture significantly decreased, activities of lower trapezius and thoracic erector spinae significantly increased (p < 0.05) compared with the scapular posterior tilting exercise alone. There was no significant difference in serratus anterior activity between two exercises. Thus, prone trunk extension could be effective method to improve round shoulder posture during scapular posterior tilting exercise in subjects with round shoulder posture.

Keywords: flexed posture, prone trunk extension, round shoulder posture, scapular posterior tilting

Procedia PDF Downloads 213
6869 Monte Carlo Methods and Statistical Inference of Multitype Branching Processes

Authors: Ana Staneva, Vessela Stoimenova

Abstract:

A parametric estimation of the MBP with Power Series offspring distribution family is considered in this paper. The MLE for the parameters is obtained in the case when the observable data are incomplete and consist only with the generation sizes of the family tree of MBP. The parameter estimation is calculated by using the Monte Carlo EM algorithm. The estimation for the posterior distribution and for the offspring distribution parameters are calculated by using the Bayesian approach and the Gibbs sampler. The article proposes various examples with bivariate branching processes together with computational results, simulation and an implementation using R.

Keywords: Bayesian, branching processes, EM algorithm, Gibbs sampler, Monte Carlo methods, statistical estimation

Procedia PDF Downloads 421
6868 Simulating the Hot Hand Phenomenon in Basketball with Bayesian Hidden Markov Models

Authors: Gabriel Calvo, Carmen Armero, Luigi Spezia

Abstract:

A basketball player is said to have a hot hand if his/her performance is better than expected in different periods of time. A way to deal with this phenomenon is to make use of latent variables, which can indicate whether the player is ‘on fire’ or not. This work aims to model the hot hand phenomenon through a Bayesian hidden Markov model (HMM) with two states (cold and hot) and two different probability of success depending on the corresponding hidden state. This task is illustrated through a comprehensive simulation study. The simulated data sets emulate the field goal attempts in an NBA season from different profile players. This model can be a powerful tool to assess the ‘streakiness’ of each player, and it provides information about the general performance of the players during the match. Finally, the Bayesian HMM allows computing the posterior probability of any type of streak.

Keywords: Bernoulli trials, field goals, latent variables, posterior distribution

Procedia PDF Downloads 190
6867 An Overview of Posterior Fossa Associated Pathologies and Segmentation

Authors: Samuel J. Ahmad, Michael Zhu, Andrew J. Kobets

Abstract:

Segmentation tools continue to advance, evolving from manual methods to automated contouring technologies utilizing convolutional neural networks. These techniques have evaluated ventricular and hemorrhagic volumes in the past but may be applied in novel ways to assess posterior fossa-associated pathologies such as Chiari malformations. Herein, we summarize literature pertaining to segmentation in the context of this and other posterior fossa-based diseases such as trigeminal neuralgia, hemifacial spasm, and posterior fossa syndrome. A literature search for volumetric analysis of the posterior fossa identified 27 papers where semi-automated, automated, manual segmentation, linear measurement-based formulas, and the Cavalieri estimator were utilized. These studies produced superior data than older methods utilizing formulas for rough volumetric estimations. The most commonly used segmentation technique was semi-automated segmentation (12 studies). Manual segmentation was the second most common technique (7 studies). Automated segmentation techniques (4 studies) and the Cavalieri estimator (3 studies), a point-counting method that uses a grid of points to estimate the volume of a region, were the next most commonly used techniques. The least commonly utilized segmentation technique was linear measurement-based formulas (1 study). Semi-automated segmentation produced accurate, reproducible results. However, it is apparent that there does not exist a single semi-automated software, open source or otherwise, that has been widely applied to the posterior fossa. Fully-automated segmentation via such open source software as FSL and Freesurfer produced highly accurate posterior fossa segmentations. Various forms of segmentation have been used to assess posterior fossa pathologies and each has its advantages and disadvantages. According to our results, semi-automated segmentation is the predominant method. However, atlas-based automated segmentation is an extremely promising method that produces accurate results. Future evolution of segmentation technologies will undoubtedly yield superior results, which may be applied to posterior fossa related pathologies. Medical professionals will save time and effort analyzing large sets of data due to these advances.

Keywords: chiari, posterior fossa, segmentation, volumetric

Procedia PDF Downloads 106
6866 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data

Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L. Duan

Abstract:

The conditional density characterizes the distribution of a response variable y given other predictor x and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts as a motivating starting point. In this work, the authors extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zₚ, zₙ]. The zₚ component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zₙ component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach coined Augmented Posterior CDE (AP-CDE) only requires a simple modification of the common normalizing flow framework while significantly improving the interpretation of the latent component since zₚ represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of 𝑥-related variations due to factors such as lighting condition and subject id from the other random variations. Further, the experiments show that an unconditional NF neural network based on an unsupervised model of z, such as a Gaussian mixture, fails to generate interpretable results.

Keywords: conditional density estimation, image generation, normalizing flow, supervised dimension reduction

Procedia PDF Downloads 96
6865 The Effect of Modified Posterior Shoulder Stretching Exercises on Posterior Shoulder Tightness, Shoulder Pain, and Dysfunction in Patients with Subacromial Impingement

Authors: Ozge Tahran, Sevgi Sevi Yesilyaprak

Abstract:

Objective: The aim of the study was to investigate the effect of the Wilk’s modified two different stretching exercises on posterior shoulder tightness, pain, and dysfunction in patients with subacromial impingement syndrome (SIS). Method: This study was carried out on 67 patients who have more than 15° difference in shoulder internal rotation range of motion between two sides and had been diagnosed as SIS. Before treatment, all patients were randomly assigned into three groups. Standard physiotherapy programme was applied to the Group 3 (n=23), standard physiotherapy program with Wilk’s modified cross-body stretching exercises were applied to Group 1 (n=22), and standard physiotherapy program with Wilk’s modified sleeper stretching exercises were applied to Group 2 (n= 23). All the patients received 20 sessions of physiotherapy during 4 weeks, 5 days in a week by a physiotherapist. The patients continued their exercises at home at the weekends. Pain severity, shoulder rotation range of motion, posterior shoulder tightness, upper extremity functionality with Constant and Murley Score (CMS) and disability level with The Disabilities of the Arm, Shoulder and Hand Score (QuickDASH) were evaluated before and after physiotherapy programme. Results: Before treatment, demographic and anthropometric characteristics were similar in groups and there was no statistical difference (p > 0.05). It was determined that pain severity decreased, shoulder rotation range of motion, posterior shoulder tightness, upper extremity functionality, and disability were improved after physiotherapy in both groups (p < 0.05). Group 1 and 2 had better results in terms of reduction of pain severity during activity, increase in shoulder rotation range of motion, posterior shoulder mobility and upper extremity functionality and improvement in upper extremity disability, compared to Group 3 (p < 0.05). Conclusion: Modified posterior shoulder stretching exercises in addition to standard physiotherapy programme is more effective for reduction of pain during activity, to improve shoulder rotation range of motion, posterior shoulder mobility, and upper extremity functionality in patients with SIS compared to standard physiotherapy programme alone.

Keywords: modified posterior shoulder stretching exercises, posterior shoulder tightness, shoulder complex, subacromial impingement syndrome

Procedia PDF Downloads 177
6864 A Modified Open Posterior Approach for the Fixation of Posterior Cruciate Ligament Tibial Avulsion Fractures

Authors: Babak Mirzashahi, Arvin Najafi, Pejman Mansouri, Mahmoud Farzan

Abstract:

Background: The most effective treatment of posterior cruciate ligament (PCL) tears and the consequence of untreated PCL injuries remain controversial. Objectives: The aim of this study is to assess outcomes of fixation of tibial posterior cruciate ligament (PCL) avulsion fractures via a modified technique. Patients and Methods: From January, 2009 to March, 2012, there were 45 cases of PCL tibial avulsion fractures that were referred to our hospital and were managed through a modified open posterior approach. Fixation of Tibial PCL avulsion fractures were fixed by means of a lag screw and washer placed through our modified open posterior approach. Range of motion was begun on the first postoperative day. Clinical stability, range of motion, gastrocnemius muscle strength, radiographic investigation, and patient’s overall quality of life was analyzed at final follow up visit. Results: The average of overall musculoskeletal functional evaluation scores was 15 (range 3–35). All patients achieved union of their fracture and had clinically stable knees at the latest follow-up. The mean preoperative Lysholm score for 15 knees was 62 ± 8 (range, 50-75); the mean postoperative Lysholm score was 92± 7 (range, 75-101). A significant difference in Lysholm scores between preoperative and final follow-up evaluations was found (P < .05). At first-year follow-up, 42 (93%) patients revealed a difference of less than 10 mm in thigh circumference between their injured and healthy knees. Conclusions: The management of displaced large PCL avulsion fractures with placement of a cancellous lag screw with washer by means of the modified open posterior approach leads to satisfactory clinical, radiographic, and functional results and reduces the operation time and less blood loss. Level of evidence: IV.

Keywords: posterior cruciate ligament, tibial fracture, lysholm knee score, patient outcome assessment

Procedia PDF Downloads 301
6863 Bayesian Reliability of Weibull Regression with Type-I Censored Data

Authors: Al Omari Moahmmed Ahmed

Abstract:

In the Bayesian, we developed an approach by using non-informative prior with covariate and obtained by using Gauss quadrature method to estimate the parameters of the covariate and reliability function of the Weibull regression distribution with Type-I censored data. The maximum likelihood seen that the estimators obtained are not available in closed forms, although they can be solved it by using Newton-Raphson methods. The comparison criteria are the MSE and the performance of these estimates are assessed using simulation considering various sample size, several specific values of shape parameter. The results show that Bayesian with non-informative prior is better than Maximum Likelihood Estimator.

Keywords: non-informative prior, Bayesian method, type-I censoring, Gauss quardature

Procedia PDF Downloads 503
6862 Morphometric Study of Human Anterior and Posterior Meniscofemoral Ligaments of the Knee Joint on Thiel Embalmed Cadavers

Authors: Mohammad Alobaidy, David Nicoll, Tracey Wilkinson

Abstract:

Background: Many patients suffer postoperative knee stability after total knee arthroplasty (joint replacement) involving posterior cruciate ligament (PCL) sacrificing or retaining, but is not clear whether the meniscofemoral ligaments (MFLs) are retained during these procedures; their function in terms of knee stability is not well established in the literature. Purpose: Macroscopic, detailed, morphometric investigation of the anterior and posterior MFLs of the knee joint was undertaken to assist understanding of knee stability after total knee arthroplasty and ligament reconstruction. Methods: Dissection of eighty Thiel embalmed knees from 19 male and 21 female cadavers was conducted, mean age 77 (range 47-99 years). The origin and insertion of the anterior and posterior MFLs were measured using high accuracy, calibrated, digital Vernier calipers at 0.01mm. Results: The means were: anterior meniscofemoral ligament (aMFL) length 28.4 ± 2.7mm; posterior meniscofemoral ligament (pMFL) length 29 ± 3.7mm; aMFL femoral width 6.4 ± 1.7mm, mid-distance ligament width 4 ± 1.1mm, meniscal ligament width 3.9 ± 1.2mm; pMFL femoral width 5.6 ± 1.5mm, mid-distance ligament width 4.1 ± 1.1mm, meniscal ligament width 4.1 ± 1.3mm. Some of the male measurements were larger than female, with significant differences in the length of the aMFL femoral length p<0.01 and pMFL femoral length p<0.007, and width of the pMFL mid-distance p<0.04. Conclusion: This study may help explore the role of the meniscofemoral ligaments in knee stability after total knee arthroplasty with a posterior cruciate ligament retaining prosthesis. Anatomical information for Thiel embalmed knees may aid orthopaedic surgeons in ligament reconstruction.

Keywords: anterior and posterior meniscofemoral ligaments, morphometric analysis, Thiel embalmed knees, knee arthroplasty

Procedia PDF Downloads 376