Search results for: nonlocal parameter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2059

Search results for: nonlocal parameter

2059 Molecular Dynamics Simulation of Free Vibration of Graphene Sheets

Authors: Seyyed Feisal Asbaghian Namin, Reza Pilafkan, Mahmood Kaffash Irzarahimi

Abstract:

TThis paper considers vibration of single-layered graphene sheets using molecular dynamics (MD) and nonlocal elasticity theory. Based on the MD simulations, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), an open source software, is used to obtain fundamental frequencies. On the other hand, governing equations are derived using nonlocal elasticity and first order shear deformation theory (FSDT) and solved using generalized differential quadrature method (GDQ). The small-scale effect is applied in governing equations of motion by nonlocal parameter. The effect of different side lengths, boundary conditions and nonlocal parameter are inspected for aforementioned methods. Results are obtained from MD simulations is compared with those of the nonlocal elasticity theory to calculate appropriate values for the nonlocal parameter. The nonlocal parameter value is suggested for graphene sheets with various boundary conditions. Furthermore, it is shown that the nonlocal elasticity approach using classical plate theory (CLPT) assumptions overestimates the natural frequencies.

Keywords: graphene sheets, molecular dynamics simulations, fundamental frequencies, nonlocal elasticity theory, nonlocal parameter

Procedia PDF Downloads 521
2058 Nonlocal Beam Models for Free Vibration Analysis of Double-Walled Carbon Nanotubes with Various End Supports

Authors: Babak Safaei, Ahmad Ghanbari, Arash Rahmani

Abstract:

In the present study, the free vibration characteristics of double-walled carbon nanotubes (DWCNTs) are investigated. The small-scale effects are taken into account using the Eringen’s nonlocal elasticity theory. The nonlocal elasticity equations are implemented into the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT) to analyze the free vibrations of DWCNTs in which each wall of the nanotubes is considered as individual beam with van der Waals interaction forces. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations of each nonlocal beam model along with four commonly used boundary conditions. Then molecular dynamics (MD) simulation is performed for a series of armchair and zigzag DWCNTs with different aspect ratios and boundary conditions, the results of which are matched with those of nonlocal beam models to extract the appropriate values of the nonlocal parameter corresponding to each type of chirality, nonlocal beam model and boundary condition. It is found that the present nonlocal beam models with their proposed correct values of nonlocal parameter have good capability to predict the vibrational behavior of DWCNTs, especially for higher aspect ratios.

Keywords: double-walled carbon nanotubes, nonlocal continuum elasticity, free vibrations, molecular dynamics simulation, generalized differential quadrature method

Procedia PDF Downloads 294
2057 Three Dimensional Vibration Analysis of Carbon Nanotubes Embedded in Elastic Medium

Authors: M. Shaban, A. Alibeigloo

Abstract:

This paper studies free vibration behavior of single-walled carbon nanotubes (SWCNTs) embedded on elastic medium based on three-dimensional theory of elasticity. To accounting the size effect of carbon nanotubes, nonlocal theory is adopted to shell model. The nonlocal parameter is incorporated into all constitutive equations in three dimensions. The surrounding medium is modeled as two-parameter elastic foundation. By using Fourier series expansion in axial and circumferential direction, the set of coupled governing equations are reduced to the ordinary differential equations in thickness direction. Then, the state-space method as an efficient and accurate method is used to solve the resulting equations analytically. Comprehensive parametric studies are carried out to show the influences of the nonlocal parameter, radial and shear elastic stiffness, thickness-to-radius ratio and radius-to-length ratio.

Keywords: carbon nanotubes, embedded, nonlocal, free vibration

Procedia PDF Downloads 450
2056 A Refined Nonlocal Strain Gradient Theory for Assessing Scaling-Dependent Vibration Behavior of Microbeams

Authors: Xiaobai Li, Li Li, Yujin Hu, Weiming Deng, Zhe Ding

Abstract:

A size-dependent Euler–Bernoulli beam model, which accounts for nonlocal stress field, strain gradient field and higher order inertia force field, is derived based on the nonlocal strain gradient theory considering velocity gradient effect. The governing equations and boundary conditions are derived both in dimensional and dimensionless form by employed the Hamilton principle. The analytical solutions based on different continuum theories are compared. The effect of higher order inertia terms is extremely significant in high frequency range. It is found that there exists an asymptotic frequency for the proposed beam model, while for the nonlocal strain gradient theory the solutions diverge. The effect of strain gradient field in thickness direction is significant in low frequencies domain and it cannot be neglected when the material strain length scale parameter is considerable with beam thickness. The influence of each of three size effect parameters on the natural frequencies are investigated. The natural frequencies increase with the increasing material strain gradient length scale parameter or decreasing velocity gradient length scale parameter and nonlocal parameter.

Keywords: Euler-Bernoulli Beams, free vibration, higher order inertia, Nonlocal Strain Gradient Theory, velocity gradient

Procedia PDF Downloads 267
2055 Using the Nonlocal Theory of Free Vibrations Nanobeam

Authors: Ali Oveysi Sarabi

Abstract:

The dimensions of nanostructures are in the range of inter-atomic spacing of the structures which makes them impossible to be modeled as a continuum. Nanoscale size-effects on vibration analysis of nanobeams embedded in an elastic medium is investigated using different types of beam theory. To this end, Eringen’s nonlocal elasticity is incorporated to various beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT). The surrounding elastic medium is simulated with both Winkler and Pasternak foundation models and the difference between them is studies. Explicit formulas are presented to obtain the natural frequencies of nanobeam corresponding to each nonlocal beam theory. Selected numerical results are given for different values of the non-local parameter, Winkler modulus parameter, Pasternak modulus parameter and aspect ratio of the beam that imply the effects of them, separately. It is observed that the values of natural frequency are strongly dependent on the stiffness of elastic medium and the value of the non-local parameter and these dependencies varies with the value of aspect ratio and mode number.

Keywords: nanobeams, free vibration, nonlocal elasticity, winkler foundation model, Pasternak foundation model, beam theories

Procedia PDF Downloads 536
2054 Closed-Form Solutions for Nanobeams Based on the Nonlocal Euler-Bernoulli Theory

Authors: Francesco Marotti de Sciarra, Raffaele Barretta

Abstract:

Starting from nonlocal continuum mechanics, a thermodynamically new nonlocal model of Euler-Bernoulli nanobeams is provided. The nonlocal variational formulation is consistently provided and the governing differential equation for transverse displacement are presented. Higher-order boundary conditions are then consistently derived. An example is contributed in order to show the effectiveness of the proposed model.

Keywords: Bernoulli-Euler beams, nanobeams, nonlocal elasticity, closed-form solutions

Procedia PDF Downloads 369
2053 A Mixed 3D Finite Element for Highly Deformable Thermoviscoplastic Materials Under Ductile Damage

Authors: João Paulo Pascon

Abstract:

In this work, a mixed 3D finite element formulation is proposed in order to analyze thermoviscoplastic materials under large strain levels and ductile damage. To this end, a tetrahedral element of linear order is employed, considering a thermoviscoplastic constitutive law together with the neo-Hookean hyperelastic relationship and a nonlocal Gurson`s porous plasticity theory The material model is capable of reproducing finite deformations, elastoplastic behavior, void growth, nucleation and coalescence, thermal effects such as plastic work heating and conductivity, strain hardening and strain-rate dependence. The nonlocal character is introduced by means of a nonlocal parameter applied to the Laplacian of the porosity field. The element degrees of freedom are the nodal values of the deformed position, the temperature and the nonlocal porosity field. The internal variables are updated at the Gauss points according to the yield criterion and the evolution laws, including the yield stress of matrix, the equivalent plastic strain, the local porosity and the plastic components of the Cauchy-Green stretch tensor. Two problems involving 3D specimens and ductile damage are numerically analyzed with the developed computational code: the necking problem and a notched sample. The effect of the nonlocal parameter and the mesh refinement is investigated in detail. Results indicate the need of a proper nonlocal parameter. In addition, the numerical formulation can predict ductile fracture, based on the evolution of the fully damaged zone.

Keywords: mixed finite element, large strains, ductile damage, thermoviscoplasticity

Procedia PDF Downloads 95
2052 Biaxial Buckling of Single Layer Graphene Sheet Based on Nonlocal Plate Model and Molecular Dynamics Simulation

Authors: R. Pilafkan, M. Kaffash Irzarahimi, S. F. Asbaghian Namin

Abstract:

The biaxial buckling behavior of single-layered graphene sheets (SLGSs) is studied in the present work. To consider the size-effects in the analysis, Eringen’s nonlocal elasticity equations are incorporated into classical plate theory (CLPT). A Generalized Differential Quadrature Method (GDQM) approach is utilized and numerical solutions for the critical buckling loads are obtained. Then, molecular dynamics (MD) simulations are performed for a series of zigzag SLGSs with different side-lengths and with various boundary conditions, the results of which are matched with those obtained by the nonlocal plate model to numerical the appropriate values of nonlocal parameter relevant to each type of boundary conditions.

Keywords: biaxial buckling, single-layered graphene sheets, nonlocal elasticity, molecular dynamics simulation, classical plate theory

Procedia PDF Downloads 278
2051 Vibration Behavior of Nanoparticle Delivery in a Single-Walled Carbon Nanotube Using Nonlocal Timoshenko Beam Theory

Authors: Haw-Long Lee, Win-Jin Chang, Yu-Ching Yang

Abstract:

In the paper, the coupled equation of motion for the dynamic displacement of a fullerene moving in a (10,10) single-walled carbon nanotube (SWCNT) is derived using nonlocal Timoshenko beam theory, including the effects of rotary inertia and shear deformation. The effects of confined stiffness between the fullerene and nanotube, foundation stiffness, and nonlocal parameter on the dynamic behavior are analyzed using the Runge-Kutta Method. The numerical solution is in agreement with the analytical result for the special case. The numerical results show that increasing the confined stiffness and foundation stiffness decrease the dynamic displacement of SWCNT. However, the dynamic displacement increases with increasing the nonlocal parameter. In addition, result using the Euler beam theory and the Timoshenko beam theory are compared. It can be found that ignoring the effects of rotary inertia and shear deformation leads to an underestimation of the displacement.

Keywords: single-walled carbon nanotube, nanoparticle delivery, Nonlocal Timoshenko beam theory, Runge-Kutta Method, Van der Waals force

Procedia PDF Downloads 377
2050 Simulation of Propagation of Cos-Gaussian Beam in Strongly Nonlocal Nonlinear Media Using Paraxial Group Transformation

Authors: A. Keshavarz, Z. Roosta

Abstract:

In this paper, propagation of cos-Gaussian beam in strongly nonlocal nonlinear media has been stimulated by using paraxial group transformation. At first, cos-Gaussian beam, nonlocal nonlinear media, critical power, transfer matrix, and paraxial group transformation are introduced. Then, the propagation of the cos-Gaussian beam in strongly nonlocal nonlinear media is simulated. Results show that beam propagation has periodic structure during self-focusing effect in this case. However, this simple method can be used for investigation of propagation of kinds of beams in ABCD optical media.

Keywords: paraxial group transformation, nonlocal nonlinear media, cos-Gaussian beam, ABCD law

Procedia PDF Downloads 342
2049 Torsional Vibration of Carbon Nanotubes via Nonlocal Gradient Theories

Authors: Mustafa Arda, Metin Aydogdu

Abstract:

Carbon nanotubes (CNTs) have many possible application areas because of their superior physical properties. Nonlocal Theory, which unlike the classical theories, includes the size dependency. Nonlocal Stress and Strain Gradient approaches can be used in nanoscale static and dynamic analysis. In the present study, torsional vibration of CNTs was investigated according to nonlocal stress and strain gradient theories. Effects of the small scale parameters to the non-dimensional frequency were obtained. Results were compared with the Molecular Dynamics Simulation and Lattice Dynamics. Strain Gradient Theory has shown more weakening effect on CNT according to the Stress Gradient Theory. Combination of both theories gives more acceptable results rather than the classical and stress or strain gradient theory according to Lattice Dynamics.

Keywords: torsional vibration, carbon nanotubes, nonlocal gradient theory, stress, strain

Procedia PDF Downloads 389
2048 Nonlocal Phenomena in Quantum Mechanics

Authors: Kazim G. Atman, Hüseyin Sirin

Abstract:

In theoretical physics, nonlocal phenomena has always been subject of debate. However, in the conventional mathematical approach where the developments of the physical systems are investigated by using the standard mathematical tools, nonlocal effects are not taken into account. In order to investigate the nonlocality in quantum mechanics and fractal property of space, fractional derivative operators are employed in this study. In this manner, fractional creation and annihilation operators are introduced and Einstein coefficients are taken into account as an application of concomitant formalism in quantum field theory. Therefore, each energy mode of photons are considered as fractional quantized harmonic oscillator hereby Einstein coefficients are obtained. Nevertheless, wave function and energy eigenvalues of fractional quantum mechanical harmonic oscillator are obtained via the fractional derivative order α which is a measure of the influence of nonlocal effects. In the case α = 1, where space becomes homogeneous and continuous, standard physical conclusions are recovered.

Keywords: Einstein’s Coefficients, Fractional Calculus, Fractional Quantum Mechanics, Nonlocal Theories

Procedia PDF Downloads 169
2047 Dynamic Response of Nano Spherical Shell Subjected to Termo-Mechanical Shock Using Nonlocal Elasticity Theory

Authors: J. Ranjbarn, A. Alibeigloo

Abstract:

In this paper, we present an analytical method for analysis of nano-scale spherical shell subjected to thermo-mechanical shocks based on nonlocal elasticity theory. Thermo-mechanical properties of nano shpere is assumed to be temperature dependent. Governing partial differential equation of motion is solved analytically by using Laplace transform for time domain and power series for spacial domain. The results in Laplace domain is transferred to time domain by employing the fast inverse Laplace transform (FLIT) method. Accuracy of present approach is assessed by comparing the the numerical results with the results of published work in literature. Furtheremore, the effects of non-local parameter and wall thickness on the dynamic characteristics of the nano-sphere are studied.

Keywords: nano-scale spherical shell, nonlocal elasticity theory, thermomechanical shock, dynamic response

Procedia PDF Downloads 373
2046 Complex Fuzzy Evolution Equation with Nonlocal Conditions

Authors: Abdelati El Allaoui, Said Melliani, Lalla Saadia Chadli

Abstract:

The objective of this paper is to study the existence and uniqueness of Mild solutions for a complex fuzzy evolution equation with nonlocal conditions that accommodates the notion of fuzzy sets defined by complex-valued membership functions. We first propose definition of complex fuzzy strongly continuous semigroups. We then give existence and uniqueness result relevant to the complex fuzzy evolution equation.

Keywords: Complex fuzzy evolution equations, nonlocal conditions, mild solution, complex fuzzy semigroups

Procedia PDF Downloads 281
2045 Dynamic Analysis of Nanosize FG Rectangular Plates Based on Simple Nonlocal Quasi 3D HSDT

Authors: Sabrina Boutaleb, Fouad Bourad, Kouider Halim Benrahou, Abdelouahed Tounsi

Abstract:

In the present work, the dynamic analysis of the functionally graded rectangular nanoplates is studied. The theory of nonlocal elasticity based on the quasi 3D high shear deformation theory (quasi 3D HSDT) has been employed to determine the natural frequencies of the nanosized FG plate. In HSDT, a cubic function is employed in terms of thickness coordinates to introduce the influence of transverse shear deformation and stretching thickness. The theory of nonlocal elasticity is utilized to examine the impact of the small scale on the natural frequency of the FG rectangular nanoplate. The equations of motion are deduced by implementing Hamilton’s principle. To demonstrate the accuracy of the proposed method, the calculated results in specific cases are compared and examined with available results in the literature, and a good agreement is observed. Finally, the influence of the various parameters, such as the nonlocal coefficient, the material indexes, the aspect ratio, and the thickness-to-length ratio, on the dynamic properties of the FG nanoplates is illustrated and discussed in detail.

Keywords: nonlocal elasticity theory, FG nanoplate, free vibration, refined theory, elastic foundation

Procedia PDF Downloads 120
2044 Vibration Analysis of Magnetostrictive Nano-Plate by Using Modified Couple Stress and Nonlocal Elasticity Theories

Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian

Abstract:

In the present study, the free vibration of magnetostrictive nano-plate (MsNP) resting on the Pasternak foundation is investigated. Firstly, the modified couple stress (MCS) and nonlocal elasticity theories are compared together and taken into account to consider the small scale effects; in this paper not only two theories are analyzed but also it improves the MCS theory is more accurate than nonlocal elasticity theory in such problems. A feedback control system is utilized to investigate the effects of a magnetic field. First-order shear deformation theory (FSDT), Hamilton’s principle and energy method are utilized in order to drive the equations of motion and these equations are solved by differential quadrature method (DQM) for simply supported boundary conditions. The MsNP undergoes in-plane forces in x and y directions. In this regard, the dimensionless frequency is plotted to study the effects of small scale parameter, magnetic field, aspect ratio, thickness ratio and compression and tension loads. Results indicate that these parameters play a key role on the natural frequency. According to the above results, MsNP can be used in the communications equipment, smart control vibration of nanostructure especially in sensor and actuators such as wireless linear micro motor and smart nano valves in injectors.

Keywords: feedback control system, magnetostrictive nano-plate, modified couple stress theory, nonlocal elasticity theory, vibration analysis

Procedia PDF Downloads 135
2043 Exact Vibration Analysis of a Rectangular Nano-Plate Using Nonlocal Modified Sinusoidal Shear Deformation Theory

Authors: Korosh Khorshidi, Mohammad Khodadadi

Abstract:

In this paper, exact close form solution for out of plate free flexural vibration of moderately thick rectangular nanoplates are presented based on nonlocal modified trigonometric shear deformation theory, with assumptions of the Levy's type boundary conditions, for the first time. The aim of this study is to evaluate the effect of small-scale parameters on the frequency parameters of the moderately thick rectangular nano-plates. To describe the effects of small-scale parameters on vibrations of rectangular nanoplates, the Eringen theory is used. The Levy's type boundary conditions are combination of six different boundary conditions; specifically, two opposite edges are simply supported and any of the other two edges can be simply supported, clamped or free. Governing equations of motion and boundary conditions of the plate are derived by using the Hamilton’s principle. The present analytical solution can be obtained with any required accuracy and can be used as benchmark. Numerical results are presented to illustrate the effectiveness of the proposed method compared to other methods reported in the literature. Finally, the effect of boundary conditions, aspect ratios, small scale parameter and thickness ratios on nondimensional natural frequency parameters and frequency ratios are examined and discussed in detail.

Keywords: exact solution, nonlocal modified sinusoidal shear deformation theory, out of plane vibration, moderately thick rectangular plate

Procedia PDF Downloads 387
2042 Robust Numerical Method for Singularly Perturbed Semilinear Boundary Value Problem with Nonlocal Boundary Condition

Authors: Habtamu Garoma Debela, Gemechis File Duressa

Abstract:

In this work, our primary interest is to provide ε-uniformly convergent numerical techniques for solving singularly perturbed semilinear boundary value problems with non-local boundary condition. These singular perturbation problems are described by differential equations in which the highest-order derivative is multiplied by an arbitrarily small parameter ε (say) known as singular perturbation parameter. This leads to the existence of boundary layers, which are basically narrow regions in the neighborhood of the boundary of the domain, where the gradient of the solution becomes steep as the perturbation parameter tends to zero. Due to the appearance of the layer phenomena, it is a challenging task to provide ε-uniform numerical methods. The term 'ε-uniform' refers to identify those numerical methods in which the approximate solution converges to the corresponding exact solution (measured to the supremum norm) independently with respect to the perturbation parameter ε. Thus, the purpose of this work is to develop, analyze, and improve the ε-uniform numerical methods for solving singularly perturbed problems. These methods are based on nonstandard fitted finite difference method. The basic idea behind the fitted operator, finite difference method, is to replace the denominator functions of the classical derivatives with positive functions derived in such a way that they capture some notable properties of the governing differential equation. A uniformly convergent numerical method is constructed via nonstandard fitted operator numerical method and numerical integration methods to solve the problem. The non-local boundary condition is treated using numerical integration techniques. Additionally, Richardson extrapolation technique, which improves the first-order accuracy of the standard scheme to second-order convergence, is applied for singularly perturbed convection-diffusion problems using the proposed numerical method. Maximum absolute errors and rates of convergence for different values of perturbation parameter and mesh sizes are tabulated for the numerical example considered. The method is shown to be ε-uniformly convergent. Finally, extensive numerical experiments are conducted which support all of our theoretical findings. A concise conclusion is provided at the end of this work.

Keywords: nonlocal boundary condition, nonstandard fitted operator, semilinear problem, singular perturbation, uniformly convergent

Procedia PDF Downloads 143
2041 A Phase Field Approach to Model Crack Interface Interaction in Ceramic Matrix Composites

Authors: Dhaladhuli Pranavi, Amirtham Rajagopal

Abstract:

There are various failure modes in ceramic matrix composites; notable ones are fiber breakage, matrix cracking and fiber matrix debonding. Crack nucleation and propagation in microstructure of such composites requires an understanding of interaction of crack with the multiple inclusion heterogeneous system and interfaces. In order to assess structural integrity, the material parameters especially of the interface that governs the crack growth should be determined. In the present work, a nonlocal phase field approach is proposed to model the crack interface interaction in such composites. Nonlocal approaches help in understanding the complex mechanisms of delamination growth and mitigation and operates at a material length scale. The performance of the proposed formulation is illustrated through representative numerical examples. The model proposed is implemented in the framework of the finite element method. Several parametric studies on interface crack interaction are conducted. The proposed model is easy and simple to implement and works very well in modeling fracture in composite systems.

Keywords: composite, interface, nonlocal, phase field

Procedia PDF Downloads 142
2040 A Nonlocal Means Algorithm for Poisson Denoising Based on Information Geometry

Authors: Dongxu Chen, Yipeng Li

Abstract:

This paper presents an information geometry NonlocalMeans(NLM) algorithm for Poisson denoising. NLM estimates a noise-free pixel as a weighted average of image pixels, where each pixel is weighted according to the similarity between image patches in Euclidean space. In this work, every pixel is a Poisson distribution locally estimated by Maximum Likelihood (ML), all distributions consist of a statistical manifold. A NLM denoising algorithm is conducted on the statistical manifold where Fisher information matrix can be used for computing distribution geodesics referenced as the similarity between patches. This approach was demonstrated to be competitive with related state-of-the-art methods.

Keywords: image denoising, Poisson noise, information geometry, nonlocal-means

Procedia PDF Downloads 285
2039 Vibration of Nonhomogeneous Timoshenko Nanobeam Resting on Winkler-Pasternak Foundation

Authors: Somnath Karmakar, S. Chakraverty

Abstract:

This work investigates the vibration of nonhomogeneous Timoshenko nanobeam resting on the Winkler-Pasternak foundation. Eringen’s nonlocal theory has been used to investigate small-scale effects. The Differential Quadrature method is used to obtain the frequency parameters with various classical boundary conditions. The nonhomogeneous beam model has been considered, where Young’s modulus and density of the beam material vary linearly and quadratically. Convergence of frequency parameters is also discussed. The influence of mechanical properties and scaling parameters on vibration frequencies are investigated for different boundary conditions.

Keywords: Timoshenko beam, Eringen's nonlocal theory, differential quadrature method, nonhomogeneous nanobeam

Procedia PDF Downloads 115
2038 Melnikov Analysis for the Chaos of the Nonlocal Nanobeam Resting on Fractional-Order Softening Nonlinear Viscoelastic Foundations

Authors: Guy Joseph Eyebe, Gambo Betchewe, Alidou Mohamadou, Timoleon Crepin Kofane

Abstract:

In the present study, the dynamics of nanobeam resting on fractional order softening nonlinear viscoelastic pasternack foundations is studied. The Hamilton principle is used to derive the nonlinear equation of the motion. Approximate analytical solution is obtained by applying the standard averaging method. The Melnikov method is used to investigate the chaotic behaviors of device, the critical curve separating the chaotic and non-chaotic regions are found. It is shown that appearance of chaos in the system depends strongly on the fractional order parameter.

Keywords: chaos, fractional-order, Melnikov method, nanobeam

Procedia PDF Downloads 159
2037 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models

Authors: Yoonsuh Jung

Abstract:

As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an "optimal" value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.

Keywords: cross validation, parameter averaging, parameter selection, regularization parameter search

Procedia PDF Downloads 415
2036 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium

Authors: Nidhal Jamia, Sami El-Borgi

Abstract:

In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.

Keywords: functionally graded piezoelectric material (FGPM), mixed-mode crack, non-local theory, Schmidt method

Procedia PDF Downloads 308
2035 Parameter Selection for Computationally Efficient Use of the Bfvrns Fully Homomorphic Encryption Scheme

Authors: Cavidan Yakupoglu, Kurt Rohloff

Abstract:

In this study, we aim to provide a novel parameter selection model for the BFVrns scheme, which is one of the prominent FHE schemes. Parameter selection in lattice-based FHE schemes is a practical challenges for experts or non-experts. Towards a solution to this problem, we introduce a hybrid principles-based approach that combines theoretical with experimental analyses. To begin, we use regression analysis to examine the parameters on the performance and security. The fact that the FHE parameters induce different behaviors on performance, security and Ciphertext Expansion Factor (CEF) that makes the process of parameter selection more challenging. To address this issue, We use a multi-objective optimization algorithm to select the optimum parameter set for performance, CEF and security at the same time. As a result of this optimization, we get an improved parameter set for better performance at a given security level by ensuring correctness and security against lattice attacks by providing at least 128-bit security. Our result enables average ~ 5x smaller CEF and mostly better performance in comparison to the parameter sets given in [1]. This approach can be considered a semiautomated parameter selection. These studies are conducted using the PALISADE homomorphic encryption library, which is a well-known HE library. The abstract goes here.

Keywords: lattice cryptography, fully homomorphic encryption, parameter selection, LWE, RLWE

Procedia PDF Downloads 154
2034 Application of a New Efficient Normal Parameter Reduction Algorithm of Soft Sets in Online Shopping

Authors: Xiuqin Ma, Hongwu Qin

Abstract:

A new efficient normal parameter reduction algorithm of soft set in decision making was proposed. However, up to the present, few documents have focused on real-life applications of this algorithm. Accordingly, we apply a New Efficient Normal Parameter Reduction algorithm into real-life datasets of online shopping, such as Blackberry Mobile Phone Dataset. Experimental results show that this algorithm is not only suitable but feasible for dealing with the online shopping.

Keywords: soft sets, parameter reduction, normal parameter reduction, online shopping

Procedia PDF Downloads 510
2033 Critical Buckling Load of Carbon Nanotube with Non-Local Timoshenko Beam Using the Differential Transform Method

Authors: Tayeb Bensattalah, Mohamed Zidour, Mohamed Ait Amar Meziane, Tahar Hassaine Daouadji, Abdelouahed Tounsi

Abstract:

In this paper, the Differential Transform Method (DTM) is employed to predict and to analysis the non-local critical buckling loads of carbon nanotubes with various end conditions and the non-local Timoshenko beam described by single differential equation. The equation differential of buckling of the nanobeams is derived via a non-local theory and the solution for non-local critical buckling loads is finding by the DTM. The DTM is introduced briefly. It can easily be applied to linear or nonlinear problems and it reduces the size of computational work. Influence of boundary conditions, the chirality of carbon nanotube and aspect ratio on non-local critical buckling loads are studied and discussed. Effects of nonlocal parameter, ratios L/d, the chirality of single-walled carbon nanotube, as well as the boundary conditions on buckling of CNT are investigated.

Keywords: boundary conditions, buckling, non-local, differential transform method

Procedia PDF Downloads 301
2032 Bleeding-Heart Altruists and Calculating Utilitarians: Applying Process Dissociation to Self-sacrificial Dilemmas

Authors: David Simpson, Kyle Nash

Abstract:

There is considerable evidence linking slow, deliberative reasoning (system 2) with utilitarian judgments in dilemmas involving the sacrificing of another person for the greater good (other-sacrificial dilemmas). Joshua Greene has argued, based on this kind of evidence, that system 2 drives utilitarian judgments. However, the evidence on whether system 2 is associated with utilitarian judgments in self-sacrificial dilemmas is more mixed. We employed process dissociation to measure a self-sacrificial utilitarian (SU) parameter and an other-sacrificial (OU) utilitarian parameter. It was initially predicted that contra Greene, the cognitive reflection test (CRT) would only be positively correlated with the OU parameter and not the SU parameter. However, Greene’s hypothesis was corroborated: the CRT positively correlated with both the OU parameter and the SU parameter. By contrast, the CRT did not correlate with the other two moral parameters we extracted (altruism and deontology).

Keywords: dual-process model, utilitarianism, altruism, reason, emotion, process dissociation

Procedia PDF Downloads 153
2031 Robust Stabilization of Rotational Motion of Underwater Robots against Parameter Uncertainties

Authors: Riku Hayashida, Tomoaki Hashimoto

Abstract:

This paper provides a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. Underwater robots are expected to be used for various work assignments. The large variety of applications of underwater robots motivates researchers to develop control systems and technologies for underwater robots. Several control methods have been proposed so far for the stabilization of nominal system model of underwater robots with no parameter uncertainty. Parameter uncertainties are considered to be obstacles in implementation of the such nominal control methods for underwater robots. The objective of this study is to establish a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: robust control, stabilization method, underwater robot, parameter uncertainty

Procedia PDF Downloads 160
2030 Method of Parameter Calibration for Error Term in Stochastic User Equilibrium Traffic Assignment Model

Authors: Xiang Zhang, David Rey, S. Travis Waller

Abstract:

Stochastic User Equilibrium (SUE) model is a widely used traffic assignment model in transportation planning, which is regarded more advanced than Deterministic User Equilibrium (DUE) model. However, a problem exists that the performance of the SUE model depends on its error term parameter. The objective of this paper is to propose a systematic method of determining the appropriate error term parameter value for the SUE model. First, the significance of the parameter is explored through a numerical example. Second, the parameter calibration method is developed based on the Logit-based route choice model. The calibration process is realized through multiple nonlinear regression, using sequential quadratic programming combined with least square method. Finally, case analysis is conducted to demonstrate the application of the calibration process and validate the better performance of the SUE model calibrated by the proposed method compared to the SUE models under other parameter values and the DUE model.

Keywords: parameter calibration, sequential quadratic programming, stochastic user equilibrium, traffic assignment, transportation planning

Procedia PDF Downloads 299