Abstracts | Industrial and Systems Engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 613

World Academy of Science, Engineering and Technology

[Industrial and Systems Engineering]

Online ISSN : 1307-6892

613 Concentrated Solar Energy Sintering of Multifunctional Metallic Alloys

Authors: Catalin Croitoru, Ionut Claudiu Roata

Abstract:

Employing concentrated solar energy (CSE) for sintering metallic parts offers distinct advantages, notably in the rapid thermal cycling that significantly influences their microstructure and phase transitions. This study uses the thermal control that CSE affords, enhancing the mechanical properties and tailoring the functionality of nickel-based alloys. We synthesized bulk alloys by sintering Ni-Cr-Al-Y powders in varied ratios using a vertical solar furnace at PROMES-CNRS, Font-Romeu Odeillo, France. The process achieved optimal fusion at 800°C for 10 minutes, resulting in materials with a notable hydrophilic surface due to oxide formation. The alloys’ performance was evaluated through corrosion resistance tests in a 3.5% wt. NaCl solution, utilizing potentiodynamic scanning and electrochemical impedance spectroscopy. Our findings demonstrate the potential of CSE in advancing the material properties of nickel-based alloys for diverse applications.

Keywords: concentrated solar energy, sintering, corrosion resistance, surface properties

Procedia PDF Downloads 5
612 Data Transformations in Data Envelopment Analysis

Authors: Mansour Mohammadpour

Abstract:

Data transformation refers to the modification of any point in a data set by a mathematical function. When applying transformations, the measurement scale of the data is modified. Data transformations are commonly employed to turn data into the appropriate form, which can serve various functions in the quantitative analysis of the data. This study addresses the investigation of the use of data transformations in Data Envelopment Analysis (DEA). Although data transformations are important options for analysis, they do fundamentally alter the nature of the variable, making the interpretation of the results somewhat more complex.

Keywords: data transformation, data envelopment analysis, undesirable data, negative data

Procedia PDF Downloads 7
611 USTTB (UCRC) Financial Management, Strengths and Weaknesses

Authors: Samba Lamine Cisse, Cheick Oumar Tangara, Seynabou Sissoko, Mahamadou Diakite, Seydou Doumbia

Abstract:

Background: Financial management of a scientific research center is a crucial element in achieving ambitious scientific goals. It can be a driving force for research success, but it also has shortcomings that are important to understand. This study focuses on the crucial aspects of financial management in the context of scientific research centers, more specifically the USTTB (UCRC) in Mali in terms of strengths and weaknesses. Methodology: This study concerns the case of the UCRC, one of the USTTB's research centers. It is a qualitative study based on years of experience in project management at the USTTB, and on analyses and interpretations of everyday activities. Result: It offers practical recommendations for improving the financial stability of research institutions, thereby contributing to their mission of promoting scientific research and innovation. Scientific research centers play a crucial role in the development of knowledge, and their effective operation largely depends on the appropriate management of their financial resources. It begins with an in-depth analysis of UCRC's typical financial structure, highlighting its types and sources of funding, followed by an analysis of the strengths and weaknesses of its current financial management system. Conclusion: Financial management of a scientific research center is essential to ensure the continuity of research activities, the development of innovative projects and the achievement of scientific objectives. Adaptive financial management focused on efficiency, diversification of funding and risk control. They are essential to meeting these challenges and fostering excellence in scientific research.

Keywords: financial, management, strengths, weaknesses, recommendations

Procedia PDF Downloads 3
610 Quantification Of Uncertainties Related To The Implementation Of Reverse Logistics Process

Authors: Dnaya Soukaina

Abstract:

It’s over six decades that Reverse logistics had appeared as a research area, and it is emerging again and again in the scientific fields. As reverse logistics presents real potential for value recovery and environmental impacts decrease, it’s still necessary to extend this concept more in the industrial and commercial field especially in developing countries. The process of reverse logistics is a progression of steps beginning with the customer and finishing with the organization or even the customer, however the issue is that this cycle must be adjustable to the organization concerned, in addition of legislative, operational, financial and social obstacles. Literature had demonstrated that there are many other uncertainties while the implementation of this process that vary in function of the sector concerned and the kind of activity. Besides, even if literature is developing this topic over the last years, reseraches about uncertainties quantification in reverse logistics process still being few. the paper has the objective to fill this gap, and carry out a study to identify sustainable strategies that can be adapted to different industrial or commercial sectors to facilitate the implementation of reverse logistics.

Keywords: reverse logistics, implementation, unceratinties quantification, mathematical model

Procedia PDF Downloads 8
609 Research on the Optimization of Satellite Mission Scheduling

Authors: Pin-Ling Yin, Dung-Ying Lin

Abstract:

Satellites play an important role in our daily lives, from monitoring the Earth's environment and providing real-time disaster imagery to predicting extreme weather events. As technology advances and demands increase, the tasks undertaken by satellites have become increasingly complex, with more stringent resource management requirements. A common challenge in satellite mission scheduling is the limited availability of resources, including onboard memory, ground station accessibility, and satellite power. In this context, efficiently scheduling and managing the increasingly complex satellite missions under constrained resources has become a critical issue that needs to be addressed. The core of Satellite Onboard Activity Planning (SOAP) lies in optimizing the scheduling of the received tasks, arranging them on a timeline to form an executable onboard mission plan. This study aims to develop an optimization model that considers the various constraints involved in satellite mission scheduling, such as the non-overlapping execution periods for certain types of tasks, the requirement that tasks must fall within the contact range of specified types of ground stations during their execution, onboard memory capacity limits, and the collaborative constraints between different types of tasks. Specifically, this research constructs a mixed-integer programming mathematical model and solves it with a commercial optimization package. Simultaneously, as the problem size increases, the problem becomes more difficult to solve. Therefore, in this study, a heuristic algorithm has been developed to address the challenges of using commercial optimization package as the scale increases. The goal is to effectively plan satellite missions, maximizing the total number of executable tasks while considering task priorities and ensuring that tasks can be completed as early as possible without violating feasibility constraints. To verify the feasibility and effectiveness of the algorithm, test instances of various sizes were generated, and the results were validated through feedback from on-site users and compared against solutions obtained from a commercial optimization package. Numerical results show that the algorithm performs well under various scenarios, consistently meeting user requirements. The satellite mission scheduling algorithm proposed in this study can be flexibly extended to different types of satellite mission demands, achieving optimal resource allocation and enhancing the efficiency and effectiveness of satellite mission execution.

Keywords: mixed-integer programming, meta-heuristics, optimization, resource management, satellite mission scheduling

Procedia PDF Downloads 8
608 Multi-Objective Optimization for Aircraft Fleet Management: A Parametric Approach

Authors: Xin-Yu Li, Dung-Ying Lin

Abstract:

Fleet availability is a crucial indicator for an aircraft fleet. However, in practice, fleet planning involves many resource and safety constraints, such as annual and monthly flight training targets and maximum engine usage limits. Due to safety considerations, engines must be removed for mandatory maintenance and replacement of key components. This situation is known as the "threshold." The annual number of thresholds is a key factor in maintaining fleet availability. However, the traditional method heavily relies on experience and manual planning, which may result in ineffective engine usage and affect the flight missions. This study aims to address the challenges of fleet planning and availability maintenance in aircraft fleets with resource and safety constraints. The goal is to effectively optimize engine usage and maintenance tasks. This study has four objectives: minimizing the number of engine thresholds, minimizing the monthly lack of flight hours, minimizing the monthly excess of flight hours, and minimizing engine disassembly frequency. To solve the resulting formulation, this study uses parametric programming techniques and ϵ-constraint method to reformulate multi-objective problems into single-objective problems, efficiently generating Pareto fronts. This method is advantageous when handling multiple conflicting objectives. It allows for an effective trade-off between these competing objectives. Empirical results and managerial insights will be provided.

Keywords: aircraft fleet, engine utilization planning, multi-objective optimization, parametric method, Pareto optimality

Procedia PDF Downloads 9
607 Harmonizing Cities: Integrating Land Use Diversity and Multimodal Transit for Social Equity

Authors: Zi-Yan Chao

Abstract:

With the rapid development of urbanization and increasing demand for efficient transportation systems, the interaction between land use diversity and transportation resource allocation has become a critical issue in urban planning. Achieving a balance of land use types, such as residential, commercial, and industrial areas, is crucial role in ensuring social equity and sustainable urban development. Simultaneously, optimizing multimodal transportation networks, including bus, subway, and car routes, is essential for minimizing total travel time and costs, while ensuring fairness for all social groups, particularly in meeting the transportation needs of low-income populations. This study develops a bilevel programming model to address these challenges, with land use diversity as the foundation for measuring equity. The upper-level model maximizes land use diversity for balanced land distribution across regions. The lower-level model optimizes multimodal transportation networks to minimize travel time and costs while maintaining user equilibrium. The model also incorporates constraints to ensure fair resource allocation, such as balancing transportation accessibility and cost differences across various social groups. A solution approach is developed to solve the bilevel optimization problem, ensuring efficient exploration of the solution space for land use and transportation resource allocation. This study maximizes social equity by maximizing land use diversity and achieving user equilibrium with optimal transportation resource distribution. The proposed method provides a robust framework for addressing urban planning challenges, contributing to sustainable and equitable urban development.

Keywords: bilevel programming model, genetic algorithms, land use diversity, multimodal transportation optimization, social equity

Procedia PDF Downloads 8
606 Optimizing CNC Production Line Efficiency Using NSGA-II: Adaptive Layout and Operational Sequence for Enhanced Manufacturing Flexibility

Authors: Yi-Ling Chen, Dung-Ying Lin

Abstract:

In the manufacturing process, computer numerical control (CNC) machining plays a crucial role. CNC enables precise machinery control through computer programs, achieving automation in the production process and significantly enhancing production efficiency. However, traditional CNC production lines often require manual intervention for loading and unloading operations, which limits the production line's operational efficiency and production capacity. Additionally, existing CNC automation systems frequently lack sufficient intelligence and fail to achieve optimal configuration efficiency, resulting in the need for substantial time to reconfigure production lines when producing different products, thereby impacting overall production efficiency. Using the NSGA-II algorithm, we generate production line layout configurations that consider field constraints and select robotic arm specifications from an arm list. This allows us to calculate loading and unloading times for each job order, perform demand allocation, and assign processing sequences. The NSGA-II algorithm is further employed to determine the optimal processing sequence, with the aim of minimizing demand completion time and maximizing average machine utilization. These objectives are used to evaluate the performance of each layout, ultimately determining the optimal layout configuration. By employing this method, it enhance the configuration efficiency of CNC production lines and establish an adaptive capability that allows the production line to respond promptly to changes in demand. This will minimize production losses caused by the need to reconfigure the layout, ensuring that the CNC production line can maintain optimal efficiency even when adjustments are required due to fluctuating demands.

Keywords: evolutionary algorithms, multi-objective optimization, pareto optimality, layout optimization, operations sequence

Procedia PDF Downloads 10
605 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing

Authors: Huan Ting Liao

Abstract:

In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.

Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning

Procedia PDF Downloads 7
604 Housing Prices and Travel Costs: Insights from Origin-Destination Demand Estimation in Taiwan’s Science Parks

Authors: Kai-Wei Ji, Dung-Ying Lin

Abstract:

This study investigates the impact of transportation on housing prices in regions surrounding Taiwan's science parks. As these parks evolve into crucial economic and population growth centers, they attract an increasing number of residents and workers, significantly influencing local housing markets. This demographic shift raises important questions about the role of transportation in shaping real estate values. Our research examines four major science parks in Taiwan, providing a comparative analysis of how transportation conditions and population dynamics interact to affect housing price premiums. We employ an origin-destination (OD) matrix derived from pervasive traffic data to model travel patterns and their effects on real estate values. The methodology utilizes a bi-level framework: a genetic algorithm optimizes OD demand estimation at the upper level, while a user equilibrium (UE) model simulates traffic flow at the lower level. This approach enables a nuanced exploration of how population growth impacts transportation conditions and housing price premiums. By analyzing the interplay between travel costs based on OD demand estimation and housing prices, we offer valuable insights for urban planners and policymakers. These findings are crucial for informed decision-making in rapidly developing areas, where understanding the relationship between mobility and real estate values is essential for sustainable urban development.

Keywords: demand estimation, genetic algorithm, housing price, transportation

Procedia PDF Downloads 8
603 Optimizing Electric Vehicle Charging Networks with Dynamic Pricing and Demand Elasticity

Authors: Chiao-Yi Chen, Dung-Ying Lin

Abstract:

With the growing awareness of environmental protection and the implementation of government carbon reduction policies, the number of electric vehicles (EVs) has rapidly increased, leading to a surge in charging demand and imposing significant challenges on the existing power grid’s capacity. Traditional urban power grid planning has not adequately accounted for the additional load generated by EV charging, which often strains the infrastructure. This study aims to optimize grid operation and load management by dynamically adjusting EV charging prices based on real-time electricity supply and demand, leveraging consumer demand elasticity to enhance system efficiency. This study uniquely addresses the intricate interplay between urban traffic patterns and power grid dynamics in the context of electric vehicle (EV) adoption. By integrating Hsinchu City's road network with the IEEE 33-bus system, the research creates a comprehensive model that captures both the spatial and temporal aspects of EV charging demand. This approach allows for a nuanced analysis of how traffic flow directly influences the load distribution across the power grid. The strategic placement of charging stations at key nodes within the IEEE 33-bus system, informed by actual road traffic data, enables a realistic simulation of the dynamic relationship between vehicle movement and energy consumption. This integration of transportation and energy systems provides a holistic view of the challenges and opportunities in urban EV infrastructure planning, highlighting the critical need for solutions that can adapt to the ever-changing interplay between traffic patterns and grid capacity. The proposed dynamic pricing strategy effectively reduces peak charging loads, enhances the operational efficiency of charging stations, and maximizes operator profits, all while ensuring grid stability. These findings provide practical insights and a valuable framework for optimizing EV charging infrastructure and policies in future smart cities, contributing to more resilient and sustainable urban energy systems.

Keywords: dynamic pricing, demand elasticity, EV charging, grid load balancing, optimization

Procedia PDF Downloads 5
602 Intelligent Staff Scheduling: Optimizing the Solver with Tabu Search

Authors: Yu-Ping Chiu, Dung-Ying Lin

Abstract:

Traditional staff scheduling methods, relying on employee experience, often lead to inefficiencies and resource waste. The challenges of transferring scheduling expertise and adapting to changing labor regulations further complicate this process. Manual approaches become increasingly impractical as companies accumulate complex scheduling rules over time. This study proposes an algorithmic optimization approach to address these issues, aiming to expedite scheduling while ensuring strict compliance with labor regulations and company policies. The method focuses on generating optimal schedules that minimize weighted company objectives within a compressed timeframe. Recognizing the limitations of conventional commercial software in modeling and solving complex real-world scheduling problems efficiently, this research employs Tabu Search with both long-term and short-term memory structures. The study will present numerical results and managerial insights to demonstrate the effectiveness of this approach in achieving intelligent and efficient staff scheduling.

Keywords: intelligent memory structures, mixed integer programming, meta-heuristics, staff scheduling problem, tabu search

Procedia PDF Downloads 6
601 A Framework for Building Information Modelling Execution Plan in the Construction Industry, Lagos State, Nigeria

Authors: Tosin Deborah Akanbi

Abstract:

The Building Information Modeling Execution Plan (BEP) is a document that manifests the specifications for the adoption and execution of building information modeling in the construction sector in an organized manner so as to attain the listed goals. In this regard, the study examined the barriers to the adoption of building information modeling, evaluated the effect of building information modeling adoption characteristics on the key elements of a building information modeling execution plan and developed a strategic framework for a BEP in the Lagos State construction industry. Data were gathered through a questionnaire survey with 332 construction professionals in the study area. Three online structured interviews were conducted to support and validate the findings of the quantitative analysis. The results showed the significant relationships and connections between the variables in the framework: BIM usage and model quality control (aBIMskill -> dMQ, Beta = 0.121, T statistics = 1.829), BIM adoption characteristics and information exchange (bBIM_CH -> dIE, Beta = 0.128, T statistics = 1.727), BIM adoption characteristics and process design (bBIM_CH -> dPD, Beta = 0.170, T statistics = 2.754), BIM adoption characteristics and roles and responsibilities (bBIM_CH -> dRR, Beta = 0.131, T statistics = 2.181), interest BIM barriers and BIM adoption characteristics (cBBIM_INT -> bBIM_CH, Beta = 0.137, T statistics = 2.309), legal BIM barriers and BIM adoption characteristics (cBBIM_LEG -> bBIM_CH, Beta = 0.168, T statistics = 2.818), professional BIM barriers and BIM adoption characteristics (cBBIM_PRO -> bBIM_CH, Beta = 0.152, T statistics = 2.645). The results also revealed that seven final themes were generated, namely: model structure and process design, BIM information exchange and collaboration procedures, project goals and deliverables, project model quality control, roles and responsibilities, reflect Lagos state construction industry and validity of the BEP framework. Thus, there is a need for the policy makers to direct interventions to promote, encourage and support the understanding and adoption of BIM by emphasizing the various benefits of using the technology in the Lagos state construction industry.

Keywords: building information modelling execution plan, BIM adoption characteristics, BEP framework, construction industry

Procedia PDF Downloads 10
600 Supply Chain Resilience Strategies and Their Impact on Supply Chain Sustainability of the Export-oriented Apparel Industry in Sri Lanka

Authors: Anuradha Ranawakage, Nimalashanithi Amarasekara

Abstract:

Supply chain resilience and sustainability have received great attention from both academia and business professionals since last few decades. However, the relationship between supply chain resilience and sustainability has not been empirically tested in the apparel industry, where both concepts play a crucial role. Thus, this study aims to investigate how supply chain resilience strategies (digital connectivity, inventory and reserve capacity, and collaboration) impact the supply chain sustainability of export-oriented apparel manufacturing companies in Sri Lanka. An online questionnaire was used to collect data on the impact of supply chain resilience strategies on the supply chain sustainability of 99 apparel companies operating in Sri Lanka. This research makes a significant contribution to the field of supply chain management by assessing the impact of supply chain resilience strategies on supply chain sustainability in the context of the developing country, Sri Lanka, where economic crises and the pandemic have had a profound impact on the apparel industry. The findings have important theoretical and managerial implications for maintaining congruence between supply chain resilience and supply chain sustainability in the long run.

Keywords: supply chain resilience, supply chain sustainability, apparel, supply chain

Procedia PDF Downloads 15
599 Modification of Working Conditions Based on Participatory Ergonomics to Improve Occupational Health and Safety (K3) and Welding Worker Productivity

Authors: Tri Wisudawati, Radita Dwi Putera

Abstract:

The role of human resources is the basic capital in determining the purpose of a business place. Without the role of human resources, activities in the company will not run smoothly. Every business place always has a risk of accidents. The magnitude of the risk that occurs depends on the type of industry, technology, and risk control efforts made. Work-related accidents are accidents that occur due to work or while carrying out work. Welding MSMEs have a fairly high risk to health, safety and the environment both from the side of workers who can cause accidents and from the side of the work environment, which has the potential to become a hazard and risk. Participatory ergonomic intervention can be a feasible and effective approach to reducing exposure to work-related risk factors in developing country industries. Complaints about occupational health and safety experienced by workers in the welding workshop industry should be able to be overcome by implementing an ergonomic intervention approach. The analysis process includes HIRARC analysis, participatory ergonomics analysis, and SEM-PLS analysis. Hierarch analysis is carried out by assessing the level of severity and likelihood, as well as risk control. At the participatory ergonomics analysis stage, it is obtained from the organizational culture and organizational stakeholders. At the SEM-PLS stage, an analysis is carried out to see whether there is a strong relationship between the research variables in order to produce occupational health and safety (K3) and worker productivity in the welding shop better and in accordance with welding safety standards. So that the output of this study is how participatory ergonomics interventions affect working conditions to improve occupational health and safety and the productivity of welding workers.

Keywords: ergonomic partisipatory, health and safety, welding workers, welding safety

Procedia PDF Downloads 15
598 From Comfort to Safety: Assessing the Influence of Car Seat Design on Driver Reaction and Performance

Authors: Sabariah Mohd Yusoff, Qamaruddin Adzeem Muhamad Murad

Abstract:

This study investigates the impact of car seat design on driver response time, addressing a critical gap in understanding how ergonomic features influence both performance and safety. Controlled driving experiments were conducted with fourteen participants (11 male, 3 female) across three locations chosen for their varying traffic conditions to account for differences in driver alertness. Participants interacted with various seat designs while performing driving tasks, and objective metrics such as braking and steering response times were meticulously recorded. Advanced statistical methods, including regression analysis and t-tests, were employed to identify design factors that significantly affect driver response times. Subjective feedback was gathered through detailed questionnaires—focused on driving experience and knowledge of response time—and in-depth interviews. This qualitative data was analyzed thematically to provide insights into driver comfort and usability preferences. The study aims to identify key seat design features that impact driver response time and to gain a deeper understanding of driver preferences for comfort and usability. The findings are expected to inform evidence-based guidelines for optimizing car seat design, ultimately enhancing driver performance and safety. The research offers valuable implications for automotive manufacturers and designers, contributing to the development of seats that improve driver response time and overall driving safety.

Keywords: car seat design, driver response time, cognitive driving, ergonomics optimization

Procedia PDF Downloads 14
597 The Relationships between Sustainable Supply Chain Management Practices, Digital Transformation, and Enterprise Performance in Vietnam

Authors: Thi Phuong Pham

Abstract:

This paper explores the intricate relationships between Sustainable Supply Chain Management (SSCM) practices, digital transformation (DT), and enterprise performance within the context of Vietnam. Over the past two decades, there has been a paradigm shift in supply chain management, with sustainability gaining prominence due to increasing concerns about climate change, labor practices, and the environmental impact of business operations. In the ever-evolving realm of global business, sustainability and digital transformation (DT) intersecting dynamics have become pivotal catalysts for organizational success. This research investigates how integrating SSCM with DT can enhance enterprise performance, a subject of significant relevance as Vietnam undergoes rapid economic growth and digital transformation. The primary objectives of this research are twofold: (1) to examine the effects of SSCM practices on enterprise performance in three critical aspects: economic, environmental, and social performance in Vietnam and (2) to explore the mediating role of DT in this relationship. By analyzing these dynamics, the study aims to provide valuable insights for policymakers and the academic community regarding the potential benefits of aligning SSCM principles with digital technologies. To achieve these objectives, the research employs a robust mixed-method approach. The research begins with a comprehensive literature review to establish a theoretical framework that underpins the empirical analysis. Data collection was conducted through a structured survey targeting Vietnamese enterprises, with the survey instrument designed to measure SSCM practices, DT, and enterprise performance using a five-point Likert scale. The reliability and validity of the survey were ensured by pre-testing with industry practitioners and refining the questionnaire based on their feedback. For data analysis, structural equation modeling (SEM) was employed to quantify the direct effects of SSCM on enterprise performance, while mediation analysis using the PROCESS Macro 4.0 in SPSS was conducted to assess the mediating role of DT. The findings reveal that SSCM practices positively influence enterprise performance by enhancing operational efficiency, reducing costs, and improving sustainability metrics. Furthermore, DT acts as a significant mediator, amplifying the positive impacts of SSCM practices through improved data management, enhanced communication, and more agile supply chain processes. These results underscore the critical role of DT in maximizing the benefits of SSCM practices, particularly in a developing economy like Vietnam. This research contributes to the existing body of knowledge by highlighting the synergistic effects of SSCM and DT on enterprise performance. It offers practical implications for businesses that enhance their sustainability and digital capabilities, providing a roadmap for integrating these two pivotal aspects to achieve competitive advantage. The study's insights can also inform governmental policies designed to foster sustainable economic growth and digital innovation in Vietnam.

Keywords: sustainable supply chain management, digital transformation, enterprise performance, Vietnam

Procedia PDF Downloads 15
596 AI-Driven Solutions for Optimizing Master Data Management

Authors: Srinivas Vangari

Abstract:

In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.

Keywords: artificial intelligence, master data management, data governance, data quality

Procedia PDF Downloads 9
595 Transformative Digital Trends in Supply Chain Management: The Role of Artificial Intelligence

Authors: Srinivas Vangari

Abstract:

With the technological advancements around the globe, artificial intelligence (AI) has boosted supply chain management (SCM) by improving efficiency, sensitivity, and promptness. Artificial intelligence-based SCM provides comprehensive perceptions of consumer behavior in dynamic market situations and trends, foreseeing the accurate demand. It reduces overproduction and stockouts while optimizing production planning and streamlining operations. Consequently, the AI-driven SCM produces a customer-centric supply with resilient and robust operations. Intending to delve into the transformative significance of AI in SCM, this study focuses on improving efficiency in SCM with the integration of AI, understanding the production demand, accurate forecasting, and particular production planning. The study employs a mixed-method approach and expert survey insights to explore the challenges and benefits of AI applications in SCM. Further, a case analysis is incorporated to identify the best practices and potential challenges with the critical success features in AI-driven SCM. Key findings of the study indicate the significant advantages of the AI-integrated SCM, including optimized inventory management, improved transportation and logistics management, cost optimization, and advanced decision-making, positioning AI as a pivotal force in the future of supply chain management.

Keywords: artificial intelligence, supply chain management, accurate forecast, accurate planning of production, understanding demand

Procedia PDF Downloads 16
594 Dairy Value Chain: Assessing the Inter Linkage of Dairy Farm and Small-Scale Dairy Processing in Tigray: Case Study of Mekelle City

Authors: Weldeabrha Kiros Kidanemaryam, DepaTesfay Kelali Gidey, Yikaalo Welu Kidanemariam

Abstract:

Dairy services are considered as sources of income, employment, nutrition and health for smallholder rural and urban farmers. The main objective of this study is to assess the interlinkage of dairy farms and small-scale dairy processing in Mekelle, Tigray. To achieve the stated objective, a descriptive research approach was employed where data was collected from 45 dairy farmers and 40 small-scale processors and analyzed by calculating the mean values and percentages. Findings show that the dairy business in the study area is characterized by a shortage of feed and water for the farm. The dairy farm is dominated by breeds of hybrid type, followed by the so called ‘begait’. Though the farms have access to medication and vaccination for the cattle, they fell short of hygiene practices, reliable shade for the cattle and separate space for the claves. The value chain at the milk production stage is characterized by a low production rate, selling raw milk without adding value and a very meager traditional processing practice. Furthermore, small-scale milk processors are characterized by collecting milk from farmers and producing cheese, butter, ghee and sour milk. They do not engage in modern milk processing like pasteurized milk, yogurt and table butter. Most small-scale milk processors are engaged in traditional production systems. Additionally, the milk consumption and marketing part of the chain is dominated by the informal market (channel), where market problems, lack of skill and technology, shortage of loans and weak policy support are being faced as the main challenges. Based on the findings, recommendations and future research areas are forwarded.

Keywords: value-chain, dairy, milk production, milk processing

Procedia PDF Downloads 21
593 Enhancing Intra-Organizational Supply Chain Relationships in Manufacturing Companies: A Case Study in Tigray, Ethiopia

Authors: Weldeabrha Kiros Kidanemaryam

Abstract:

The investigation is to examine intra-organizational supply chain relationships of firms, which will help to look at and give an emphasis on internal processes and operations strength and achievements to make an influence even for external relationship management and outstanding performances of organizations. The purpose of the study is to scrutinize the internal supply chain relationships within manufacturing companies located in Tigray. The qualitative and quantitative data analysis methods were employed during the study by applying the primary data sources (questionnaires & interviews) and secondary data sources (organizational reports and documents) with the purposive sampling method. Thus, a descriptive research design was also applied in the research project in line with the cross-sectional research design which portrays simply the magnitude of the issues and problems by collecting the required and necessary data once from the sample respondents. This is because the study variables don’t have any cause-and-effect relationship in the research project that requires other types of research design than a descriptive research design; it already needs to be assessed and analyzed with a detailed description of the results after quantifying the outcomes and degree of the issues and problems based on the data gathered from respondents. The collected data was also analyzed by using the statistical package for social sciences (SPSS Version 20). The intra-organizational relationships of the companies are moderately accomplished, which requires an improvement for enhancing the performances of each unit or department within the firms so as to upgrade and ensure the progress of the companies’ effectiveness and efficiency. Moreover, the manufacturing companies have low industrial discipline and working culture, weak supervision of manpower, delayed delivery in the process within the companies, unsatisfactory quality of products, underutilization of capacity, and low productivity and profitability, which in turn results in minimizing the performance of intra-organizational supply chain relationships and to reduce the companies’ organizational efficiency, effectiveness and sustainability. Hence, the companies should have to give emphasize building and managing the intra-organizational supply chain relationships effectively because nothing can be done without creating successful and progressive relationships with internal units or functional areas and individuals for the production and provision of the required and qualified products that permits to meet the intended customers’ desires. The study contributes to improving the practical applications and gives an emphasis on the policy measurements and implications of the manufacturing companies with regard to intra-organizational supply chain relationships.

Keywords: supply chain, supply chain relationships, intra-organizational relationships, manufacturing companies

Procedia PDF Downloads 23
592 Predicting Supply Delivery Delays Using Advanced Analytical Approaches

Authors: Mohammad Alshehri, Fahd Alfarsi

Abstract:

Efficient supply chains play an essential role in delivering humanitarian supplies and directly impact the success of public aid initiatives globally. Predicting the delivery status of these essential supplies in a timely manner is crucial. Therefore, this study investigates the application of various machine learning (ML) approaches to predict whether humanitarian deliveries will be made on time, using a comprehensive case-study dataset provided by one of the largest international supplying organizations. We employed several ML methods, namely Logistics Regression, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Navie Bays, to assess the proposed predictive model. The outcome of the analysis showed promising results, with weighted Recall (WRec.) / Accuracy (Acc.) scores ranging from 0.77 to 0.86 using the 4 algorithms mentioned earlier. These high-performance levels indicate the robustness of Machine Learning (ML) techniques in forecasting delivery status, potentially enabling more proactive and efficient supply chain management in global aid initiatives. The implications of this study suggest that integrating advanced predictive analytics in supply chain management can significantly enhance the delivery performance of critical commodities to those in need.

Keywords: humanitarian aids, supply chains, artificial intelligence, delivery status

Procedia PDF Downloads 29
591 Impact of Foreign Direct Investment to the Economic Growth of Rwanda

Authors: Munezero Vanessa

Abstract:

A country is considered developed when its socio-economic and development situation is stable. Foreign direct investment is thus considered to be one of the solutions to this stability especially when it is used in development sectors. The present study was meant to understand whether the foreign direct investment stimulates economic growth performance in Rwanda. The foreign direct investments and economic growth (GDP) has been the subject of much debate among economic development researchers, aid donors as well as recipients in general and Rwanda in particular. In spite of this, there are only few empirical studies that investigate the contributions of foreign direct investments to economic growth in Rwanda. This study explores the relationship between foreign direct investments and economic growth in Rwanda using data that spans from 2000 to 2019 and establishing through causal study if changes in one variable cause changes in the other. The results show that foreign direct investments significantly contribute to the current level of economic growth. The findings imply that Rwanda could enhance its economic growth by effectively and strategically strengthening foreign direct investment plans.

Keywords: foreign direct investment (FDI), economic growth, GDP gross domestic product (GDP), inflation, exchange rate

Procedia PDF Downloads 25
590 Fuzzy Multi-Criteria Decision-Making Framework for Risk Management in Construction Supply Chain

Authors: Abdullah Ali Salamai

Abstract:

Risk management in the construction supply chain (CSC) is vital in construction project risks. CSC has various risks affecting product quality and project timeline, such as operational, social, financial, technical, design, and safety risks. These risks should be mitigated in project construction. So, this paper proposed a set of technologies to overcome risks in CSC, like artificial intelligence (AI), blockchain, data analytics, and IoT, to select the best one. So, the multi-criteria decision-making (MCDM) methodology is used to deal with various risks. The Multi-Attribute Utility Theory (MAUT) method is used to rank technologies. The weights of risks are obtained by the average method by using the decision matrix. The MCDM methodology is integrated with a fuzzy set to overcome uncertainty data. Experts used triangular fuzzy numbers to express their opinions instead of exact numbers. These allow the model to overcome inconsistent and vague data. The MCDM methodology was applied to 18 risks and 5 technologies. The results show that social risks have the highest weight. AI is the best technology for overcoming risks in CSC. AI can integrate with CSC from raw data to final products to deliver to the user.

Keywords: risk management, construction supply chain, fuzzy sets, multi-criteria decision making, supply chain management, artificial intelligence, blockchain

Procedia PDF Downloads 24
589 Validation of Modern Work Modules and Their Impact on Sustainable Human Resource Management in the Construction Industry

Authors: Robin Becker, Nane Roetmann, Manfred Helmus

Abstract:

The construction industry faces a significant challenge due to a shortage of skilled work-ers, especially in construction management, despite an increase in graduates. This is main-ly because the job is associated with high stress, long hours, and poor work-life balance. A survey revealed that the profession is unattractive to students, who prioritize personal growth, flexibility, and digitalization in their careers. To address this issue, companies can consider implementing various work modules like "working time documentation," "home office," "job sharing," and "time off." These modules can improve control, work-life bal-ance, and efficiency if tailored to the company's framework. They offer a way to make the field more appealing to future employees while benefiting existing staff, provided that both employers and employees are flexible and considerate of project-specific conditions and teams. The feasibility of these models depends on the company's overall framework, with potential for cost-neutral implementation and positive effects on efficiency and men-tal health. However, their success also relies on the specific context of the company, and more data is needed to assess their full impact.

Keywords: modern construction management, construction industry, work modules, shortage of junior staff, sustainable personnel management, making construction management more attractive, working time model

Procedia PDF Downloads 25
588 Web and Android-Based Applications as a Breakthrough in Preventing Non-System Fault Disturbances Due to Work Errors in the Transmission Unit

Authors: Dhany Irvandy, Ary Gemayel, Mohammad Azhar, Leidenti Dwijayanti, Iif Hafifah

Abstract:

Work safety is among the most important things in work execution. Unsafe conditions and actions are priorities in accident prevention in the world of work, especially in the operation and maintenance of electric power transmission. Considering the scope of work, operational work in the transmission has a very high safety risk. Various efforts have been made to avoid work accidents. However, accidents or disturbances caused by non-conformities in work implementation still often occur. Unsafe conditions or actions can cause these. Along with the development of technology, website-based applications and mobile applications have been widely used as a medium to monitor work in real-time and by more people. This paper explains the use of web and android-based applications to monitor work and work processes in the field to prevent work accidents or non-system fault disturbances caused by non-conformity of work implementation with predetermined work instructions. Because every job is monitored in real-time, recorded in time and documented systemically, this application can reduce the occurrence of possible unsafe actions carried out by job executors that can cause disruption or work accidents.

Keywords: work safety, unsafe action, application, non-system fault, real-time.

Procedia PDF Downloads 35
587 Evaluating Construction Project Outcomes: Synergy Through the Evolution of Digital Innovation and Strategic Management

Authors: Mirindi Derrick, Mirindi Frederic, Oluwakemi Oshineye

Abstract:

Abstract: The ongoing high rate of construction project failures worldwide is often blamed on the difficulties of managing stakeholders. This highlights the crucial role of strategic management (SM) in achieving project success. This study investigates how integrating digital tools into the SM framework can effectively address stakeholder-related challenges. This work specifically focuses on the impact of evolving digital tools, such as Project Management Software (PMS) (e.g., Basecamp and Wrike), Building Information Modeling (BIM) (e.g., Tekla BIMsight and Autodesk Navisworks), Virtual and Augmented Reality (VR/AR) (e.g., Microsoft HoloLens), drones and remote monitoring, and social media and Web-Based platforms, in improving stakeholder engagement and project outcomes. Through existing literature with examples of failed projects, the study highlights how the evolution of digital tools will serve as facilitators within the strategic management process. These tools offer benefits such as real-time data access, enhanced visualization, and more efficient workflows to mitigate stakeholder challenges in construction projects. The findings indicate that integrating digital tools with SM principles effectively addresses stakeholder challenges, resulting in improved project outcomes and stakeholder satisfaction. The research advocates for a combined approach that embraces both strategic management and digital innovation to navigate the complex stakeholder landscape in construction projects.

Keywords: strategic management, digital tools, virtual and augmented reality, stakeholder management, building information modeling, project management software

Procedia PDF Downloads 43
586 Digitalization, Supply Chain Integration and Financial Performance: Case of Tunisian Agro-Industrial Sector

Authors: Rym Ghariani, Younes Boujelbene

Abstract:

This study aimed to examine the impact of digitalization and supply chain integration on the financial performance of companies in the agro-industrial sector in Tunisia, highlighting the growing importance of digital technologies in modern economies. The results were analyzed using a questionnaire and using principal component analysis, as well as linear regression modeling with SPSS26. The results demonstrate that the digitalization and integration of the supply chain have a significant impact on the financial results of Tunisian agro-industrial companies. In theory, this study provides a better understanding of the effects of digital advancements and supply chain strategies on financial results in this specific area. This study, therefore, studies the relationship between these variables and financial efficiency, highlighting the significant impacts of these technological and strategic elements on the financial results of agro-industrial companies in Tunisia.

Keywords: digitalization, supply chain integration, financial performance, Tunisian agro-industrial sector

Procedia PDF Downloads 33
585 Application of Axiomatic Design in Industrial Control and Automation Software

Authors: Aydin Homay, Mario de Sousa, Martin Wollschlaeger

Abstract:

Axiomatic design is a system design methodology that systematically analyses the transformation of customer needs into functional requirements, design parameters, and process variables. This approach aims to create high-quality product or system designs by adhering to specific design principles or axioms, namely, the independence and information axiom. The application of axiomatic design in the design of industrial control and automation software systems could be challenging due to the high flexibility exposed by the software system and the coupling enforced by the hardware part. This paper aims to present how to use axiomatic design for designing industrial control and automation software systems and how to satisfy the independence axiom within these tightly coupled systems.

Keywords: axiomatic design, decoupling, uncoupling, automation

Procedia PDF Downloads 38
584 An Analysis of Pick Travel Distances for Non-Traditional Unit Load Warehouses with Multiple P/D Points

Authors: Subir S. Rao

Abstract:

Existing warehouse configurations use non-traditional aisle designs with a central P/D point in their models, which is mathematically simple but less practical. Many warehouses use multiple P/D points to avoid congestion for pickers, and different warehouses have different flow policies and infrastructure for using the P/D points. Many warehouses use multiple P/D points with non-traditional aisle designs in their analytical models. Standard warehouse models introduce one-sided multiple P/D points in a flying-V warehouse and minimize pick distance for a one-way travel between an active P/D point and a pick location with P/D points, assuming uniform flow rates. A simulation of the mathematical model generally uses four fixed configurations of P/D points which are on two different sides of the warehouse. It can be easily proved that if the source and destination P/D points are both chosen randomly, in a uniform way, then minimizing the one-way travel is the same as minimizing the two-way travel. Another warehouse configuration analytically models the warehouse for multiple one-sided P/D points while keeping the angle of the cross-aisles and picking aisles as a decision variable. The minimization of the one-way pick travel distance from the P/D point to the pick location by finding the optimal position/angle of the cross-aisle and picking aisle for warehouses having different numbers of multiple P/D points with variable flow rates is also one of the objectives. Most models of warehouses with multiple P/D points are one-way travel models and we extend these analytical models to minimize the two-way pick travel distance wherein the destination P/D is chosen optimally for the return route, which is not similar to minimizing the one-way travel. In most warehouse models, the return P/D is chosen randomly, but in our research, the return route P/D point is chosen optimally. Such warehouses are common in practice, where the flow rates at the P/D points are flexible and depend totally on the position of the picks. A good warehouse management system is efficient in consolidating orders over multiple P/D points in warehouses where the P/D is flexible in function. In the latter arrangement, pickers and shrink-wrap processes are not assigned to particular P/D points, which ultimately makes the P/D points more flexible and easy to use interchangeably for picking and deposits. The number of P/D points considered in this research uniformly increases from a single-central one to a maximum of each aisle symmetrically having a P/D point below it.

Keywords: non-traditional warehouse, V cross-aisle, multiple P/D point, pick travel distance

Procedia PDF Downloads 37