Abstracts | Computer and Information Engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3708

World Academy of Science, Engineering and Technology

[Computer and Information Engineering]

Online ISSN : 1307-6892

1728 Hybrid Feature Selection Method for Sentiment Classification of Movie Reviews

Authors: Vishnu Goyal, Basant Agarwal

Abstract:

Sentiment analysis research provides methods for identifying the people’s opinion written in blogs, reviews, social networking websites etc. Sentiment analysis is to understand what opinion people have about any given entity, object or thing. Sentiment analysis research can be broadly categorised into three types of approaches i.e. semantic orientation, machine learning and lexicon based approaches. Feature selection methods improve the performance of the machine learning algorithms by eliminating the irrelevant features. Information gain feature selection method has been considered best method for sentiment analysis; however, it has the drawback of selection of threshold. Therefore, in this paper, we propose a hybrid feature selection methods comprising of information gain and proposed feature selection method. Initially, features are selected using Information Gain (IG) and further more noisy features are eliminated using the proposed feature selection method. Experimental results show the efficiency of the proposed feature selection methods.

Keywords: feature selection, sentiment analysis, hybrid feature selection

Procedia PDF Downloads 338
1727 Hierarchical Checkpoint Protocol in Data Grids

Authors: Rahma Souli-Jbali, Minyar Sassi Hidri, Rahma Ben Ayed

Abstract:

Grid of computing nodes has emerged as a representative means of connecting distributed computers or resources scattered all over the world for the purpose of computing and distributed storage. Since fault tolerance becomes complex due to the availability of resources in decentralized grid environment, it can be used in connection with replication in data grids. The objective of our work is to present fault tolerance in data grids with data replication-driven model based on clustering. The performance of the protocol is evaluated with Omnet++ simulator. The computational results show the efficiency of our protocol in terms of recovery time and the number of process in rollbacks.

Keywords: data grids, fault tolerance, clustering, chandy-lamport

Procedia PDF Downloads 341
1726 An Energy Efficient Clustering Approach for Underwater ‎Wireless Sensor Networks

Authors: Mohammad Reza Taherkhani‎

Abstract:

Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make a connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.

Keywords: underwater sensor networks, clustering, learning automata, energy consumption

Procedia PDF Downloads 361
1725 Towards a Robust Patch Based Multi-View Stereo Technique for Textureless and Occluded 3D Reconstruction

Authors: Ben Haines, Li Bai

Abstract:

Patch based reconstruction methods have been and still are one of the top performing approaches to 3D reconstruction to date. Their local approach to refining the position and orientation of a patch, free of global minimisation and independent of surface smoothness, make patch based methods extremely powerful in recovering fine grained detail of an objects surface. However, patch based approaches still fail to faithfully reconstruct textureless or highly occluded surface regions thus though performing well under lab conditions, deteriorate in industrial or real world situations. They are also computationally expensive. Current patch based methods generate point clouds with holes in texturesless or occluded regions that require expensive energy minimisation techniques to fill and interpolate a high fidelity reconstruction. Such shortcomings hinder the adaptation of the methods for industrial applications where object surfaces are often highly textureless and the speed of reconstruction is an important factor. This paper presents on-going work towards a multi-resolution approach to address the problems, utilizing particle swarm optimisation to reconstruct high fidelity geometry, and increasing robustness to textureless features through an adapted approach to the normalised cross correlation. The work also aims to speed up the reconstruction using advances in GPU technologies and remove the need for costly initialization and expansion. Through the combination of these enhancements, it is the intention of this work to create denser patch clouds even in textureless regions within a reasonable time. Initial results show the potential of such an approach to construct denser point clouds with a comparable accuracy to that of the current top-performing algorithms.

Keywords: 3D reconstruction, multiview stereo, particle swarm optimisation, photo consistency

Procedia PDF Downloads 203
1724 Enterprise Information Portal Features: Results of Content Analysis Literature Review

Authors: Michal Krčál

Abstract:

Since their introduction in 1990’s, Enterprise Information Portals (EIPs) were investigated from different perspectives (e.g. project management, technology acceptance, IS success). However, no systematic literature review was produced to systematize both the research efforts and the technology itself. This paper reports first results of an extent systematic literature review study focused on research of EIPs and its categorization, specifically it reports a conceptual model of EIP features. The previous attempt to categorize EIP features was published in 2002. For the purpose of the literature review, content of 89 articles was analyzed in order to identify and categorize features of EIPs. The methodology of the literature review was as follows. Firstly, search queries in major indexing databases (Web of Science and SCOPUS) were used. The results of queries were analyzed according to their usability for the goal of the study. Then, full-texts were coded in Atlas.ti according to previously established coding scheme. The codes were categorized and the conceptual model of EIP features was created.

Keywords: enterprise information portal, content analysis, features, systematic literature review

Procedia PDF Downloads 298
1723 A Greedy Alignment Algorithm Supporting Medication Reconciliation

Authors: David Tresner-Kirsch

Abstract:

Reconciling patient medication lists from multiple sources is a critical task supporting the safe delivery of patient care. Manual reconciliation is a time-consuming and error-prone process, and recently attempts have been made to develop efficiency- and safety-oriented automated support for professionals performing the task. An important capability of any such support system is automated alignment – finding which medications from a list correspond to which medications from a different source, regardless of misspellings, naming differences (e.g. brand name vs. generic), or changes in treatment (e.g. switching a patient from one antidepressant class to another). This work describes a new algorithmic solution to this alignment task, using a greedy matching approach based on string similarity, edit distances, concept extraction and normalization, and synonym search derived from the RxNorm nomenclature. The accuracy of this algorithm was evaluated against a gold-standard corpus of 681 medication records; this evaluation found that the algorithm predicted alignments with 99% precision and 91% recall. This performance is sufficient to support decision support applications for medication reconciliation.

Keywords: clinical decision support, medication reconciliation, natural language processing, RxNorm

Procedia PDF Downloads 285
1722 An Efficient Subcarrier Scheduling Algorithm for Downlink OFDMA-Based Wireless Broadband Networks

Authors: Hassen Hamouda, Mohamed Ouwais Kabaou, Med Salim Bouhlel

Abstract:

The growth of wireless technology made opportunistic scheduling a widespread theme in recent research. Providing high system throughput without reducing fairness allocation is becoming a very challenging task. A suitable policy for resource allocation among users is of crucial importance. This study focuses on scheduling multiple streaming flows on the downlink of a WiMAX system based on orthogonal frequency division multiple access (OFDMA). In this paper, we take the first step in formulating and analyzing this problem scrupulously. As a result, we proposed a new scheduling scheme based on Round Robin (RR) Algorithm. Because of its non-opportunistic process, RR does not take in account radio conditions and consequently it affect both system throughput and multi-users diversity. Our contribution called MORRA (Modified Round Robin Opportunistic Algorithm) consists to propose a solution to this issue. MORRA not only exploits the concept of opportunistic scheduler but also takes into account other parameters in the allocation process. The first parameter is called courtesy coefficient (CC) and the second is called Buffer Occupancy (BO). Performance evaluation shows that this well-balanced scheme outperforms both RR and MaxSNR schedulers and demonstrate that choosing between system throughput and fairness is not required.

Keywords: OFDMA, opportunistic scheduling, fairness hierarchy, courtesy coefficient, buffer occupancy

Procedia PDF Downloads 300
1721 Direct Blind Separation Methods for Convolutive Images Mixtures

Authors: Ahmed Hammed, Wady Naanaa

Abstract:

In this paper, we propose a general approach to deal with the problem of a convolutive mixture of images. We use a direct blind source separation method by adding only one non-statistical justified constraint describing the relationships between different mixing matrix at the aim to make its resolution easy. This method can be applied, provided that this constraint is known, to degraded document affected by the overlapping of text-patterns and images. This is due to chemical and physical reactions of the materials (paper, inks,...) occurring during the documents aging, and other unpredictable causes such as humidity, microorganism infestation, human handling, etc. We will demonstrate that this problem corresponds to a convolutive mixture of images. Subsequently, we will show how the validation of our method through numerical examples. We can so obtain clear images from unreadable ones which can be caused by pages superposition, a phenomenon similar to that we find every often in archival documents.

Keywords: blind source separation, convoluted mixture, degraded documents, text-patterns overlapping

Procedia PDF Downloads 322
1720 Improved Pattern Matching Applied to Surface Mounting Devices Components Localization on Automated Optical Inspection

Authors: Pedro M. A. Vitoriano, Tito. G. Amaral

Abstract:

Automated Optical Inspection (AOI) Systems are commonly used on Printed Circuit Boards (PCB) manufacturing. The use of this technology has been proven as highly efficient for process improvements and quality achievements. The correct extraction of the component for posterior analysis is a critical step of the AOI process. Nowadays, the Pattern Matching Algorithm is commonly used, although this algorithm requires extensive calculations and is time consuming. This paper will present an improved algorithm for the component localization process, with the capability of implementation in a parallel execution system.

Keywords: AOI, automated optical inspection, SMD, surface mounting devices, pattern matching, parallel execution

Procedia PDF Downloads 299
1719 Policy Compliance in Information Security

Authors: R. Manjula, Kaustav Bagchi, Sushant Ramesh, Anush Baskaran

Abstract:

In the past century, the emergence of information technology has had a significant positive impact on human life. While companies tend to be more involved in the completion of projects, the turn of the century has seen importance being given to investment in information security policies. These policies are essential to protect important data from adversaries, and thus following these policies has become one of the most important attributes revolving around information security models. In this research, we have focussed on the factors affecting information security policy compliance in two models : The theory of planned behaviour and the integration of the social bond theory and the involvement theory into a single model. Finally, we have given a proposal of where these theories would be successful.

Keywords: information technology, information security, involvement theory, policies, social bond theory

Procedia PDF Downloads 371
1718 Improving Security by Using Secure Servers Communicating via Internet with Standalone Secure Software

Authors: Carlos Gonzalez

Abstract:

This paper describes the use of the Internet as a feature to enhance the security of our software that is going to be distributed/sold to users potentially all over the world. By placing in a secure server some of the features of the secure software, we increase the security of such software. The communication between the protected software and the secure server is done by a double lock algorithm. This paper also includes an analysis of intruders and describes possible responses to detect threats.

Keywords: internet, secure software, threats, cryptography process

Procedia PDF Downloads 333
1717 Parallel Computation of the Covariance-Matrix

Authors: Claude Tadonki

Abstract:

We address the issues related to the computation of the covariance matrix. This matrix is likely to be ill conditioned following its canonical expression, thus consequently raises serious numerical issues. The underlying linear system, which therefore should be solved by means of iterative approaches, becomes computationally challenging. A huge number of iterations is expected in order to reach an acceptable level of convergence, necessary to meet the required accuracy of the computation. In addition, this linear system needs to be solved at each iteration following the general form of the covariance matrix. Putting all together, its comes that we need to compute as fast as possible the associated matrix-vector product. This is our purpose in the work, where we consider and discuss skillful formulations of the problem, then propose a parallel implementation of the matrix-vector product involved. Numerical and performance oriented discussions are provided based on experimental evaluations.

Keywords: covariance-matrix, multicore, numerical computing, parallel computing

Procedia PDF Downloads 312
1716 Knowledge Management Challenges within Traditional Procurement System

Authors: M. Takhtravanchi, C. Pathirage

Abstract:

In the construction industry, project members are conveyor of project knowledge which is, often, not managed properly to be used in future projects. As construction projects are temporary and unique, project members are willing to be recruited once a project is completed. Therefore, poor management of knowledge across construction projects will lead to a considerable amount of knowledge loss; the ignoring of which would be detrimental to project performance. This issue is more prominent in projects undertaken through the traditional procurement system, as this system does not incentives project members for integration. Thus, disputes exist between the design and construction phases based on the poor management of knowledge between those two phases. This paper aims to highlight the challenges of the knowledge management that exists within the traditional procurement system. Expert interviews were conducted and challenges were identified and analysed by the Interpretive Structural Modelling (ISM) approach in order to summarise the relationships among them. Two identified key challenges are the Culture of an Organisation and Knowledge Management Policies. A knowledge of the challenges and their relationships will help project manager and stakeholders to have a better understanding of the importance of knowledge management.

Keywords: challenges, construction industry, knowledge management, traditional procurement system

Procedia PDF Downloads 431
1715 Positive Affect, Negative Affect, Organizational and Motivational Factor on the Acceptance of Big Data Technologies

Authors: Sook Ching Yee, Angela Siew Hoong Lee

Abstract:

Big data technologies have become a trend to exploit business opportunities and provide valuable business insights through the analysis of big data. However, there are still many organizations that have yet to adopt big data technologies especially small and medium organizations (SME). This study uses the technology acceptance model (TAM) to look into several constructs in the TAM and other additional constructs which are positive affect, negative affect, organizational factor and motivational factor. The conceptual model proposed in the study will be tested on the relationship and influence of positive affect, negative affect, organizational factor and motivational factor towards the intention to use big data technologies to produce an outcome. Empirical research is used in this study by conducting a survey to collect data.

Keywords: big data technologies, motivational factor, negative affect, organizational factor, positive affect, technology acceptance model (TAM)

Procedia PDF Downloads 362
1714 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: classification algorithms, data mining, knowledge discovery, tourism

Procedia PDF Downloads 295
1713 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: building energy management, machine learning, operation planning, simulation-based optimization

Procedia PDF Downloads 322
1712 Learning Predictive Models for Efficient Energy Management of Exhibition Hall

Authors: Jeongmin Kim, Eunju Lee, Kwang Ryel Ryu

Abstract:

This paper addresses the problem of predictive control for energy management of large-scaled exhibition halls, where a lot of energy is consumed to maintain internal atmosphere under certain required conditions. Predictive control achieves better energy efficiency by optimizing the operation of air-conditioning facilities with not only the current but also some future status taken into account. In this paper, we propose to use predictive models learned from past sensor data of hall environment, for use in optimizing the operating plan for the air-conditioning facilities by simulating future environmental change. We have implemented an emulator of an exhibition hall by using EnergyPlus, a widely used building energy emulation tool, to collect data for learning environment-change models. Experimental results show that the learned models predict future change highly accurately on a short-term basis.

Keywords: predictive control, energy management, machine learning, optimization

Procedia PDF Downloads 274
1711 Building and Tree Detection Using Multiscale Matched Filtering

Authors: Abdullah H. Özcan, Dilara Hisar, Yetkin Sayar, Cem Ünsalan

Abstract:

In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results.

Keywords: building detection, local maximum filtering, matched filtering, multiscale

Procedia PDF Downloads 320
1710 Complete Tripartite Graphs with Spanning Maximal Planar Subgraphs

Authors: Severino Gervacio, Velimor Almonte, Emmanuel Natalio

Abstract:

A simple graph is planar if it there is a way of drawing it in the plane without edge crossings. A planar graph which is not a proper spanning subgraph of another planar graph is a maximal planar graph. We prove that for complete tripartite graphs of order at most 9, the only ones that contain a spanning maximal planar subgraph are K1,1,1, K2,2,2, K2,3,3, and K3,3,3. The main result gives a necessary and sufficient condition for the complete tripartite graph Kx,y,z to contain a spanning maximal planar subgraph.

Keywords: complete tripartite graph, graph, maximal planar graph, planar graph, subgraph

Procedia PDF Downloads 381
1709 An Interpolation Tool for Data Transfer in Two-Dimensional Ice Accretion Problems

Authors: Marta Cordero-Gracia, Mariola Gomez, Olivier Blesbois, Marina Carrion

Abstract:

One of the difficulties in icing simulations is for extended periods of exposure, when very large ice shapes are created. As well as being large, they can have complex shapes, such as a double horn. For icing simulations, these configurations are currently computed in several steps. The icing step is stopped when the ice shapes become too large, at which point a new mesh has to be created to allow for further CFD and ice growth simulations to be performed. This can be very costly, and is a limiting factor in the simulations that can be performed. A way to avoid the costly human intervention in the re-meshing step of multistep icing computation is to use mesh deformation instead of re-meshing. The aim of the present work is to apply an interpolation method based on Radial Basis Functions (RBF) to transfer deformations from surface mesh to volume mesh. This deformation tool has been developed specifically for icing problems. It is able to deal with localized, sharp and large deformations, unlike the tools traditionally used for more smooth wing deformations. This tool will be presented along with validation on typical two-dimensional icing shapes.

Keywords: ice accretion, interpolation, mesh deformation, radial basis functions

Procedia PDF Downloads 313
1708 Parallel Vector Processing Using Multi Level Orbital DATA

Authors: Nagi Mekhiel

Abstract:

Many applications use vector operations by applying single instruction to multiple data that map to different locations in conventional memory. Transferring data from memory is limited by access latency and bandwidth affecting the performance gain of vector processing. We present a memory system that makes all of its content available to processors in time so that processors need not to access the memory, we force each location to be available to all processors at a specific time. The data move in different orbits to become available to other processors in higher orbits at different time. We use this memory to apply parallel vector operations to data streams at first orbit level. Data processed in the first level move to upper orbit one data element at a time, allowing a processor in that orbit to apply another vector operation to deal with serial code limitations inherited in all parallel applications and interleaved it with lower level vector operations.

Keywords: Memory Organization, Parallel Processors, Serial Code, Vector Processing

Procedia PDF Downloads 270
1707 Comparison of Crossover Types to Obtain Optimal Queries Using Adaptive Genetic Algorithm

Authors: Wafa’ Alma'Aitah, Khaled Almakadmeh

Abstract:

this study presents an information retrieval system of using genetic algorithm to increase information retrieval efficiency. Using vector space model, information retrieval is based on the similarity measurement between query and documents. Documents with high similarity to query are judge more relevant to the query and should be retrieved first. Using genetic algorithms, each query is represented by a chromosome; these chromosomes are fed into genetic operator process: selection, crossover, and mutation until an optimized query chromosome is obtained for document retrieval. Results show that information retrieval with adaptive crossover probability and single point type crossover and roulette wheel as selection type give the highest recall. The proposed approach is verified using (242) proceedings abstracts collected from the Saudi Arabian national conference.

Keywords: genetic algorithm, information retrieval, optimal queries, crossover

Procedia PDF Downloads 292
1706 An Eulerian Method for Fluid-Structure Interaction Simulation Applied to Wave Damping by Elastic Structures

Authors: Julien Deborde, Thomas Milcent, Stéphane Glockner, Pierre Lubin

Abstract:

A fully Eulerian method is developed to solve the problem of fluid-elastic structure interactions based on a 1-fluid method. The interface between the fluid and the elastic structure is captured by a level set function, advected by the fluid velocity and solved with a WENO 5 scheme. The elastic deformations are computed in an Eulerian framework thanks to the backward characteristics. We use the Neo Hookean or Mooney Rivlin hyperelastic models and the elastic forces are incorporated as a source term in the incompressible Navier-Stokes equations. The velocity/pressure coupling is solved with a pressure-correction method and the equations are discretized by finite volume schemes on a Cartesian grid. The main difficulty resides in that large deformations in the fluid cause numerical instabilities. In order to avoid these problems, we use a re-initialization process for the level set and linear extrapolation of the backward characteristics. First, we verify and validate our approach on several test cases, including the benchmark of FSI proposed by Turek. Next, we apply this method to study the wave damping phenomenon which is a mean to reduce the waves impact on the coastline. So far, to our knowledge, only simulations with rigid or one dimensional elastic structure has been studied in the literature. We propose to place elastic structures on the seabed and we present results where 50 % of waves energy is absorbed.

Keywords: damping wave, Eulerian formulation, finite volume, fluid structure interaction, hyperelastic material

Procedia PDF Downloads 323
1705 A Comparison of Sequential Quadratic Programming, Genetic Algorithm, Simulated Annealing, Particle Swarm Optimization for the Design and Optimization of a Beam Column

Authors: Nima Khosravi

Abstract:

This paper describes an integrated optimization technique with concurrent use of sequential quadratic programming, genetic algorithm, and simulated annealing particle swarm optimization for the design and optimization of a beam column. In this research, the comparison between 4 different types of optimization methods. The comparison is done and it is found out that all the methods meet the required constraints and the lowest value of the objective function is achieved by SQP, which was also the fastest optimizer to produce the results. SQP is a gradient based optimizer hence its results are usually the same after every run. The only thing which affects the results is the initial conditions given. The initial conditions given in the various test run were very large as compared. Hence, the value converged at a different point. Rest of the methods is a heuristic method which provides different values for different runs even if every parameter is kept constant.

Keywords: beam column, genetic algorithm, particle swarm optimization, sequential quadratic programming, simulated annealing

Procedia PDF Downloads 386
1704 Incremental Learning of Independent Topic Analysis

Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda

Abstract:

In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.

Keywords: text mining, topic extraction, independent, incremental, independent component analysis

Procedia PDF Downloads 309
1703 Recommendations as a Key Aspect for Online Learning Personalization: Perceptions of Teachers and Students

Authors: N. Ipiña, R. Basagoiti, O. Jimenez, I. Arriaran

Abstract:

Higher education students are increasingly enrolling in online courses, they are, at the same time, generating data about their learning process in the courses. Data collected in those technology enhanced learning spaces can be used to identify patterns and therefore, offer recommendations/personalized courses to future online students. Moreover, recommendations are considered key aspects for personalization in online learning. Taking into account the above mentioned context, the aim of this paper is to explore the perception of higher education students and teachers towards receiving recommendations in online courses. The study was carried out with 322 students and 10 teachers from two different faculties (Engineering and Education) from Mondragon University. Online questionnaires and face to face interviews were used to gather data from the participants. Results from the questionnaires show that most of the students would like to receive recommendations in their online courses as a guide in their learning process. Findings from the interviews also show that teachers see recommendations useful for their students’ learning process. However, teachers believe that specific pedagogical training is required. Conclusions can also be drawn as regards the importance of personalization in technology enhanced learning. These findings have significant implications for those who train online teachers due to the fact that pedagogy should be the driven force and further training on the topic could be required. Therefore, further research is needed to better understand the impact of recommendations on online students’ learning process and draw some conclusion on pedagogical concerns.

Keywords: higher education, perceptions, recommendations, online courses

Procedia PDF Downloads 267
1702 Exploiting JPEG2000 into Reversible Information

Authors: Te-Jen Chang, I-Hui Pan, Kuang-Hsiung Tan, Shan-Jen Cheng, Chien-Wu Lan, Chih-Chan Hu

Abstract:

With the event of multimedia age in order to protect data not to be tampered, damaged, and faked, information hiding technologies are proposed. Information hiding means important secret information is hidden into cover multimedia and then camouflaged media is produced. This camouflaged media has the characteristic of natural protection. Under the undoubted situation, important secret information is transmitted out.Reversible information hiding technologies for high capacity is proposed in this paper. The gray images are as cover media in this technology. We compress gray images and compare with the original image to produce the estimated differences. By using the estimated differences, expression information hiding is used, and higher information capacity can be achieved. According to experimental results, the proposed technology can be approved. For these experiments, the whole capacity of information payload and image quality can be satisfied.

Keywords: cover media, camouflaged media, reversible information hiding, gray image

Procedia PDF Downloads 327
1701 Exploring Twitter Data on Human Rights Activism on Olympics Stage through Social Network Analysis and Mining

Authors: Teklu Urgessa, Joong Seek Lee

Abstract:

Social media is becoming the primary choice of activists to make their voices heard. This fact is coupled by two main reasons. The first reason is the emergence web 2.0, which gave the users opportunity to become content creators than passive recipients. Secondly the control of the mainstream mass media outlets by the governments and individuals with their political and economic interests. This paper aimed at exploring twitter data of network actors talking about the marathon silver medalists on Rio2016, who showed solidarity with the Oromo protesters in Ethiopia on the marathon race finish line when he won silver. The aim is to discover important insight using social network analysis and mining. The hashtag #FeyisaLelisa was used for Twitter network search. The actors’ network was visualized and analyzed. It showed the central influencers during first 10 days in August, were international media outlets while it was changed to individual activist in September. The degree distribution of the network is scale free where the frequency of degrees decay by power low. Text mining was also used to arrive at meaningful themes from tweet corpus about the event selected for analysis. The semantic network indicated important clusters of concepts (15) that provided different insight regarding the why, who, where, how of the situation related to the event. The sentiments of the words in the tweets were also analyzed and indicated that 95% of the opinions in the tweets were either positive or neutral. Overall, the finding showed that Olympic stage protest of the marathoner brought the issue of Oromo protest to the global stage. The new research framework is proposed based for event-based social network analysis and mining based on the practical procedures followed in this research for event-based social media sense making.

Keywords: human rights, Olympics, social media, network analysis, social network ming

Procedia PDF Downloads 257
1700 Design and Application of NFC-Based Identity and Access Management in Cloud Services

Authors: Shin-Jer Yang, Kai-Tai Yang

Abstract:

In response to a changing world and the fast growth of the Internet, more and more enterprises are replacing web-based services with cloud-based ones. Multi-tenancy technology is becoming more important especially with Software as a Service (SaaS). This in turn leads to a greater focus on the application of Identity and Access Management (IAM). Conventional Near-Field Communication (NFC) based verification relies on a computer browser and a card reader to access an NFC tag. This type of verification does not support mobile device login and user-based access management functions. This study designs an NFC-based third-party cloud identity and access management scheme (NFC-IAM) addressing this shortcoming. Data from simulation tests analyzed with Key Performance Indicators (KPIs) suggest that the NFC-IAM not only takes less time in identity identification but also cuts time by 80% in terms of two-factor authentication and improves verification accuracy to 99.9% or better. In functional performance analyses, NFC-IAM performed better in salability and portability. The NFC-IAM App (Application Software) and back-end system to be developed and deployed in mobile device are to support IAM features and also offers users a more user-friendly experience and stronger security protection. In the future, our NFC-IAM can be employed to different environments including identification for mobile payment systems, permission management for remote equipment monitoring, among other applications.

Keywords: cloud service, multi-tenancy, NFC, IAM, mobile device

Procedia PDF Downloads 435
1699 Robust Control of a Dynamic Model of an F-16 Aircraft with Improved Damping through Linear Matrix Inequalities

Authors: J. P. P. Andrade, V. A. F. Campos

Abstract:

This work presents an application of Linear Matrix Inequalities (LMI) for the robust control of an F-16 aircraft through an algorithm ensuring the damping factor to the closed loop system. The results show that the zero and gain settings are sufficient to ensure robust performance and stability with respect to various operating points. The technique used is the pole placement, which aims to put the system in closed loop poles in a specific region of the complex plane. Test results using a dynamic model of the F-16 aircraft are presented and discussed.

Keywords: F-16 aircraft, linear matrix inequalities, pole placement, robust control

Procedia PDF Downloads 306