Search results for: stock returns
306 The Impact of Subsequent Stock Market Liberalization on the Integration of Stock Markets in ASEAN-4 + South Korea
Authors: Noor Azryani Auzairy, Rubi Ahmad
Abstract:
To strengthen the capital market, there is a need to integrate the capital markets within the region by removing legal or informal restriction, specifically, stock market liberalization. Thus the paper is to investigate the effects of the subsequent stock market liberalization on stock market integration in 4 ASEAN countries (Malaysia, Indonesia, Thailand, Singapore) and Korea from 1997 to 2007. The correlation between stock market liberalization and stock market integration are to be examined by analyzing the stock prices and returns within the region and in comparison with the world MSCI index. Event study method is to be used with windows of ±12 months and T-7 + T. The results show that the subsequent stock market liberalization generally, gives minor positive effects to stock returns, except for one or two countries. The subsequent liberalization also integrates the markets short-run and long-run.Keywords: ASEAN, event method, stock market integration, stock market liberalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882305 Application of Generalized Autoregressive Score Model to Stock Returns
Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke
Abstract:
The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.
Keywords: Generalized autoregressive score model, stock returns, time-varying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034304 The Influence of EU Regulation of Margin Requirements on Market Stock Volatility
Authors: Nadira Kaimova
Abstract:
In this paper it was examined the influence of margin regulation on stock market volatility in EU 1993 – 2014. Regulating margin requirements or haircuts for securities financing transactions has for a long time been considered as a potential tool to limit the build-up of leverage and dampen volatility in financial markets. The margin requirement dictates how much investors can borrow against these securities. Margin can be an important part of investment. Using daily and monthly stock returns and there is no convincing evidence that EU Regulation margin requirements have served to dampen stock market volatility. In this paper was detected the expected negative relation between margin requirements and the amount of margin credit outstanding. Also, it confirmed that changes in margin requirements by the EU regulation have tended to follow than lead changes in market volatility. For the analysis have been used the modified Levene statistics to test whether the standard deviation of stock returns in the 25, 50 and 100 days preceding margin changes is the same as that in the succeeding 25, 50 and 100 days. The analysis started in May 1993 when it was first empowered to set the initial margin requirement and the last sample was in May 2014. To test whether margin requirements influence stock market volatility over the long term, the sample of stock returns was divided into 14 periods, according to the 14 changes in margin requirements.
Keywords: Levene statistic, Margin Regulation, Stock Market, Volatility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154303 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.
Keywords: Machine learning, stock market trading, logistic principal component analysis, automated stock investment system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098302 Forecasting for Financial Stock Returns Using a Quantile Function Model
Authors: Yuzhi Cai
Abstract:
In this talk, we introduce a newly developed quantile function model that can be used for estimating conditional distributions of financial returns and for obtaining multi-step ahead out-of-sample predictive distributions of financial returns. Since we forecast the whole conditional distributions, any predictive quantity of interest about the future financial returns can be obtained simply as a by-product of the method. We also show an application of the model to the daily closing prices of Dow Jones Industrial Average (DJIA) series over the period from 2 January 2004 - 8 October 2010. We obtained the predictive distributions up to 15 days ahead for the DJIA returns, which were further compared with the actually observed returns and those predicted from an AR-GARCH model. The results show that the new model can capture the main features of financial returns and provide a better fitted model together with improved mean forecasts compared with conventional methods. We hope this talk will help audience to see that this new model has the potential to be very useful in practice.Keywords: DJIA, Financial returns, predictive distribution, quantile function model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637301 An Investigation into the Role of Market Beta in Asset Pricing: Evidence from the Romanian Stock Market
Authors: Ioan Popa, Radu Lupu, Cristiana Tudor
Abstract:
In this paper, we apply the FM methodology to the cross-section of Romanian-listed common stocks and investigate the explanatory power of market beta on the cross-section of commons stock returns from Bucharest Stock Exchange. Various assumptions are empirically tested, such us linearity, market efficiency, the “no systematic effect of non-beta risk" hypothesis or the positive expected risk-return trade-off hypothesis. We find that the Romanian stock market shows the same properties as the other emerging markets in terms of efficiency and significance of the linear riskreturn models. Our analysis included weekly returns from January 2002 until May 2010 and the portfolio formation, estimation and testing was performed in a rolling manner using 51 observations (one year) for each stage of the analysis.Keywords: Bucharest Stock Exchange, Fama-Macbeth methodology, systematic risk, non-linear risk-return dependence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903300 Are Asia-Pacific Stock Markets Predictable? Evidence from Wavelet-based Fractional Integration Estimator
Authors: Pei. P. Tan, Don. U.A. Galagedera, Elizabeth A.Maharaj
Abstract:
This paper examines predictability in stock return in developed and emergingmarkets by testing long memory in stock returns using wavelet approach. Wavelet-based maximum likelihood estimator of the fractional integration estimator is superior to the conventional Hurst exponent and Geweke and Porter-Hudak estimator in terms of asymptotic properties and mean squared error. We use 4-year moving windows to estimate the fractional integration parameter. Evidence suggests that stock return may not be predictable indeveloped countries of the Asia-Pacificregion. However, predictability of stock return insome developing countries in this region such as Indonesia, Malaysia and Philippines may not be ruled out. Stock return in the Thailand stock market appears to be not predictable after the political crisis in 2008.Keywords: Asia-Pacific stock market, long-memory, return predictability, wavelet
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731299 Empirical Analyses of Determinants of D.J.S.I.US Mean Returns
Authors: Nikolaos Sariannidis, Grigoris Giannarakis, Nikolaos Litinas, Nikos Kartalis
Abstract:
This study investigates the relationship between 10 year bond value, Yen/U.S dollar exchange rate, non-farm payrolls (all employs) and crude oil to U.S. Dow Jones Sustainability Index. A GARCH model is used to test these relationships for the period January 1st 1999 to January 31st 2008 using monthly data. Results show that an increase of the 10 year bond and non farm payrolls (all employs) lead to an increase of the D.J.S.I returns. On the contrary the volatility of the Yen/U.S dollar exchange rates as well as the increase of crude oil returns has negative effects on the U.S D.J.S.I returns. This study aims at assisting investors to understand the influences certain macroeconomic indicators have on the companies- stock returns as reported by the D.J.S.I.Keywords: Bond value, Corporate Social Responsibility, Crudeoil, D.J.S.I United States, Exchange rate, GARCH, Non-farmpayrolls.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526298 Comparative Analysis of Commercial Property and Stock-Market Investments in Nigeria
Authors: Bello Nurudeen Akinsola
Abstract:
The study analyzed the risk and returns of commercial-property in Southwestern Nigeria and selected stocksmarket investment between 2000 and 2009; compared the inflation hedging characteristics and diversification potentials of investing in commercial-property and selected stock- market investment. Primary data were collected on characteristics, rental and capital values of commercial- properties from their property managers through the use of questionnaire. Secondary data on stock prices and dividends on banking, insurance and conglomerates sectors were sourced from the Nigerian Stock Exchange (2000-2009). The result showed that average return on all the selected stock- investments was higher than that of commercial-property. As regards risk, commercial-property indicated lower risk, compared to stocks. Also the stock-investment had better inflation hedging capacity than commercial-properties; combination of both had diversification potentials. The study concluded that stock-market investment offered attractive higher return than commercial-property although with higher risk and there could be diversification benefits in combining commercial-property with stock- investment.
Keywords: Commercial-Property, Return, Risk, Stock Market
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5190297 Dynamic Interrelationship among the Stock Markets of India, Pakistan and United States
Authors: A. Iqbal, N. Khalid, S. Rafiq
Abstract:
The interrelationship between international stock markets has been a key study area among the financial market researchers for international portfolio management and risk measurement. The characteristics of security returns and their dynamics play a vital role in the financial market theory. This study is an attempt to find out the dynamic linkages among the equity market of USA and emerging markets of Pakistan and India using daily data covering the period of January 2003–December 2009. The study utilizes Johansen (Journal of Economic Dynamics and Control, 12, 1988) and Johansen and Juselius (Oxford Bulletin of Economics and Statistics, 52, 1990) cointegration procedure for long run relationship and Granger-causality tests based on Toda and Yamamoto (Journal of Econometrics, 66, 1995) methodology. No cointegration was found among stock markets of USA, Pakistan and India, while Granger-causality test showed the evidence of unidirectional causality running from New York stock exchange to Bombay and Karachi stock exchanges.Keywords: Causality, Cointegration, India, Pakistan, Stock Markets, US.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152296 Information Transmission between Large and Small Stocks in the Korean Stock Market
Authors: Sang Hoon Kang, Seong-Min Yoon
Abstract:
Little attention has been paid to information transmission between the portfolios of large stocks and small stocks in the Korean stock market. This study investigates the return and volatility transmission mechanisms between large and small stocks in the Korea Exchange (KRX). This study also explores whether bad news in the large stock market leads to a volatility of the small stock market that is larger than the good news volatility of the large stock market. By employing the Granger causality test, we found unidirectional return transmissions from the large stocks to medium and small stocks. This evidence indicates that pat information about the large stocks has a better ability to predict the returns of the medium and small stocks in the Korean stock market. Moreover, by using the asymmetric GARCH-BEKK model, we observed the unidirectional relationship of asymmetric volatility transmission from large stocks to the medium and small stocks. This finding suggests that volatility in the medium and small stocks following a negative shock in the large stocks is larger than that following a positive shock in the large stocks.Keywords: Asymmetric GARCH-BEKK model, Asymmetric volatility transmission, Causality, Korean stock market, Spillover effect
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674295 Effects of the Stock Market Dynamic Linkages on the Central and Eastern European Capital Markets
Authors: Ioan Popa, Cristiana Tudor, Radu Lupu
Abstract:
The interdependences among stock market indices were studied for a long while by academics in the entire world. The current financial crisis opened the door to a wide range of opinions concerning the understanding and measurement of the connections considered to provide the controversial phenomenon of market integration. Using data on the log-returns of 17 stock market indices that include most of the CEE markets, from 2005 until 2009, our paper studies the problem of these dependences using a new methodological tool that takes into account both the volatility clustering effect and the stochastic properties of these linkages through a Dynamic Conditional System of Simultaneous Equations. We find that the crisis is well captured by our model as it provides evidence for the high volatility – high dependence effect.Keywords: Stock market interdependences, Dynamic System ofSimultaneous Equations, financial crisis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776294 Information content of Islamic Private Debt Announcement: Evidence from Malaysia
Authors: Sahar Modirzadehbami, Gholamreza Mansourfar
Abstract:
Different types of Islamic debts have been increasingly utilized as preferred means of debt funding by Malaysian private firms in recent years. This study examines the impact of Islamic debts announcement on private firms- stock returns. Our sample includes forty five listed companies on Bursa Malaysia involved in issuing of Islamic debts during 2005 to 2008. The abnormal returns and cumulative average abnormal returns are calculated and tested using standard event study methodology. The results show that a significant, negative abnormal return occurs one day before announcement date. This negative abnormal return is representing market participant-s adverse attitude toward Islamic private debt announcement during the research period.Keywords: Announcement effect, Event study, Islamic debts, Malaysia, Sukuk
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020293 Dynamic Interaction Network to Model the Interactive Patterns of International Stock Markets
Authors: Laura Lukmanto, Harya Widiputra, Lukas
Abstract:
Studies in economics domain tried to reveal the correlation between stock markets. Since the globalization era, interdependence between stock markets becomes more obvious. The Dynamic Interaction Network (DIN) algorithm, which was inspired by a Gene Regulatory Network (GRN) extraction method in the bioinformatics field, is applied to reveal important and complex dynamic relationship between stock markets. We use the data of the stock market indices from eight countries around the world in this study. Our results conclude that DIN is able to reveal and model patterns of dynamic interaction from the observed variables (i.e. stock market indices). Furthermore, it is also found that the extracted network models can be utilized to predict movement of the stock market indices with a considerably good accuracy.
Keywords: complex dynamic relationship, dynamic interaction network, interactive stock markets, stock market interdependence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397292 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection
Authors: Yaojun Wang, Yaoqing Wang
Abstract:
Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.Keywords: Case-based reasoning, decision tree, stock selection, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705291 Dynamic Safety-Stock Calculation
Authors: Julian Becker, Wiebke Hartmann, Sebastian Bertsch, Johannes Nywlt, Matthias Schmidt
Abstract:
In order to ensure a high service level industrial enterprises have to maintain safety-stock that directly influences the economic efficiency at the same time. This paper analyses established mathematical methods to calculate safety-stock. Therefore, the performance measured in stock and service level is appraised and the limits of several methods are depicted. Afterwards, a new dynamic approach is presented to gain an extensive method to calculate safety-stock that also takes the knowledge of future volatility into account.
Keywords: Inventory dimensioning, material requirement planning, safety-stock calculation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6877290 How Stock Market Reacts to Guidance Revisions and Actual Earnings Surprises
Authors: Tero Halme, Juho Kanniainen, Markus Nordberg
Abstract:
According to the existing literature, companies manage analysts’ expectations of their future earnings by issuing pessimistic earnings guidance to meet the expectations. Consequently, one could expect that markets price this pessimistic bias in advance and penalize companies more for lowering the guidance than reward for beating the guidance. In this paper we confirm this empirically. In addition we show that although guidance revisions have a statistically significant relation to stock returns, that is not the case with the actual earnings surprise. Reason for this could be that, after the annual earnings report also information on future earnings power is given at the same time.
Keywords: Management guidance, earnings guidance, pessimistic bias
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3022289 Stock Movement Prediction Using Price Factor and Deep Learning
Abstract:
The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.
Keywords: Classification, machine learning, time representation, stock prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153288 Building a Trend Based Segmentation Method with SVR Model for Stock Turning Detection
Authors: Jheng-Long Wu, Pei-Chann Chang, Yi-Fang Pan
Abstract:
This research focus on developing a new segmentation method for improving forecasting model which is call trend based segmentation method (TBSM). Generally, the piece-wise linear representation (PLR) can finds some of pair of trading points is well for time series data, but in the complicated stock environment it is not well for stock forecasting because of the stock has more trends of trading. If we consider the trends of trading in stock price for the trading signal which it will improve the precision of forecasting model. Therefore, a TBSM with SVR model used to detect the trading points for various stocks of Taiwanese and America under different trend tendencies. The experimental results show our trading system is more profitable and can be implemented in real time of stock market
Keywords: Trend based segmentation method, support vector machine, turning detection, stock forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3167287 A Hybrid Machine Learning System for Stock Market Forecasting
Authors: Rohit Choudhry, Kumkum Garg
Abstract:
In this paper, we propose a hybrid machine learning system based on Genetic Algorithm (GA) and Support Vector Machines (SVM) for stock market prediction. A variety of indicators from the technical analysis field of study are used as input features. We also make use of the correlation between stock prices of different companies to forecast the price of a stock, making use of technical indicators of highly correlated stocks, not only the stock to be predicted. The genetic algorithm is used to select the set of most informative input features from among all the technical indicators. The results show that the hybrid GA-SVM system outperforms the stand alone SVM system.Keywords: Genetic Algorithms, Support Vector Machines, Stock Market Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9317286 Integration of Asian Stock Markets
Authors: Noor A. Auzairy, Rubi Ahmad, Catherine S.F. Ho, Ros Z. Z. Sapian
Abstract:
This paper is to explore the relationship and the level of stock market integration of the Asian countries, primarily concentrating on Malaysia, Thailand, Indonesia, and South Korea, with the world from January 1997 to December 2009. The degree of short-run and long-run stock market integration of those Asian countries are analyzed in order to determine the significance of series of regional and world financial crises, liberalization policies and other financial reforms in influencing the level of stock market integration. To test for cointegration, this paper applies coefficient correlation, univariate regression analyses, cointegration tests, and vector autoregressive models (VAR) by using the four Asian stock markets main indices and the MSCI World index. The empirical findings from this work reveal that there is no long-run stock market integration for the four countries and the world market. However, there is short run integration.Keywords: Asia, integration, relationship, stock market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2478285 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.
Keywords: Bayesian, Forecast, Stock, BART.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734284 Corporate Governance and Share Prices: Firm Level Review in Turkey
Authors: Raif Parlakkaya, Ahmet Diken, Erkan Kara
Abstract:
This paper examines the relationship between corporate governance rating and stock prices of 26 Turkish firms listed in Turkish stock exchange (Borsa Istanbul) by using panel data analysis over five-year period. The paper also investigates the stock performance of firms with governance rating with regards to the market portfolio (i.e. BIST 100 Index) both prior and after governance scoring began. The empirical results show that there is no relation between corporate governance rating and stock prices when using panel data for annual variation in both rating score and stock prices. Further analysis indicates surprising results that while the selected firms outperform the market significantly prior to rating, the same performance does not continue afterwards.Keywords: Corporate governance, stock price, performance, panel data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2526283 Stochastic Impact Analysis of COVID-19 on Karachi Stock Exchange
Authors: Syeda Maria Ali Shah, Asif Mansoor, Talat Sharafat Rehmani, Safia Mirza
Abstract:
The stock market of any country acts as a predictor of the economy. The spread of the COVID-19 pandemic has severely impacted the global financial markets. Besides, it has also critically affected the economy of Pakistan. In this study, we consider the role of the Karachi Stock Exchange (KSE) with regard to the Pakistan Stock Exchange and quantify the impact on macroeconomic variables in presence of COVID-19. The suitable macroeconomic variables are used to quantify the impact of COVID-19 by developing the stochastic model. The sufficiency of the computed model is attained by means of available techniques in the literature. The estimated equations are used to forecast the impact of pandemic on macroeconomic variables. The constructed model can help the policymakers take counteractive measures for restricting the influence of viruses on the Karachi Stock Market.
Keywords: COVID-19, Karachi Stock Market, macroeconomic variables, stochastic model, forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733282 Combined Effect of Heat Stimulation and Delay Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar
Authors: Antoni Wibowo, Harry Pujianto, Dewi Retno Sari Saputro
Abstract:
The stock market can provide huge profits in a relatively short time in financial sector; however, it also has a high risk for investors and traders if they are not careful to look the factors that affect the stock market. Therefore, they should give attention to the dynamic fluctuations and movements of the stock market to optimize profits from their investment. In this paper, we present a nonlinear autoregressive exogenous model (NARX) to predict the movements of stock market; especially, the movements of the closing price index. As case study, we consider to predict the movement of the closing price in Indonesia composite index (IHSG) and choose the best structures of NARX for IHSG’s prediction.
Keywords: NARX, prediction, stock market, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817281 An Application of a Cost Minimization Model in Determining Safety Stock Level and Location
Authors: Bahareh Amirjabbari, Nadia Bhuiyan
Abstract:
In recent decades, the lean methodology, and the development of its principles and concepts have widely been applied in supply chain management. One of the most important strategies of being lean is having efficient inventory within the chain. On the other hand, managing inventory efficiently requires appropriate management of safety stock in order to protect against increasing stretch in the breaking points of the supply chain, which in turn can result in possible reduction of inventory. This paper applies a safety stock cost minimization model in a manufacturing company. The model results in optimum levels and locations of safety stock within the company-s supply chain in order to minimize total logistics costs.Keywords: Cost, efficient inventory, optimization, safety stock, supply chain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635280 The Effect of Ownership Structure on Stock Prices after Crisis: A Study on Ise 100 Index
Authors: U. Şendurur, B. Nazlıoğlu
Abstract:
Using Turkish data, in this study it is investigated that whether a firm’s ownership structure has an impact on its stock prices after the crisis. A linear regression model is conducted on the data of non-financial firms that are trading in Istanbul Stock Exchange 100 Index (ISE 100) index. The findings show that, all explanatory variables such as inside ownership, largest ownership, concentrated ownership, foreign shareholders, family controlled and dispersed ownership are not very important to explain stock prices after the crisis. Family controlled firms and concentrated ownership is positively related to stock price, dispersed ownership, largest ownership, foreign shareholders, and inside ownership structures have negative interaction between stock prices, but because of the p value is not under the value of 0.05 this relation is not significant. In addition, the analysis shows that, the shares of firms that have inside, largest and dispersed ownership structure are outperform comparing with the other firms. Furthermore, ownership concentrated firms outperform to family controlled firms.
Keywords: Financial crisis, ISE 100 Index, Ownership structure, Stock price.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658279 An Application of Extreme Value Theory as a Risk Measurement Approach in Frontier Markets
Authors: Dany Ng Cheong Vee, Preethee Nunkoo Gonpot, Noor-Ul-Hacq Sookia
Abstract:
In this paper, we consider the application of Extreme Value Theory as a risk measurement tool. The Value at Risk, for a set of indices, from six Stock Exchanges of Frontier markets is calculated using the Peaks over Threshold method and the performance of the model index-wise is evaluated using coverage tests and loss functions. Our results show that “fattailedness” alone of the data is not enough to justify the use of EVT as a VaR approach. The structure of the returns dynamics is also a determining factor. This approach works fine in markets which have had extremes occurring in the past thus making the model capable of coping with extremes coming up (Colombo, Tunisia and Zagreb Stock Exchanges). On the other hand, we find that indices with lower past than present volatility fail to adequately deal with future extremes (Mauritius and Kazakhstan). We also conclude that using EVT alone produces quite static VaR figures not reflecting the actual dynamics of the data.
Keywords: Extreme Value theory, Financial Crisis 2008, Frontier Markets, Value at Risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386278 Volatility Switching between Two Regimes
Authors: Josip Visković, Josip Arnerić, Ante Rozga
Abstract:
Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most successful and popular models in modeling time varying volatility are GARCH type models. When financial returns exhibit sudden jumps that are due to structural breaks, standard GARCH models show high volatility persistence, i.e. integrated behavior of the conditional variance. In such situations models in which the parameters are allowed to change over time are more appropriate. This paper compares different GARCH models in terms of their ability to describe structural changes in returns caused by financial crisis at stock markets of six selected central and east European countries. The empirical analysis demonstrates that Markov regime switching GARCH model resolves the problem of excessive persistence and outperforms uni-regime GARCH models in forecasting volatility when sudden switching occurs in response to financial crisis.
Keywords: Central and east European countries, financial crisis, Markov switching GARCH model, transition probabilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2521277 A New Heuristic Approach for the Stock- Cutting Problems
Authors: Stephen C. H. Leung, Defu Zhang
Abstract:
This paper addresses a stock-cutting problem with rotation of items and without the guillotine cutting constraint. In order to solve the large-scale problem effectively and efficiently, we propose a simple but fast heuristic algorithm. It is shown that this heuristic outperforms the latest published algorithms for large-scale problem instances.
Keywords: Combinatorial optimization, heuristic, large-scale, stock-cutting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681