Search results for: rupture risk prediction
2064 Quantitative Indicator of Abdominal Aortic Aneurysm Rupture Risk Based on its Geometric Parameters
Authors: Guillermo Vilalta, Félix Nieto, Carlos Vaquero, José A. Vilalta
Abstract:
Abdominal aortic aneurysms rupture (AAAs) is one of the main causes of death in the world. This is a very complex phenomenon that usually occurs “without previous warning". Currently, criteria to assess the aneurysm rupture risk (peak diameter and growth rate) can not be considered as reliable indicators. In a first approach, the main geometric parameters of aneurysms have been linked into five biomechanical factors. These are combined to obtain a dimensionless rupture risk index, RI(t), which has been validated preliminarily with a clinical case and others from literature. This quantitative indicator is easy to understand, it allows estimating the aneurysms rupture risks and it is expected to be able to identify the one in aneurysm whose peak diameter is less than the threshold value. Based on initial results, a broader study has begun with twelve patients from the Clinic Hospital of Valladolid-Spain, which are submitted to periodic follow-up examinations.
Keywords: AAA, rupture risk prediction, biomechanical factors, AAA geometric characterization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15312063 Equity Risk Premiums and Risk Free Rates in Modelling and Prediction of Financial Markets
Authors: Mohammad Ghavami, Reza S. Dilmaghani
Abstract:
This paper presents an adaptive framework for modelling financial markets using equity risk premiums, risk free rates and volatilities. The recorded economic factors are initially used to train four adaptive filters for a certain limited period of time in the past. Once the systems are trained, the adjusted coefficients are used for modelling and prediction of an important financial market index. Two different approaches based on least mean squares (LMS) and recursive least squares (RLS) algorithms are investigated. Performance analysis of each method in terms of the mean squared error (MSE) is presented and the results are discussed. Computer simulations carried out using recorded data show MSEs of 4% and 3.4% for the next month prediction using LMS and RLS adaptive algorithms, respectively. In terms of twelve months prediction, RLS method shows a better tendency estimation compared to the LMS algorithm.Keywords: Prediction of financial markets, Adaptive methods, MSE, LSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10222062 Determination of Some Physical and Mechanical Properties of Pofaki Variety of Pea
Authors: M. Azadbakht, E. Ghajarjazi, E. Amiri, F. Abdigaol
Abstract:
In this research the effect of moisture at three levels (47, 57, and 67 w.b.%) on the physical properties of the Pofaki pea variety including, dimensions, geometric mean diameter, volume, sphericity index and the surface area was determined. The influence of different moisture levels (47, 57 and 67 w.b.%), in two loading orientation (longitudinal and transverse) and three loading speed (4,6 and 8 mm min-1) on the mechanical properties of pea such as maximum deformation, rupture force, rupture energy, toughness and the power to break the pea was investigated. It was observed in the physical properties that moisture changes were affective at 1% on, dimensions, geometric mean diameter, volume, sphericity index and the surface area. It was observed in the mechanical properties that moisture changes were effective at 1% on, maximum deformation, rupture force, rupture energy, toughness and the power to break. Loading speed was effective on maximum deformation, rupture force, rupture energy at 1% and it was effective on toughness at 5%. Loading orientation was effective on maximum deformation, rupture force, rupture energy, toughness at 1% and it was effective on power at 5%. The mutual effect of speed and orientation were effective on rupture energy at 1% and were effective on toughness at 5% probability. The mutual effect of moisture and speed were effective on rupture force and rupture energy at 1% and were effective on toughness 5% probability. The mutual effect of orientation and moisture on rupture energy and toughness were effective at 1%.
Keywords: Mechanical properties, Pea, Physical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23422061 Study on Rupture of Tube Type Crash Energy Absorber using Finite Element Method
Authors: Won Mok. Choi, Tae Su. Kwon, Hyun Sung. Jung, Jin Sung. Kim
Abstract:
The aim of this paper is to confirm the effect of key design parameters, the punch radius and punch angle, on rupture of the expansion tube using a finite element analysis with a ductile damage model. The results of the finite element analysis indicated that the expansion ratio of the tube was mainly affected by the radius of the punch. However, the rupture was more affected by the punch angle than the radius of the punch. The existence of a specific punch angle, at which rupture did not occur, even if the radius of the punch was increased, was found.Keywords: Expansion tube, Ductile damage, Shear failure, Stress triaxiality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17252060 Effect of Moisture Content and Loading Rate on Mechanical Strength of Brown Rice Varieties
Authors: I. Bagheri, M.B. Dehpour
Abstract:
The effect of moisture content and loading rate on mechanical strength of 12 brown rice grain varieties was determined. The results showed that the rupture force of brown rice grain decreased by increasing the moisture content and loading rate. The highest rupture force values was obtained at the moisture content of 8% (w.b.) and loading rate of 10 mm/min; while the lowest rupture force corresponded to the moisture content of 14% (w.b.) and loading rate of 15 mm/min. The 12 varieties were divided into three groups, namely local short grain varieties, local long grain varieties and improved long grain varieties. It was observed that the rupture strength of the three groups were statistically different from each other (P<0.01). It was revealed that the brown rice rupture at lower levels of moisture content was in the form of sudden failure with less deformation; while at higher levels of moisture content the grain rupture was in the form of gradually crushing with more deformation.Keywords: Brown rice, loading rate, moisture content, ruptureforce
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14922059 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine
Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen
Abstract:
Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.
Keywords: Cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8492058 First Cracking Moments of Hybrid Fiber Reinforced Polymer-Steel Reinforced Concrete Beams
Authors: Saruhan Kartal, Ilker Kalkan
Abstract:
The present paper reports the cracking moment estimates of a set of steel-reinforced, Fiber Reinforced Polymer (FRP)-reinforced and hybrid steel-FRP reinforced concrete beams, calculated from different analytical formulations in the codes, together with the experimental cracking load values. A total of three steel-reinforced, four FRP-reinforced, 12 hybrid FRP-steel over-reinforced and five hybrid FRP-steel under-reinforced concrete beam tests were analyzed within the scope of the study. Glass FRP (GFRP) and Basalt FRP (BFRP) bars were used in the beams as FRP bars. In under-reinforced hybrid beams, rupture of the FRP bars preceded crushing of concrete, while concrete crushing preceded FRP rupture in over-reinforced beams. In both types, steel yielding took place long before the FRP rupture and concrete crushing. The cracking moment mainly depends on two quantities, namely the moment of inertia of the section at the initiation of cracking and the flexural tensile strength of concrete, i.e. the modulus of rupture. In the present study, two different definitions of uncracked moment of inertia, i.e. the gross and the uncracked transformed moments of inertia, were adopted. Two analytical equations for the modulus of rupture (ACI 318M and Eurocode 2) were utilized in the calculations as well as the experimental tensile strength of concrete from prismatic specimen tests. The ACI 318M modulus of rupture expression produced cracking moment estimates closer to the experimental cracking moments of FRP-reinforced and hybrid FRP-steel reinforced concrete beams when used in combination with the uncracked transformed moment of inertia, yet the Eurocode 2 modulus of rupture expression gave more accurate cracking moment estimates in steel-reinforced concrete beams. All of the analytical definitions produced analytical values considerably different from the experimental cracking load values of the solely FRP-reinforced concrete beam specimens.
Keywords: Cracking moment, four-point bending, hybrid use of reinforcement, polymer reinforcement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8172057 Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region
Authors: B. Sir, M. Podhoranyi, S. Kuchar, T. Kocyan
Abstract:
Rainfall runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15 – May 18 2014). Prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice.Keywords: Flood, HEC-HMS, Prediction, Rainfall – Runoff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22282056 River Flow Prediction Using Nonlinear Prediction Method
Authors: N. H. Adenan, M. S. M. Noorani
Abstract:
River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to develop an efficient water management system to optimize the allocation water resources.
Keywords: River flow, nonlinear prediction method, phase space, local linear approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23652055 Monthly River Flow Prediction Using a Nonlinear Prediction Method
Authors: N. H. Adenan, M. S. M. Noorani
Abstract:
River flow prediction is an essential tool to ensure proper management of water resources and the optimal distribution of water to consumers. This study presents an analysis and prediction by using nonlinear prediction method with monthly river flow data for Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The reconstruction of phase space involves the reconstruction of one-dimension (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. The revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) was employed to compare prediction performance for the nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show that the prediction results using the nonlinear prediction method are better than ARIMA and SVM. Therefore, the results of this study could be used to develop an efficient water management system to optimize the allocation of water resources.
Keywords: River flow, nonlinear prediction method, phase space, local linear approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19622054 Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults
Authors: L. Lindsay, S. A. Coleman, D. Kerr, B. J. Taylor, A. Moorhead
Abstract:
Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks.
Keywords: Classification, falls, health risk factors, machine learning, older adults.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10552053 Injury Prediction for Soccer Players Using Machine Learning
Authors: Amiel Satvedi, Richard Pyne
Abstract:
Injuries in professional sports occur on a regular basis. Some may be minor while others can cause huge impact on a player’s career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player’s number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.
Keywords: Injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17492052 Fast Intra Prediction Algorithm for H.264/AVC Based on Quadratic and Gradient Model
Authors: A. Elyousfi, A. Tamtaoui, E. Bouyakhf
Abstract:
The H.264/AVC standard uses an intra prediction, 9 directional modes for 4x4 luma blocks and 8x8 luma blocks, 4 directional modes for 16x16 macroblock and 8x8 chroma blocks, respectively. It means that, for a macroblock, it has to perform 736 different RDO calculation before a best RDO modes is determined. With this Multiple intra-mode prediction, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standards, but computational complexity is increased significantly. This paper presents a fast intra prediction algorithm for H.264/AVC intra prediction based a characteristic of homogeneity information. In this study, the gradient prediction method used to predict the homogeneous area and the quadratic prediction function used to predict the nonhomogeneous area. Based on the correlation between the homogeneity and block size, the smaller block is predicted by gradient prediction and quadratic prediction, so the bigger block is predicted by gradient prediction. Experimental results are presented to show that the proposed method reduce the complexity by up to 76.07% maintaining the similar PSNR quality with about 1.94%bit rate increase in average.Keywords: Intra prediction, H.264/AVC, video coding, encodercomplexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18962051 Airport Investment Risk Assessment under Uncertainty
Authors: Elena M. Capitanul, Carlos A. Nunes Cosenza, Walid El Moudani, Felix Mora Camino
Abstract:
The construction of a new airport or the extension of an existing one requires massive investments and many times public private partnerships were considered in order to make feasible such projects. One characteristic of these projects is uncertainty with respect to financial and environmental impacts on the medium to long term. Another one is the multistage nature of these types of projects. While many airport development projects have been a success, some others have turned into a nightmare for their promoters. This communication puts forward a new approach for airport investment risk assessment. The approach takes explicitly into account the degree of uncertainty in activity levels prediction and proposes milestones for the different stages of the project for minimizing risk. Uncertainty is represented through fuzzy dual theory and risk management is performed using dynamic programming. An illustration of the proposed approach is provided.
Keywords: Airports, fuzzy logic, risk, uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24802050 On Improving Breast Cancer Prediction Using GRNN-CP
Authors: Kefaya Qaddoum
Abstract:
The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.
Keywords: Neural network, conformal prediction, cancer classification, regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8392049 Selective Intra Prediction Mode Decision for H.264/AVC Encoders
Authors: Jun Sung Park, Hyo Jung Song
Abstract:
H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standards such as MPEG-2, but computational complexity is increased significantly. In this paper, we propose selective mode decision schemes for fast intra prediction mode selection. The objective is to reduce the computational complexity of the H.264/AVC encoder without significant rate-distortion performance degradation. In our proposed schemes, the intra prediction complexity is reduced by limiting the luma and chroma prediction modes using the directional information of the 16×16 prediction mode. Experimental results are presented to show that the proposed schemes reduce the complexity by up to 78% maintaining the similar PSNR quality with about 1.46% bit rate increase in average.Keywords: Video encoding, H.264, Intra prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34682048 Model of MSD Risk Assessment at Workplace
Authors: K. Sekulová, M. Šimon
Abstract:
This article focuses on upper-extremity musculoskeletal disorders risk assessment model at workplace. In this model are used risk factors that are responsible for musculoskeletal system damage. Based on statistic calculations the model is able to define what risk of MSD threatens workers who are under risk factors. The model is also able to say how MSD risk would decrease if these risk factors are eliminated.
Keywords: Ergonomics, musculoskeletal disorders, occupational diseases, risk factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20572047 Prediction of Cardiovascular Disease by Applying Feature Extraction
Authors: Nebi Gedik
Abstract:
Heart disease threatens the lives of a great number of people every year around the world. Heart issues lead to many of all deaths; therefore, early diagnosis and treatment are critical. The diagnosis of heart disease is complicated due to several factors affecting health such as high blood pressure, raised cholesterol, an irregular pulse rhythm, and more. Artificial intelligence has the potential to assist in the early detection and treatment of diseases. Improving heart failure prediction is one of the primary goals of research on heart disease risk assessment. This study aims to determine the features that provide the most successful classification prediction in detecting cardiovascular disease. The performances of each feature are compared using the K-Nearest Neighbor machine learning method. The feature that gives the most successful performance has been identified.
Keywords: Cardiovascular disease, feature extraction, supervised learning, k-NN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372046 Diesel Fault Prediction Based on Optimized Gray Neural Network
Authors: Han Bing, Yin Zhenjie
Abstract:
In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.
Keywords: Fault prediction, Neural network, GM (1.5), Genetic algorithm, GBPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13022045 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: Crime prediction, machine learning, public safety, smart city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13262044 Neural Network Based Approach of Software Maintenance Prediction for Laboratory Information System
Authors: Vuk M. Popovic, Dunja D. Popovic
Abstract:
Software maintenance phase is started once a software project has been developed and delivered. After that, any modification to it corresponds to maintenance. Software maintenance involves modifications to keep a software project usable in a changed or a changing environment, to correct discovered faults, and modifications, and to improve performance or maintainability. Software maintenance and management of software maintenance are recognized as two most important and most expensive processes in a life of a software product. This research is basing the prediction of maintenance, on risks and time evaluation, and using them as data sets for working with neural networks. The aim of this paper is to provide support to project maintenance managers. They will be able to pass the issues planned for the next software-service-patch to the experts, for risk and working time evaluation, and afterward to put all data to neural networks in order to get software maintenance prediction. This process will lead to the more accurate prediction of the working hours needed for the software-service-patch, which will eventually lead to better planning of budget for the software maintenance projects.
Keywords: Laboratory information system, maintenance engineering, neural networks, software maintenance, software maintenance costs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11282043 Intra Prediction using Weighted Average of Pixel Values According to Prediction Direction
Authors: Kibaek Kim, Dongjin Jung, Jinik Jang, Jechang Jeong
Abstract:
In this paper, we proposed a method to reduce quantization error. In order to reduce quantization error, low pass filtering is applied on neighboring samples of current block in H.264/AVC. However, it has a weak point that low pass filtering is performed regardless of prediction direction. Since it doesn-t consider prediction direction, it may not reduce quantization error effectively. Proposed method considers prediction direction for low pass filtering and uses a threshold condition for reducing flag bit. We compare our experimental result with conventional method in H.264/AVC and we can achieve the average bit-rate reduction of 1.534% by applying the proposed method. Bit-rate reduction between 0.580% and 3.567% are shown for experimental results.Keywords: Coding efficiency, H.264/AVC, Intra prediction, Low pass filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17502042 A Comparison of Grey Model and Fuzzy Predictive Model for Time Series
Authors: A. I. Dounis, P. Tiropanis, D. Tseles, G. Nikolaou, G. P. Syrcos
Abstract:
The prediction of meteorological parameters at a meteorological station is an interesting and open problem. A firstorder linear dynamic model GM(1,1) is the main component of the grey system theory. The grey model requires only a few previous data points in order to make a real-time forecast. In this paper, we consider the daily average ambient temperature as a time series and the grey model GM(1,1) applied to local prediction (short-term prediction) of the temperature. In the same case study we use a fuzzy predictive model for global prediction. We conclude the paper with a comparison between local and global prediction schemes.Keywords: Fuzzy predictive model, grey model, local andglobal prediction, meteorological forecasting, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21562041 Development of Neural Network Prediction Model of Energy Consumption
Authors: Maryam Jamela Ismail, Rosdiazli Ibrahim, Idris Ismail
Abstract:
In the oil and gas industry, energy prediction can help the distributor and customer to forecast the outgoing and incoming gas through the pipeline. It will also help to eliminate any uncertainties in gas metering for billing purposes. The objective of this paper is to develop Neural Network Model for energy consumption and analyze the performance model. This paper provides a comprehensive review on published research on the energy consumption prediction which focuses on structures and the parameters used in developing Neural Network models. This paper is then focused on the parameter selection of the neural network prediction model development for energy consumption and analysis on the result. The most reliable model that gives the most accurate result is proposed for the prediction. The result shows that the proposed neural network energy prediction model is able to demonstrate an adequate performance with least Root Mean Square Error.Keywords: Energy Prediction, Multilayer Feedforward, Levenberg-Marquardt, Root Mean Square Error (RMSE)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26432040 Analysis of Physicochemical Properties on Prediction of R5, X4 and R5X4 HIV-1 Coreceptor Usage
Authors: Kai-Ti Hsu, Hui-Ling Huang, Chun-Wei Tung, Yi-Hsiung Chen, Shinn-Ying Ho
Abstract:
Bioinformatics methods for predicting the T cell coreceptor usage from the array of membrane protein of HIV-1 are investigated. In this study, we aim to propose an effective prediction method for dealing with the three-class classification problem of CXCR4 (X4), CCR5 (R5) and CCR5/CXCR4 (R5X4). We made efforts in investigating the coreceptor prediction problem as follows: 1) proposing a feature set of informative physicochemical properties which is cooperated with SVM to achieve high prediction test accuracy of 81.48%, compared with the existing method with accuracy of 70.00%; 2) establishing a large up-to-date data set by increasing the size from 159 to 1225 sequences to verify the proposed prediction method where the mean test accuracy is 88.59%, and 3) analyzing the set of 14 informative physicochemical properties to further understand the characteristics of HIV-1coreceptors.Keywords: Coreceptor, genetic algorithm, HIV-1, SVM, physicochemical properties, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23872039 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps
Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou
Abstract:
Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.
Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11872038 On Identity Disclosure Risk Measurement for Shared Microdata
Authors: M. N. Huda, S. Yamada, N. Sonehara
Abstract:
Probability-based identity disclosure risk measurement may give the same overall risk for different anonymization strategy of the same dataset. Some entities in the anonymous dataset may have higher identification risks than the others. Individuals are more concerned about higher risks than the average and are more interested to know if they have a possibility of being under higher risk. A notation of overall risk in the above measurement method doesn-t indicate whether some of the involved entities have higher identity disclosure risk than the others. In this paper, we have introduced an identity disclosure risk measurement method that not only implies overall risk, but also indicates whether some of the members have higher risk than the others. The proposed method quantifies the overall risk based on the individual risk values, the percentage of the records that have a risk value higher than the average and how larger the higher risk values are compared to the average. We have analyzed the disclosure risks for different disclosure control techniques applied to original microdata and present the results.Keywords: Anonymization, microdata, disclosure risk, privacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13652037 An Optimization Model of CMMI-Based Software Project Risk Response Planning
Authors: Chun-guang Pan, Ying-wu Chen
Abstract:
Risk response planning is of importance for software project risk management (SPRM). In CMMI, risk management was in the third capability maturity level, which provides a framework for software project risk identification, assessment, risk planning, risk control. However, the CMMI-based SPRM currently lacks quantitative supporting tools, especially during the process of implementing software project risk planning. In this paper, an economic optimization model for selecting risk reduction actions in the phase of software project risk response planning is presented. Furthermore, an example taken from a Chinese software industry is illustrated to verify the application of this method. The research provides a risk decision method for project risk managers that can be used in the implementation of CMMI-based SPRM.
Keywords: Software project, risk management, CMMI, riskresponse planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20902036 An Improved Prediction Model of Ozone Concentration Time Series Based On Chaotic Approach
Authors: N. Z. A. Hamid, M. S. M. Noorani
Abstract:
This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly Ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.
Keywords: Chaotic approach, phase space, Cao method, local linear approximation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17842035 A New Dimension in Software Risk Managment
Authors: Masood Uzzafer
Abstract:
A dynamic risk management framework for software projects is presented. Currently available software risk management frameworks and risk assessment models are static in nature and lacks feedback capability. Such risk management frameworks are not capable of providing the risk assessment of futuristic changes in risk events. A dynamic risk management framework for software project is needed that provides futuristic assessment of risk events.Keywords: Software Risk Management, Dynamic Models, Software Project Managment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740