Search results for: S. Behrad
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: S. Behrad

3 Over-Height Vehicle Detection in Low Headroom Roads Using Digital Video Processing

Authors: Vahid Khorramshahi, Alireza Behrad, Neeraj K. Kanhere

Abstract:

In this paper we present a new method for over-height vehicle detection in low headroom streets and highways using digital video possessing. The accuracy and the lower price comparing to present detectors like laser radars and the capability of providing extra information like speed and height measurement make this method more reliable and efficient. In this algorithm the features are selected and tracked using KLT algorithm. A blob extraction algorithm is also applied using background estimation and subtraction. Then the world coordinates of features that are inside the blobs are estimated using a noble calibration method. As, the heights of the features are calculated, we apply a threshold to select overheight features and eliminate others. The over-height features are segmented using some association criteria and grouped using an undirected graph. Then they are tracked through sequential frames. The obtained groups refer to over-height vehicles in a scene.

Keywords: Feature extraction, over-height vehicle detection, traffic monitoring, vehicle tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2827
2 Manipulation of Probiotics Fermentation of Yogurt by Cinnamon and Licorice: Effects on Yogurt Formation and Inhibition of Helicobacter Pylori Growth in vitro

Authors: S. Behrad, M.Y. Yusof, K. L. Goh, A.S. Baba

Abstract:

Probiotic bacteria especially Lactobacillus spp. and Bifidobacterium exert suppressive effect on Helicobacter pylori. Cinnamon and licorice have been traditionally used for the treatment of gastric ulcer. The objectives of this study were to determine the effects of herbs on yogurt fermentation, the level of probiotic bacteria in yogurt during 28 days storage and the effect of herbal yogurt on the growth of H. pylori in vitro. Cinnamon or licorice was mixed with milk and the mixture was fermented with probiotic bacteria to form herbal-yogurt. Changes of pH and total titratable acids were monitored and the viability of probiotic bacteria was evaluated during and after refrigerated storage. The in vitro inhibition of H. pylori growth was determined using agar diffusion and minimum inhibitory concentration (MIC) method. The presence of herbs did not affect the probiotic population during storage. There were no significant differences in pH and TTA between herbal-yogurts and plain-yogurt during fermentation and storage. Water extract of cinnamon-yogurt showed the highest inhibition effect (13.5mm) on H. pylori growth in comparison with licorice-yogurt (11.2mm). The present findings indicate cinnamon and licorice has bioactive components to decrease the growth of H. pylori.

Keywords: Cinnamon, Helicobacter pylori, Herbal-Yogurt, Licorice, Probiotics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3682
1 Implementing a Visual Servoing System for Robot Controlling

Authors: Maryam Vafadar, Alireza Behrad, Saeed Akbari

Abstract:

Nowadays, with the emerging of the new applications like robot control in image processing, artificial vision for visual servoing is a rapidly growing discipline and Human-machine interaction plays a significant role for controlling the robot. This paper presents a new algorithm based on spatio-temporal volumes for visual servoing aims to control robots. In this algorithm, after applying necessary pre-processing on video frames, a spatio-temporal volume is constructed for each gesture and feature vector is extracted. These volumes are then analyzed for matching in two consecutive stages. For hand gesture recognition and classification we tested different classifiers including k-Nearest neighbor, learning vector quantization and back propagation neural networks. We tested the proposed algorithm with the collected data set and results showed the correct gesture recognition rate of 99.58 percent. We also tested the algorithm with noisy images and algorithm showed the correct recognition rate of 97.92 percent in noisy images.

Keywords: Back propagation neural network, Feature vector, Hand gesture recognition, k-Nearest Neighbor, Learning vector quantization neural network, Robot control, Spatio-temporal volume, Visual servoing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670