Search results for: Olli Yli-Harja
8 Accelerating GLA with an M-Tree
Authors: Olli Luoma, Johannes Tuikkala, Olli Nevalainen
Abstract:
In this paper, we propose a novel improvement for the generalized Lloyd Algorithm (GLA). Our algorithm makes use of an M-tree index built on the codebook which makes it possible to reduce the number of distance computations when the nearest code words are searched. Our method does not impose the use of any specific distance function, but works with any metric distance, making it more general than many other fast GLA variants. Finally, we present the positive results of our performance experiments.Keywords: Clustering, GLA, M-Tree, Vector Quantization .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15217 Release of Elements in Bottom Ash and Fly Ash from Incineration of Peat- and Wood-Residues using a Sequential Extraction Procedure
Authors: Risto Poykio, Kati Manskinen, Olli Dahl, Mikko Mäkelä, Hannu Nurmesniemi
Abstract:
When the results of the total element concentrations using USEPA method 3051A are compared to the sequential extraction analyses (i.e. the sum of fractions BCR1, BCR2 and BRC3), it can be calculated that the recovery values of elements varied between 56.8-% and 69.4-% in the bottom ash, and between 11.3-% and 70.9-% in the fly ash. This indicates that most of the elements in the ashes do not occur as readily soluble forms.
Keywords: Ash, BCR, leaching, solubility, waste
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15776 Exponentially Weighted Simultaneous Estimation of Several Quantiles
Authors: Valeriy Naumov, Olli Martikainen
Abstract:
In this paper we propose new method for simultaneous generating multiple quantiles corresponding to given probability levels from data streams and massive data sets. This method provides a basis for development of single-pass low-storage quantile estimation algorithms, which differ in complexity, storage requirement and accuracy. We demonstrate that such algorithms may perform well even for heavy-tailed data.Keywords: Quantile estimation, data stream, heavy-taileddistribution, tail index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15295 Comparison of The Fertilizer Properties of Ash Fractions from Medium-Sized (32 MW) and Small-Sized (6 MW) Municipal District Heating Plants
Authors: Hannu Nurmesniemi, Mikko Mäkelä, Risto Pöykiö, Olli Dahl
Abstract:
Due to the low heavy metal concentrations, the bottom ash from a 32 MW municipal district heating plant was determined to be a potential forest fertilizer as such. However, additional Ca would be needed, because its Ca concentration of 1.9- % (d.w.) was lower than the statutory Finnish minimum limit value of 6.0-% (d.w.) for Ca in forest fertilizer. Due to the elevated As concentration (53.0 mg/kg; d.w.) in the fly ash from the 32 MW municipal district heating plant, and Cr concentration (620 mg/kg; d.w.) in the ash fraction (i.e. mixture of the bottom ash and fly ash) from the 6 MW municipal district heating plant, which exceed the limit values of 30 mg/kg (d.w.) and 300 mg/kg (d.w.) for As and Cr, respectively, these residues are not suitable as forest fertilizers. Although these ash fractions cannot be used as a forest fertilizer as such, they can be used for the landscaping of landfills or in industrial and other areas that are closed to the public. However, an environmental permit is then needed.Keywords: Ash, fertilizer, peat, forest residue, waste
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14884 Extractable Heavy Metal Concentrations in Bottom Ash from Incineration of Wood-Based Residues in a BFB Boiler Using Artificial Sweat and Gastric Fluids
Authors: Risto Pöykiö, Olli Dahl, Hannu Nurmesniemi
Abstract:
The highest extractable concentration in the artificial sweat fluid was observed for Ba (120mg/kg; d.w.). The highest extractable concentration in the artificial gastric fluid was observed for Al (9030mg/kg; d.w.). Furthermore, the extractable concentrations of Ba (550mg/kg; d.w.) and Zn (400mg/kg: d.w.) in the bottom ash using artificial gastric fluid were elevated. The extractable concentrations of all heavy metals in the artificial gastric fluid were higher than those in the artificial sweat fluid. These results are reasonable in the light of the fact that the pH of the artificial gastric fluid was extremely acidic both before (pH 1.54) and after (pH 1.94) extraction, whereas the pH of the artificial sweat fluid was slightly alkaline before (pH 6.50) and after extraction (pH 8.51).
Keywords: Ash, artificial fluid, heavy metals, in vitro, waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29263 Predictive Clustering Hybrid Regression(pCHR) Approach and Its Application to Sucrose-Based Biohydrogen Production
Authors: Nikhil, Ari Visa, Chin-Chao Chen, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja
Abstract:
A predictive clustering hybrid regression (pCHR) approach was developed and evaluated using dataset from H2- producing sucrose-based bioreactor operated for 15 months. The aim was to model and predict the H2-production rate using information available about envirome and metabolome of the bioprocess. Selforganizing maps (SOM) and Sammon map were used to visualize the dataset and to identify main metabolic patterns and clusters in bioprocess data. Three metabolic clusters: acetate coupled with other metabolites, butyrate only, and transition phases were detected. The developed pCHR model combines principles of k-means clustering, kNN classification and regression techniques. The model performed well in modeling and predicting the H2-production rate with mean square error values of 0.0014 and 0.0032, respectively.Keywords: Biohydrogen, bioprocess modeling, clusteringhybrid regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17752 Application of a Modified BCR Approach to Investigate the Mobility and Availability of Trace Elements (As, Ba, Cd, Co, Cr, Cu, Mo,Ni, Pb, Zn, and Hg) from a Solid Residue Matrix Designed for Soil Amendment
Authors: Mikko Mäkelä, Risto Pöykiö, Gary Watkins, Hannu Nurmesniemi, Olli Dahl
Abstract:
Trace element speciation of an integrated soil amendment matrix was studied with a modified BCR sequential extraction procedure. The analysis included pseudo-total concentration determinations according to USEPA 3051A and relevant physicochemical properties by standardized methods. Based on the results, the soil amendment matrix possessed neutralization capacity comparable to commercial fertilizers. Additionally, the pseudo-total concentrations of all trace elements included in the Finnish regulation for agricultural fertilizers were lower than the respective statutory limit values. According to chemical speciation, the lability of trace elements increased in the following order: Hg < Cr < Co < Cu < As < Zn < Ni < Pb < Cd < V < Mo < Ba. The validity of the BCR approach as a tool for chemical speciation was confirmed by the additional acid digestion phase. Recovery of trace elements during the procedure assured the validity of the approach and indicated good quality of the analytical work.Keywords: BCR, bioavailability, trace element, industrialresidue, sequential extraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18421 An Artificial Neural Network Based Model for Predicting H2 Production Rates in a Sucrose-Based Bioreactor System
Authors: Nikhil, Bestamin Özkaya, Ari Visa, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja
Abstract:
The performance of a sucrose-based H2 production in a completely stirred tank reactor (CSTR) was modeled by neural network back-propagation (BP) algorithm. The H2 production was monitored over a period of 450 days at 35±1 ºC. The proposed model predicts H2 production rates based on hydraulic retention time (HRT), recycle ratio, sucrose concentration and degradation, biomass concentrations, pH, alkalinity, oxidation-reduction potential (ORP), acids and alcohols concentrations. Artificial neural networks (ANNs) have an ability to capture non-linear information very efficiently. In this study, a predictive controller was proposed for management and operation of large scale H2-fermenting systems. The relevant control strategies can be activated by this method. BP based ANNs modeling results was very successful and an excellent match was obtained between the measured and the predicted rates. The efficient H2 production and system control can be provided by predictive control method combined with the robust BP based ANN modeling tool.Keywords: Back-propagation, biohydrogen, bioprocessmodeling, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769