Search results for: B. Imine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8

Search results for: B. Imine

8 Layer-by-Layer Deposition of Poly (Ethylene Imine) Nanolayers on Polypropylene Nonwoven Fabric. Electrostatic and Thermal Properties

Authors: Dawid Stawski, Silviya Halacheva, Dorota Zielińska

Abstract:

The surface properties of many materials can be readily and predictably modified by the controlled deposition of thin layers containing appropriate functional groups and this research area is now a subject of widespread interest. The layer-by-layer (lbl) method involves depositing oppositely charged layers of polyelectrolytes onto the substrate material which are stabilized due to strong electrostatic forces between adjacent layers. This type of modification affords products that combine the properties of the original material with the superficial parameters of the new external layers. Through an appropriate selection of the deposited layers, the surface properties can be precisely controlled and readily adjusted in order to meet the requirements of the intended application. In the presented paper a variety of anionic (poly(acrylic acid)) and cationic (linear poly(ethylene imine), polymers were successfully deposited onto the polypropylene nonwoven using the lbl technique. The chemical structure of the surface before and after modification was confirmed by reflectance FTIR spectroscopy, volumetric analysis and selective dyeing tests. As a direct result of this work, new materials with greatly improved properties have been produced. For example, following a modification process significant changes in the electrostatic activity of a range of novel nanocomposite materials were observed. The deposition of polyelectrolyte nanolayers was found to strongly accelerate the loss of electrostatically generated charges and to increase considerably the thermal resistance properties of the modified fabric (the difference in T50% is over 20oC). From our results, a clear relationship between the type of polyelectrolyte layer deposited onto the flat fabric surface and the properties of the modified fabric was identified.

Keywords: Layer-by-layer technique, polypropylene nonwoven, surface modification, surface properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2511
7 Optimization of the Aerodynamic Performances of an Unmanned Aerial Vehicle

Authors: Fares Senouci, Bachir Imine

Abstract:

This document provides numerical and experimental optimization of the aerodynamic performance of a drone equipped with three types of horizontal stabilizer. To build this optimal configuration, an experimental and numerical study was conducted on three parameters: the geometry of the stabilizer (horizontal form or reverse V form), the position of the horizontal stabilizer (up or down), and the landing gear position (closed or open). The results show that up-stabilizer position with respect to the horizontal plane of the fuselage provides better aerodynamic performance, and that the landing gear increases the lift in the zone of stability, that is to say where the flow is not separated.

Keywords: Aerodynamics, wind tunnel, turbulence model, lift, drag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285
6 Experimental and Numerical Studies of Drag Reduction on a Circular Cylinder

Authors: A.O. Ladjedel, B.T.Yahiaoui, C.L.Adjlout, D.O.Imine

Abstract:

In the present paper; an experimental and numerical investigations of drag reduction on a grooved circular cylinder have been performed. The experiments were carried out in closed circuit subsonic wind tunnel (TE44); the pressure distribution on the cylinder was conducted using a TE44DPS differential pressure scanner and the drag forces were measured using the TE81 balance. The display unit is linked to a computer, loaded with DATASLIM software for data analysis and logging of result. The numerical study was performed using the code ANSYS FLUENT solving the Reynolds Averaged Navier-Stokes (RANS) equations. The k-ε and k- ω SST models were tested. The results obtained from the experimental and numerical investigations have showed a reduction in the drag when using longitudinal grooves namely 2 and 6 on the cylinder.

Keywords: Circular cylinder, Drag, grooves, pressure distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2830
5 QCM-D Study on Relationship of PEG Coated Stainless Steel Surfaces to Protein Resistance

Authors: Norzita Ngadi, John Abrahamson, Conan Fee, Ken Morison

Abstract:

Nonspecific protein adsorption generally occurs on any solid surfaces and usually has adverse consequences. Adsorption of proteins onto a solid surface is believed to be the initial and controlling step in biofouling. Surfaces modified with end-tethered poly(ethylene glycol) (PEG) have been shown to be protein-resistant to some degree. In this study, the adsorption of β-casein and lysozyme was performed on 6 different types of surfaces where PEG was tethered onto stainless steel by polyethylene imine (PEI) through either OH or NHS end groups. Protein adsorption was also performed on the bare stainless steel surface as a control. The adsorption was conducted at 23 °C and pH 7.2. In situ QCM-D was used to determine PEG adsorption kinetics, plateau PEG chain densities, protein adsorption kinetics and plateau protein adsorbed quantities. PEG grafting density was the highest for a NHS coupled chain, around 0.5 chains / nm2. Interestingly, lysozyme which has smaller size than β-casein, appeared to adsorb much less mass than that of β- casein. Overall, the surface with high PEG grafting density exhibited a good protein rejection.

Keywords: QCM-D, PEG, stainless steel, β-casein, lysozyme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996
4 Kinematic Optimization of Energy Extraction Performances for Flapping Airfoil by Using Radial Basis Function Method and Genetic Algorithm

Authors: M. Maatar, M. Mekadem, M. Medale, B. Hadjed, B. Imine

Abstract:

In this paper, numerical simulations have been carried out to study the performances of a flapping wing used as an energy collector. Metamodeling and genetic algorithms are used to detect the optimal configuration, improving power coefficient and/or efficiency. Radial basis functions and genetic algorithms have been applied to solve this problem. Three optimization factors are controlled, namely dimensionless heave amplitude h0, pitch amplitude θ0, and flapping frequency f. ANSYS FLUENT software has been used to solve the principal equations at a Reynolds number of 1100, while the heave and pitch motion of a NACA0015 airfoil has been realized using a developed function (UDF). The results reveal an average power coefficient and efficiency of 0.78 and 0.338 with an inexpensive low-fidelity model and a total relative error of 4.1% versus the simulation. The performances of the simulated optimum RBF-NSGA-II have been improved by 1.2% compared with the validated model.

Keywords: Numerical simulation, flapping wing, energy extraction, power coefficient, energy extraction efficiency, RBF, NSGA-II.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6
3 Are PEG Molecules a Universal Protein Repellent?

Authors: Norzita Ngadi, John Abrahamson, Conan Fee, Ken Morison

Abstract:

Poly (ethylene glycol) (PEG) molecules attached to surfaces have shown high potential as a protein repellent due to their flexibility and highly water solubility. A quartz crystal microbalance recording frequency and dissipation changes (QCM-D) has been used to study the adsorption from aqueous solutions, of lysozyme and α-lactalbumin proteins (the last with and without calcium) onto modified stainless steel surfaces. Surfaces were coated with poly(ethylene imine) (PEI) and silicate before grafting on PEG molecules. Protein adsorption was also performed on the bare stainless steel surface as a control. All adsorptions were conducted at 23°C and pH 7.2. The results showed that the presence of PEG molecules significantly reduced the adsorption of lysozyme and α- lactalbumin (with calcium) onto the stainless steel surface. By contrast, and unexpected, PEG molecules enhanced the adsorption of α-lactalbumin (without calcium). It is suggested that the PEG -α- lactalbumin hydrophobic interaction plays a dominant role which leads to protein aggregation at the surface for this latter observation. The findings also lead to the general conclusion that PEG molecules are not a universal protein repellent. PEG-on-PEI surfaces were better at inhibiting the adsorption of lysozyme and α-lactalbumin (with calcium) than with PEG-on-silicate surfaces.

Keywords: Stainless steel, PEG, QCM-D, protein, PEI layer, silicate layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2295
2 Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method

Authors: Saadia Adjali, Omar Imine, Mohammed Aounallah, Mustapha Belkadi

Abstract:

Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRIC scheme for VOF discretization. The results obtained compare well with the experimental data.

Keywords: Free surface flows, Breaking waves, Boundary layer, Wigley hull, Volume of fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3571
1 Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method

Authors: Saadia Adjali, Omar Imine, Mohammed Aounallah, Mustapha Belkadi

Abstract:

Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRIC scheme for VOF discretization. The results obtained compare well with the experimental data.

Keywords: Free surface flows, breaking waves, boundary layer, Wigley hull, volume of fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3311