Search results for: mathematical data analysis.
11413 Solving Machine Loading Problem in Flexible Manufacturing Systems Using Particle Swarm Optimization
Authors: S. G. Ponnambalam, Low Seng Kiat
Abstract:
In this paper, a particle swarm optimization (PSO) algorithm is proposed to solve machine loading problem in flexible manufacturing system (FMS), with bicriterion objectives of minimizing system unbalance and maximizing system throughput in the occurrence of technological constraints such as available machining time and tool slots. A mathematical model is used to select machines, assign operations and the required tools. The performance of the PSO is tested by using 10 sample dataset and the results are compared with the heuristics reported in the literature. The results support that the proposed PSO is comparable with the algorithms reported in the literature.Keywords: Machine loading problem, FMS, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212111412 Study of a Four-Bed Pressure Swing Adsorption for Oxygen Separation from Air
Authors: Moghadazadeh Zahra, Towfighi Jafar, Mofarahi Masoud
Abstract:
This article is presented an experimental and modeling study of a four-bed pressure swing adsorption process using zeolite13X to provide oxygen-enriched air. The binary mixture N2/O2 (79/21 vol %) was used as a feed stream. The effects of purge/feed ratio (P/F), adsorption pressure, cyclic time and product flow rate on product purity and recovery under nonisothermal condition were studied. The adsorption dynamics of process were determined using a mathematical model incorporated mass and energy balances. A Mathlab code using finite difference method was developed to solve the set of coupled differential-algebraic equations, and the simulation results are agreed well with experimental results.Keywords: Pressure swing adsorption (PSA), Oxygen, Zeolite 13X.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 386511411 Time Series Forecasting Using a Hybrid RBF Neural Network and AR Model Based On Binomial Smoothing
Authors: Fengxia Zheng, Shouming Zhong
Abstract:
ANNARIMA that combines both autoregressive integrated moving average (ARIMA) model and artificial neural network (ANN) model is a valuable tool for modeling and forecasting nonlinear time series, yet the over-fitting problem is more likely to occur in neural network models. This paper provides a hybrid methodology that combines both radial basis function (RBF) neural network and auto regression (AR) model based on binomial smoothing (BS) technique which is efficient in data processing, which is called BSRBFAR. This method is examined by using the data of Canadian Lynx data. Empirical results indicate that the over-fitting problem can be eased using RBF neural network based on binomial smoothing which is called BS-RBF, and the hybrid model–BS-RBFAR can be an effective way to improve forecasting accuracy achieved by BSRBF used separately.
Keywords: Binomial smoothing (BS), hybrid, Canadian Lynx data, forecasting accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 368611410 Accurate And Efficient Global Approximation using Adaptive Polynomial RSM for Complex Mechanical and Vehicular Performance Models
Authors: Y. Z. Wu, Z. Dong, S. K. You
Abstract:
Global approximation using metamodel for complex mathematical function or computer model over a large variable domain is often needed in sensibility analysis, computer simulation, optimal control, and global design optimization of complex, multiphysics systems. To overcome the limitations of the existing response surface (RS), surrogate or metamodel modeling methods for complex models over large variable domain, a new adaptive and regressive RS modeling method using quadratic functions and local area model improvement schemes is introduced. The method applies an iterative and Latin hypercube sampling based RS update process, divides the entire domain of design variables into multiple cells, identifies rougher cells with large modeling error, and further divides these cells along the roughest dimension direction. A small number of additional sampling points from the original, expensive model are added over the small and isolated rough cells to improve the RS model locally until the model accuracy criteria are satisfied. The method then combines local RS cells to regenerate the global RS model with satisfactory accuracy. An effective RS cells sorting algorithm is also introduced to improve the efficiency of model evaluation. Benchmark tests are presented and use of the new metamodeling method to replace complex hybrid electrical vehicle powertrain performance model in vehicle design optimization and optimal control are discussed.Keywords: Global approximation, polynomial response surface, domain decomposition, domain combination, multiphysics modeling, hybrid powertrain optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190811409 Modal Propagation Properties of Elliptical Core Optical Fibers Considering Stress-Optic Effects
Authors: M. Shah Alam, Sarkar Rahat M. Anwar
Abstract:
The effect of thermally induced stress on the modal properties of highly elliptical core optical fibers is studied in this work using a finite element method. The stress analysis is carried out and anisotropic refractive index change is calculated using both the conventional plane strain approximation and the generalized plane strain approach. After considering the stress optical effect, the modal analysis of the fiber is performed to obtain the solutions of fundamental and higher order modes. The modal effective index, modal birefringence, group effective index, group birefringence, and dispersion of different modes of the fiber are presented. For propagation properties, it can be seen that the results depend much on the approach of stress analysis.Keywords: Birefringence, dispersion, elliptical core fiber, optical mode analysis, stress-optic effect, stress analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229011408 Predicting Automotive Interior Noise Including Wind Noise by Statistical Energy Analysis
Authors: Yoshio Kurosawa
Abstract:
The applications of soundproof materials for reduction of high frequency automobile interior noise have been researched. This paper presents a sound pressure prediction technique including wind noise by Hybrid Statistical Energy Analysis (HSEA) in order to reduce weight of acoustic insulations. HSEA uses both analytical SEA and experimental SEA. As a result of chassis dynamo test and road test, the validity of SEA modeling was shown, and utility of the method was confirmed.
Keywords: Vibration, noise, car, statistical energy analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157711407 A CDA-Driven Study of World English Series Published by Cengage Heinle
Authors: Mohammad Amin Mozaheb, Jalal Farzaneh Dehkordi, Khojasteh Hosseinzadehpilehvar
Abstract:
English Language Teaching (ELT) is widely promoted across the world. ELT textbooks play pivotal roles in the mentioned process. Since biases of authors have been an issue of continuing interest to analysts over the past few years, the present study seeks to analyze an ELT textbook using Critical Discourse Analysis (CDA). To obtain the goal of the study, the listening section of a book called World English 3 (new edition) has been analyzed in terms of the cultures and countries mentioned in the listening section of the book using content-based analysis. The analysis indicates biases towards certain cultures. Moreover, some countries are shown as rich and powerful countries, while some others have been shown as poor ones without considering the history behind them.
Keywords: ELT, textbooks, critical discourse analysis, World English.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 133511406 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force
Authors: L. Parisi
Abstract:
In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.
Keywords: Kinemic gait data, Neural networks, Hip joint implant, Hip arthroplasty, Rehabilitation Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179811405 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning
Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan
Abstract:
We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.Keywords: Daily activity recognition, healthcare, IoT sensors, transfer learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89311404 Features of Rail Strength Analysis in Conditions of Increased Force Loading
Authors: G. Guramishvili, M. Moistsrapishvili, L. Andghuladze
Abstract:
In the article are considered the problems arising at increasing of transferring from rolling stock axles on rail loading from 210 KN up to 270 KN and is offered for rail strength analysis definition of rail force loading complex integral characteristic with taking into account all affecting force factors that is characterizing specific operation condition of rail structure and defines the working capability of structure.
As result of analysis due mentioned method is obtained that in the conditions of 270 KN loading the rail meets the working assessment criteria of rail and rail structures: Strength, rail track stability, rail links stability and its transverse stability, traffic safety condition that is rather important for post-Soviet countries railways.
Keywords: Axial loading, rail force loading, rail structure, rail strength analysis, rail track stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194011403 Visualization of Sediment Thickness Variation for Sea Bed Logging using Spline Interpolation
Authors: Hanita Daud, Noorhana Yahya, Vijanth Sagayan, Muizuddin Talib
Abstract:
This paper discusses on the use of Spline Interpolation and Mean Square Error (MSE) as tools to process data acquired from the developed simulator that shall replicate sea bed logging environment. Sea bed logging (SBL) is a new technique that uses marine controlled source electromagnetic (CSEM) sounding technique and is proven to be very successful in detecting and characterizing hydrocarbon reservoirs in deep water area by using resistivity contrasts. It uses very low frequency of 0.1Hz to 10 Hz to obtain greater wavelength. In this work the in house built simulator was used and was provided with predefined parameters and the transmitted frequency was varied for sediment thickness of 1000m to 4000m for environment with and without hydrocarbon. From series of simulations, synthetics data were generated. These data were interpolated using Spline interpolation technique (degree of three) and mean square error (MSE) were calculated between original data and interpolated data. Comparisons were made by studying the trends and relationship between frequency and sediment thickness based on the MSE calculated. It was found that the MSE was on increasing trends in the set up that has the presence of hydrocarbon in the setting than the one without. The MSE was also on decreasing trends as sediment thickness was increased and with higher transmitted frequency.Keywords: Spline Interpolation, Mean Square Error, Sea Bed Logging, Controlled Source Electromagnetic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165611402 The Consumer Private Space: What is and How it can be Approached without Affecting the Consumer's Privacy
Authors: Calin Veghes
Abstract:
The concept of privacy, seen in connection to the consumer's private space and personalization, has recently gained a higher importance as a consequence of the increasing marketing efforts of the organizations based on the capturing, processing and usage of consumer-s personal data.Paper intends to provide a definition of the consumer-s private space based on the types of personal data the consumer is willing to disclose, to assess the attitude toward personalization and to identify the means preferred by consumers to control their personal data and defend their private space. Several implications generated through the definition of the consumer-s private space are identified and weighted from both the consumers- and organizations- perspectives.
Keywords: Consumer private space, personalization, privacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156611401 Quantifying the Methods of Monitoring Timers in Electric Water Heater for Grid Balancing on Demand Side Management: A Systematic Mapping Review
Authors: Yamamah Abdulrazaq, Lahieb A. Abrahim, Samuel E. Davies, Iain Shewring
Abstract:
Electric water heater (EWH) is a powerful appliance that uses electricity in residential, commercial, and industrial settings, and the ability to control them properly will result in cost savings and the prevention of blackouts on the national grid. This article discusses the usage of timers in EWH control strategies for demand-side management (DSM). To the authors' knowledge, there is no systematic mapping review focusing on the utilization of EWH control strategies in DSM has yet been conducted. Consequently, the purpose of this research is to identify and examine main papers exploring EWH procedures in DSM by quantifying and categorizing information with regard to publication year and source, kind of methods, and source of data for monitoring control techniques. In order to answer the research questions, a total of 31 publications published between 1999 and 2023 were selected depending on specific inclusion and exclusion criteria. The data indicate that direct load control (DLC) has been somewhat more prevalent than indirect load control (ILC). Additionally, the mix method is much lower than the other techniques, and the proportion of real-time data (RTD) to non-real-time data (NRTD) is about equal.
Keywords: Demand side management, direct load control, electric water heater, indirect load control, non-real-time data, real time data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11211400 Removal of Pb (II) from Aqueous Solutions using Fuller's Earth
Authors: Tarun Kumar Naiya, Biswajit Singha, Ashim Kumar Bhattacharya, Sudip Kumar Das
Abstract:
Fuller’s earth is a fine-grained, naturally occurring substance that has a substantial ability to adsorb impurities. In the present study Fuller’s earth has been characterized and used for the removal of Pb(II) from aqueous solution. The effect of various physicochemical parameters such as pH, adsorbent dosage and shaking time on adsorption were studied. The result of the equilibrium studies showed that the solution pH was the key factor affecting the adsorption. The optimum pH for adsorption was 5. Kinetics data for the adsorption of Pb(II) was best described by pseudo-second order model. The effective diffusion co-efficient for Pb(II) adsorption was of the order of 10-8 m2/s. The adsorption data for metal adsorption can be well described by Langmuir adsorption isotherm. The maximum uptake of metal was 103.3 mg/g of adsorbent. Mass transfer analysis was also carried out for the adsorption process. The values of mass transfer coefficients obtained from the study indicate that the velocity of the adsorbate transport from bulk to the solid phase was quite fast. The mean sorption energy calculated from Dubinin-Radushkevich isotherm indicated that the metal adsorption process was chemical in nature.
Keywords: Fuller's earth, Pseudo second order, Mass Transfer co-efficient, Langmuir
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185811399 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius
Authors: M. A. S. Fahim, J. Sužiedelytė Visockienė
Abstract:
With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realization often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.
Keywords: Air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11711398 A Weighted Sum Technique for the Joint Optimization of Performance and Power Consumption in Data Centers
Authors: Samee Ullah Khan, C.Ardil
Abstract:
With data centers, end-users can realize the pervasiveness of services that will be one day the cornerstone of our lives. However, data centers are often classified as computing systems that consume the most amounts of power. To circumvent such a problem, we propose a self-adaptive weighted sum methodology that jointly optimizes the performance and power consumption of any given data center. Compared to traditional methodologies for multi-objective optimization problems, the proposed self-adaptive weighted sum technique does not rely on a systematical change of weights during the optimization procedure. The proposed technique is compared with the greedy and LR heuristics for large-scale problems, and the optimal solution for small-scale problems implemented in LINDO. the experimental results revealed that the proposed selfadaptive weighted sum technique outperforms both of the heuristics and projects a competitive performance compared to the optimal solution.Keywords: Meta-heuristics, distributed systems, adaptive methods, resource allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183611397 Business Intelligence for N=1 Analytics using Hybrid Intelligent System Approach
Authors: Rajendra M Sonar
Abstract:
The future of business intelligence (BI) is to integrate intelligence into operational systems that works in real-time analyzing small chunks of data based on requirements on continuous basis. This is moving away from traditional approach of doing analysis on ad-hoc basis or sporadically in passive and off-line mode analyzing huge amount data. Various AI techniques such as expert systems, case-based reasoning, neural-networks play important role in building business intelligent systems. Since BI involves various tasks and models various types of problems, hybrid intelligent techniques can be better choice. Intelligent systems accessible through web services make it easier to integrate them into existing operational systems to add intelligence in every business processes. These can be built to be invoked in modular and distributed way to work in real time. Functionality of such systems can be extended to get external inputs compatible with formats like RSS. In this paper, we describe a framework that use effective combinations of these techniques, accessible through web services and work in real-time. We have successfully developed various prototype systems and done few commercial deployments in the area of personalization and recommendation on mobile and websites.Keywords: Business Intelligence, Customer Relationship Management, Hybrid Intelligent Systems, Personalization and Recommendation (P&R), Recommender Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207711396 A Fully Parallel Reverse Converter
Authors: Mehdi Hosseinzadeh, Amir Sabbagh Molahosseini, Keivan Navi
Abstract:
The residue number system (RNS) is popular in high performance computation applications because of its carry-free nature. The challenges of RNS systems design lie in the moduli set selection and in the reverse conversion from residue representation to weighted representation. In this paper, we proposed a fully parallel reverse conversion algorithm for the moduli set {rn - 2, rn - 1, rn}, based on simple mathematical relationships. Also an efficient hardware realization of this algorithm is presented. Our proposed converter is very faster and results to hardware savings, compared to the other reverse converters.Keywords: Reverse converter, residue to weighted converter, residue number system, multiple-valued logic, computer arithmetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158311395 An Improved K-Means Algorithm for Gene Expression Data Clustering
Authors: Billel Kenidra, Mohamed Benmohammed
Abstract:
Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.
Keywords: Microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128411394 An Analysis of Gamification in the Post-Secondary Classroom
Authors: F. Saccucci
Abstract:
Gamification has now started to take root in the post-secondary classroom. Educators have learned much about gamification to date but there is still a great deal to learn. One definition of gamification is the ability to engage post-secondary students with games that are fun and correlate to class room curriculum. There is no shortage of literature illustrating the advantages of gamification in the class room. This study is an extension of similar thought as well as an extension of a previous study where in class testing proved with the used of paired T-test that gamification did significantly improve the students’ understanding of subject material. Gamification itself in the class room can range from high end computer simulated software to paper based games of which both have advantages and disadvantages. This analysis used a paper based game to highlight certain qualitative advantages of gamification. The paper based game in this analysis was inexpensive, required low preparation time for the faculty member and consumed approximately 20 minutes of class room time. Data for the study was collected through in class student feedback surveys and narrative from the faculty member moderating the game. Students were randomly selected into groups of four. Qualitative advantages identified in this analysis included: 1. Students had a chance to meet, connect and know other students. 2. Students enjoyed the gamification process given there was a sense of fun and competition. 3. The post assessment that followed the simulation game was not part of their grade calculation therefore it was an opportunity to participate in a low risk activity whereby students could subsequently self-assess their understanding of the subject material. 4. In the view of the student, content knowledge did increase after the gamification process. These qualitative advantages identified in this analysis contribute to the argument that there should be an attempt to use gamification in today’s post-secondary class room. The analysis also highlighted that eighty (80) percent of the respondents believe twenty minutes devoted to the gamification process was appropriate, however twenty (20) percentage of respondents believed that rather than scheduling a gamification process and its post quiz in the last week, a review for the final exam may have been more useful. An additional study to this hopes to determine if the scheduling of the gamification had any correlation to a percentage of the students not wanting to be engaged in the process. As well, the additional study hopes to determine at what incremental level of time invested in class room gamification produce no material incremental benefits to the student as well as determine if any correlation exist between respondents preferring not to have it at the end of the semester to students not believing the gamification process added to the increase of their curricular knowledge.
Keywords: Gamification, inexpensive, qualitative advantages, post-secondary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86911393 Modelling a Hospital as a Queueing Network: Analysis for Improving Performance
Authors: Emad Alenany, M. Adel El-Baz
Abstract:
In this paper, the flow of different classes of patients into a hospital is modelled and analyzed by using the queueing network analyzer (QNA) algorithm and discrete event simulation. Input data for QNA are the rate and variability parameters of the arrival and service times in addition to the number of servers in each facility. Patient flows mostly match real flow for a hospital in Egypt. Based on the analysis of the waiting times, two approaches are suggested for improving performance: Separating patients into service groups, and adopting different service policies for sequencing patients through hospital units. The separation of a specific group of patients, with higher performance target, to be served separately from the rest of patients requiring lower performance target, requires the same capacity while improves performance for the selected group of patients with higher target. Besides, it is shown that adopting the shortest processing time and shortest remaining processing time service policies among other tested policies would results in, respectively, 11.47% and 13.75% reduction in average waiting time relative to first come first served policy.Keywords: Queueing network, discrete-event simulation, health applications, SPT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152911392 Application of “Streamlined” Material Accounting to Estimate Environmental Impact
Authors: Paul Osmond
Abstract:
This paper reports a new application of material accounting techniques to characterise and quantify material stocks and flows at the “neighbourhood" scale. The study area is the main campus of the University of New South Wales in Sydney, Australia. The system boundary is defined by the urban structural unit (USU), a typological construct devised to facilitate assessment of the metabolism of urban systems. A streamlined material flow analysis (MFA) was applied to quantify the stocks and flows of key construction materials within the campus USU over time, drawing on empirical data from a major campus development project. The results are reviewed to assess the efficacy of the method in supporting urban environmental evaluation and design practice, for example to facilitate estimation of significant impacts such as greenhouse gas emissions. It is concluded that linking a service (in this case, teaching students) enabled by a given product (university buildings) to the amount of materials used in creating that product offers a potential way to reduce the environmental impact of that service, through more efficient use of materials.
Keywords: Construction materials, material flow analysis, urban metabolism, urban structural unit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171711391 Localizing and Experiencing Electronic Questionnaires in an Educational Web Site
Authors: Theodore H. Kaskalis
Abstract:
One of the main research methods in humanistic studies is the collection and process of data through questionnaires. This paper reports our experiences of localizing and adapting the phpESP package of electronic surveys, which led to a friendly on-line questionnaire environment offered through our department web site. After presenting the characteristics of this environment, we identify the expected benefits and present a questionnaire carried out through both the traditional and electronic way. We present the respondents' feedback and then we report the researchers' opinions.Finally, we propose ideas we intend to implement in order to further assist and enhance the research based on this web accessed,electronic questionnaire environment.
Keywords: Electronic questionnaires, Computer assisted webinterviewing, Survey data collection, Survey data visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128611390 Modal Analysis of Machine Tool Column Using Finite Element Method
Authors: Migbar Assefa
Abstract:
The performance of a machine tool is eventually assessed by its ability to produce a component of the required geometry in minimum time and at small operating cost. It is customary to base the structural design of any machine tool primarily upon the requirements of static rigidity and minimum natural frequency of vibration. The operating properties of machines like cutting speed, feed and depth of cut as well as the size of the work piece also have to be kept in mind by a machine tool structural designer. This paper presents a novel approach to the design of machine tool column for static and dynamic rigidity requirement. Model evaluation is done effectively through use of General Finite Element Analysis software ANSYS. Studies on machine tool column are used to illustrate finite element based concept evaluation technique. This paper also presents results obtained from the computations of thin walled box type columns that are subjected to torsional and bending loads in case of static analysis and also results from modal analysis. The columns analyzed are square and rectangle based tapered open column, column with cover plate, horizontal partitions and with apertures. For the analysis purpose a total of 70 columns were analyzed for bending, torsional and modal analysis. In this study it is observed that the orientation and aspect ratio of apertures have no significant effect on the static and dynamic rigidity of the machine tool structure.
Keywords: Finite Element Modeling, Modal Analysis, Machine tool structure, Static Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 503711389 Re-Optimization MVPP Using Common Subexpression for Materialized View Selection
Authors: Boontita Suchyukorn, Raweewan Auepanwiriyakul
Abstract:
A Data Warehouses is a repository of information integrated from source data. Information stored in data warehouse is the form of materialized in order to provide the better performance for answering the queries. Deciding which appropriated views to be materialized is one of important problem. In order to achieve this requirement, the constructing search space close to optimal is a necessary task. It will provide effective result for selecting view to be materialized. In this paper we have proposed an approach to reoptimize Multiple View Processing Plan (MVPP) by using global common subexpressions. The merged queries which have query processing cost not close to optimal would be rewritten. The experiment shows that our approach can help to improve the total query processing cost of MVPP and sum of query processing cost and materialized view maintenance cost is reduced as well after views are selected to be materialized.
Keywords: Data Warehouse, materialized views, query rewriting, common subexpressions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167811388 Clustering Categorical Data Using the K-Means Algorithm and the Attribute’s Relative Frequency
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
Clustering is a well known data mining technique used in pattern recognition and information retrieval. The initial dataset to be clustered can either contain categorical or numeric data. Each type of data has its own specific clustering algorithm. In this context, two algorithms are proposed: the k-means for clustering numeric datasets and the k-modes for categorical datasets. The main encountered problem in data mining applications is clustering categorical dataset so relevant in the datasets. One main issue to achieve the clustering process on categorical values is to transform the categorical attributes into numeric measures and directly apply the k-means algorithm instead the k-modes. In this paper, it is proposed to experiment an approach based on the previous issue by transforming the categorical values into numeric ones using the relative frequency of each modality in the attributes. The proposed approach is compared with a previously method based on transforming the categorical datasets into binary values. The scalability and accuracy of the two methods are experimented. The obtained results show that our proposed method outperforms the binary method in all cases.
Keywords: Clustering, k-means, categorical datasets, pattern recognition, unsupervised learning, knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 354511387 A New Direct Updating Method for Undamped Structural Systems
Authors: Yongxin Yuan, Jiashang Jiang
Abstract:
A new numerical method for simultaneously updating mass and stiffness matrices based on incomplete modal measured data is presented. By using the Kronecker product, all the variables that are to be modified can be found out and then can be updated directly. The optimal approximation mass matrix and stiffness matrix which satisfy the required eigenvalue equation and orthogonality condition are found under the Frobenius norm sense. The physical configuration of the analytical model is preserved and the updated model will exactly reproduce the modal measured data. The numerical example seems to indicate that the method is quite accurate and efficient.
Keywords: Finite element model, model updating, modal data, optimal approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148011386 Influence Analysis of Macroeconomic Parameters on Real Estate Price Variation in Taipei, Taiwan
Authors: Li Li, Kai-Hsuan Chu
Abstract:
It is well known that the real estate price depends on a lot of factors. Each house current value is dependent on the location, room number, transportation, living convenience, year and surrounding environments. Although, there are different experienced models for housing agent to estimate the price, it is a case by case study without overall dynamic variation investigation. However, many economic parameters may more or less influence the real estate price variation. Here, the influences of most macroeconomic parameters on real estate price are investigated individually based on least-square scheme and grey correlation strategy. Then those parameters are classified into leading indices, simultaneous indices and laggard indices. In addition, the leading time period is evaluated based on least square method. The important leading and simultaneous indices can be used to establish an artificial intelligent neural network model for real estate price variation prediction. The real estate price variation of Taipei, Taiwan during 2005 ~ 2017 are chosen for this research data analysis and validation. The results show that the proposed method has reasonable prediction function for real estate business reference.Keywords: Real estate price, least-square, grey correlation, macroeconomics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 98811385 Hybrid Function Method for Solving Nonlinear Fredholm Integral Equations of the Second Kind
Authors: jianhua Hou, Changqing Yang, and Beibo Qin
Abstract:
A numerical method for solving nonlinear Fredholm integral equations of second kind is proposed. The Fredholm type equations which have many applications in mathematical physics are then considered. The method is based on hybrid function approximations. The properties of hybrid of block-pulse functions and Chebyshev polynomials are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of nonlinear. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.
Keywords: Hybrid functions, Fredholm integral equation, Blockpulse, Chebyshev polynomials, product operational matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140111384 Stabilization of a New Configurable Two- Wheeled Machine Using a PD-PID and a Hybrid FL Control Strategies: A Comparative Study
Authors: M. Almeshal, M. O. Tokhi, K. M. Goher
Abstract:
A novel design of two-wheeled robotic vehicle with moving payload is presented in this paper. A mathematical model describing the vehicle dynamics is derived and simulated in Matlab Simulink environment. Two control strategies were developed to stabilise the vehicle in the upright position. A robust Proportional- Integral-Derivative (PID) control strategy has been implemented and initially tested to measure the system performance, while the second control strategy is to use a hybrid fuzzy logic controller (FLC). The results are given on a comparative basis for the system performance in terms of disturbance rejection, control algorithms robustness as well as the control effort in terms of input torque.
Keywords: double inverted pendulum, modelling, robust control, simulation,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539