Search results for: time-varying delays
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 193

Search results for: time-varying delays

13 Determinants of Extra Charges for Container Shipments: A Case Study of Nexus Zone Logistics

Authors: Zety Shakila Binti Mohd Yusof, Muhammad Adib Bin Ishak, Hajah Fatimah Binti Hussein

Abstract:

The international shipping business is related to numerous controls or regulations of export and import shipments. It is costly and time consuming, and when something goes wrong or when the buyer or seller fails to comply with the regulations, it can result in penalties, delays, and unexpected costs etc. For the focus of this study, the researchers have selected a local forwarder that provides forwarding and clearance services, Nexus Zone Logistics. It was identified that this company currently has many extra costs to be paid including local and detention charges, which negatively impacts the flow of income and reduces overall stability. Two variables have been identified as factors of extra charges; loaded containers entering the port by exceeded closing time and late delivery of empty containers to the container yard. This study is a qualitative in nature and the secondary data collected was analyzed using self-administered observation. The findings of this study were covered by one selected case for each export and import shipment between July and December 2014. The data were analyzed using frequency analysis based on tables and graphs. The researcher recommends Nexus Zone Logistics impose a 1% deposit payment per container for each shipment (export and import) to its customers.

Keywords: International shipping, export and import, detention charges, container shipment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
12 Probabilistic Crash Prediction and Prevention of Vehicle Crash

Authors: Lavanya Annadi, Fahimeh Jafari

Abstract:

Transportation brings immense benefits to society, but it also has its costs. Costs include the cost of infrastructure, personnel, and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion, and various indirect costs in terms of air transport. This research aims to predict the probabilistic crash prediction of vehicles using Machine Learning due to natural and structural reasons by excluding spontaneous reasons, like overspeeding, etc., in the United States. These factors range from meteorological elements such as weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity, to human-made structures, like road structure components such as Bumps, Roundabouts, No Exit, Turning Loops, Give Away, etc. The probabilities are categorized into ten distinct classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes in all states collected by the US government. The probability of the crash was determined by employing Multinomial Expected Value, and a classification label was assigned accordingly. We applied three classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-depth insights through exploratory data analysis.

Keywords: Road safety, crash prediction, exploratory analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85
11 Construction Unit Rate Factor Modelling Using Neural Networks

Authors: Balimu Mwiya, Mundia Muya, Chabota Kaliba, Peter Mukalula

Abstract:

Factors affecting construction unit cost vary depending on a country’s political, economic, social and technological inclinations. Factors affecting construction costs have been studied from various perspectives. Analysis of cost factors requires an appreciation of a country’s practices. Identified cost factors provide an indication of a country’s construction economic strata. The purpose of this paper is to identify the essential factors that affect unit cost estimation and their breakdown using artificial neural networks. Twenty five (25) identified cost factors in road construction were subjected to a questionnaire survey and employing SPSS factor analysis the factors were reduced to eight. The 8 factors were analysed using neural network (NN) to determine the proportionate breakdown of the cost factors in a given construction unit rate. NN predicted that political environment accounted 44% of the unit rate followed by contractor capacity at 22% and financial delays, project feasibility and overhead & profit each at 11%. Project location, material availability and corruption perception index had minimal impact on the unit cost from the training data provided. Quantified cost factors can be incorporated in unit cost estimation models (UCEM) to produce more accurate estimates. This can create improvements in the cost estimation of infrastructure projects and establish a benchmark standard to assist the process of alignment of work practises and training of new staff, permitting the on-going development of best practises in cost estimation to become more effective.

Keywords: Construction cost factors, neural networks, roadworks, Zambian Construction Industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3826
10 Development of Web-based Teams Management System in Construction

Authors: Yu-Cheng Lin

Abstract:

Construction project control attempts to obtain real-time information and effectively enhance dynamic control and management via information sharing and analysis among project participants to eliminate construction conflicts and project delays. However, survey results for Taiwan indicate that construction commercial project management software is not widely accepted for subcontractors and suppliers. To solve the project communications problems among participants, this study presents a novel system called the Construction Dynamic Teams Communication Management (Con-DTCM) system for small-to-medium sized subcontractors and suppliers in Taiwanese Construction industry, and demonstrates that the Con-DTCM system responds to the most recent project information efficiently and enhances management of project teams (general contractor, suppliers and subcontractors) through web-based environment. Web-based technology effectively enhances information sharing during construction project management, and generates cost savings via the Internet. The main unique characteristic of the proposed Con-DTCM system is extremely user friendly and easily design compared with current commercial project management applications. The Con-DTCM system is applied to a case study of construction of a building project in Taiwan to confirm the proposed methodology and demonstrate the effectiveness of information sharing during the construction phase. The advantages of the Con-DTCM system are in improving project control and management efficiency for general contractors, and in providing dynamic project tracking and management, which enables subcontractors and suppliers to acquire the most recent project-related information. Furthermore, this study presents and implements a generic system architecture.

Keywords: Construction project management, Information System, Portal, Web, Small-to-medium enterprises.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
9 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modeling and Solving

Authors: Yasin Tadayonrad, Alassane Ballé Ndiaye

Abstract:

Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading/unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is the loading/unloading capacity in each source/destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods (FMCG) industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on Python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.

Keywords: Supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 528
8 Improving the Software Homologation Process through Peer Review: An Experience Report on Android Development Environment

Authors: Camila Bernardon, Diana Lemos, Mario Garcia, Thiago Souto, Bruno Bonifacio

Abstract:

In the current technological market environment, ensuring the quality of new products has become a complex challenge. In this scenario, companies have been investing in solutions that aim to reduce the execution time of software testing and lead to cost efficiency. However, companies that have a complex and specialized testing environment usually face barriers related to costly testing processes, especially in distributed settings. Sidia Institute of Technology works on research and development for the Android platform for mobile devices in Latin America. As we work in a global software development (GSD) scope, we have faced barriers caused by failures detected lately that have caused delays in the homologation release process on Android projects. Thus, we adopt an Internal Review process, using as an alternative to reduce these failures. In this paper it was presented the experience of a homologation team adopting an Internal Review process in order to increase the performance through of improving test efficiency. Using this approach, it was possible to realize a substantial improvement in quality, reliability and timeliness of our deliveries. Through the quantitative analyses, it was possible identify a positive growth in homologation efficiency of 6% after adoption of the process. In addition, we performed a qualitative analysis from the collected data through an online questionnaire. In particular, results show that association between failure reduction and review process adoption provides the most quality that has a positive effect on project milestones. We hope this report can be helpful to other companies and the scientific community to improve their process thereby increasing competitive advantages.

Keywords: Android, GSD, improvement quality process, mobile products.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 487
7 Enhance Construction Visual As-Built Schedule Management Using BIM Technology

Authors: Shu-Hui Jan, Hui-Ping Tserng, Shih-Ping Ho

Abstract:

Construction project control attempts to obtain real-time as-built schedule information and to eliminate project delays by effectively enhancing dynamic schedule control and management. Suitable platforms for enhancing an as-built schedule visually during the construction phase are necessary and important for general contractors. As the application of building information modeling (BIM) becomes more common, schedule management integrated with the BIM approach becomes essential to enhance visual construction management implementation for the general contractor during the construction phase. To enhance visualization of the updated as-built schedule for the general contractor, this study presents a novel system called the Construction BIM-assisted Schedule Management (ConBIM-SM) system for general contractors in Taiwan. The primary purpose of this study is to develop a web ConBIM-SM system for the general contractor to enhance visual as-built schedule information sharing and efficiency in tracking construction as-built schedule. Finally, the ConBIM-SM system is applied to a case study of a commerce building project in Taiwan to verify its efficacy and demonstrate its effectiveness during the construction phase. The advantages of the ConBIM-SM system lie in improved project control and management efficiency for general contractors, and in providing BIM-assisted as-built schedule tracking and management, to access the most current as-built schedule information through a web browser. The case study results show that the ConBIM-SM system is an effective visual as-built schedule management platform integrated with the BIM approach for general contractors in a construction project.

Keywords: BIM, Building information modeling, construction schedule management, as-built schedule management, BIM schedule updating mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3411
6 Multipath Routing Sensor Network for Finding Crack in Metallic Structure Using Fuzzy Logic

Authors: Dulal Acharjee, Punyaban Patel

Abstract:

For collecting data from all sensor nodes, some changes in Dynamic Source Routing (DSR) protocol is proposed. At each hop level, route-ranking technique is used for distributing packets to different selected routes dynamically. For calculating rank of a route, different parameters like: delay, residual energy and probability of packet loss are used. A hybrid topology of DMPR(Disjoint Multi Path Routing) and MMPR(Meshed Multi Path Routing) is formed, where braided topology is used in different faulty zones of network. For reducing energy consumption, variant transmission ranges is used instead of fixed transmission range. For reducing number of packet drop, a fuzzy logic inference scheme is used to insert different types of delays dynamically. A rule based system infers membership function strength which is used to calculate the final delay amount to be inserted into each of the node at different clusters. In braided path, a proposed 'Dual Line ACK Link'scheme is proposed for sending ACK signal from a damaged node or link to a parent node to ensure that any error in link or any node-failure message may not be lost anyway. This paper tries to design the theoretical aspects of a model which may be applied for collecting data from any large hanging iron structure with the help of wireless sensor network. But analyzing these data is the subject of material science and civil structural construction technology, that part is out of scope of this paper.

Keywords: Metallic corrosion, Multi Path Routing, DisjointMPR, Meshed MPR, braided path, dual line ACK link, route rankingand Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
5 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: Big data, bus headway prediction, machine learning, public transportation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
4 Enhanced-Delivery Overlay Multicasting Scheme by Optimizing Bandwidth and Latency Discrepancy Ratios

Authors: Omar F. Hamad, T. Marwala

Abstract:

With optimized bandwidth and latency discrepancy ratios, Node Gain Scores (NGSs) are determined and used as a basis for shaping the max-heap overlay. The NGSs - determined as the respective bandwidth-latency-products - govern the construction of max-heap-form overlays. Each NGS is earned as a synergy of discrepancy ratio of the bandwidth requested with respect to the estimated available bandwidth, and latency discrepancy ratio between the nodes and the source node. The tree leads to enhanceddelivery overlay multicasting – increasing packet delivery which could, otherwise, be hindered by induced packet loss occurring in other schemes not considering the synergy of these parameters on placing the nodes on the overlays. The NGS is a function of four main parameters – estimated available bandwidth, Ba; individual node's requested bandwidth, Br; proposed node latency to its prospective parent (Lp); and suggested best latency as advised by source node (Lb). Bandwidth discrepancy ratio (BDR) and latency discrepancy ratio (LDR) carry weights of α and (1,000 - α ) , respectively, with arbitrary chosen α ranging between 0 and 1,000 to ensure that the NGS values, used as node IDs, maintain a good possibility of uniqueness and balance between the most critical factor between the BDR and the LDR. A max-heap-form tree is constructed with assumption that all nodes possess NGS less than the source node. To maintain a sense of load balance, children of each level's siblings are evenly distributed such that a node can not accept a second child, and so on, until all its siblings able to do so, have already acquired the same number of children. That is so logically done from left to right in a conceptual overlay tree. The records of the pair-wise approximate available bandwidths as measured by a pathChirp scheme at individual nodes are maintained. Evaluation measures as compared to other schemes – Bandwidth Aware multicaSt architecturE (BASE), Tree Building Control Protocol (TBCP), and Host Multicast Tree Protocol (HMTP) - have been conducted. This new scheme generally performs better in terms of trade-off between packet delivery ratio; link stress; control overhead; and end-to-end delays.

Keywords: Overlay multicast, Available bandwidth, Max-heapform overlay, Induced packet loss, Bandwidth-latency product, Node Gain Score (NGS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
3 Logistical Optimization of Nuclear Waste Flows during Decommissioning

Authors: G. Dottavio, M. F. Andrade, F. Renard, V. Cheutet, A.-L. L. S. Vercraene, P. Hoang, S. Briet, R. Dachicourt, Y. Baizet

Abstract:

An important number of technological equipment and high-skilled workers over long periods of time have to be mobilized during nuclear decommissioning processes. The related operations generate complex flows of waste and high inventory levels, associated to information flows of heterogeneous types. Taking into account that more than 10 decommissioning operations are on-going in France and about 50 are expected toward 2025: A big challenge is addressed today. The management of decommissioning and dismantling of nuclear installations represents an important part of the nuclear-based energy lifecycle, since it has an environmental impact as well as an important influence on the electricity cost and therefore the price for end-users. Bringing new technologies and new solutions into decommissioning methodologies is thus mandatory to improve the quality, cost and delay efficiency of these operations. The purpose of our project is to improve decommissioning management efficiency by developing a decision-support framework dedicated to plan nuclear facility decommissioning operations and to optimize waste evacuation by means of a logistic approach. The target is to create an easy-to-handle tool capable of i) predicting waste flows and proposing the best decommissioning logistics scenario and ii) managing information during all the steps of the process and following the progress: planning, resources, delays, authorizations, saturation zones, waste volume, etc. In this article we present our results from waste nuclear flows simulation during decommissioning process, including discrete-event simulation supported by FLEXSIM 3-D software. This approach was successfully tested and our works confirms its ability to improve this type of industrial process by identifying the critical points of the chain and optimizing it by identifying improvement actions. This type of simulation, executed before the start of the process operations on the basis of a first conception, allow ‘what-if’ process evaluation and help to ensure quality of the process in an uncertain context. The simulation of nuclear waste flows before evacuation from the site will help reducing the cost and duration of the decommissioning process by optimizing the planning and the use of resources, transitional storage and expensive radioactive waste containers. Additional benefits are expected for the governance system of the waste evacuation since it will enable a shared responsibility of the waste flows.

Keywords: Nuclear decommissioning, logistical optimization, decision-support framework, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
2 Analysis of Non-Conventional Roundabout Performance in Mixed Traffic Conditions

Authors: Guneet Saini, Shahrukh, Sunil Sharma

Abstract:

Traffic congestion is the most critical issue faced by those in the transportation profession today. Over the past few years, roundabouts have been recognized as a measure to promote efficiency at intersections globally. In developing countries like India, this type of intersection still faces a lot of issues, such as bottleneck situations, long queues and increased waiting times, due to increasing traffic which in turn affect the performance of the entire urban network. This research is a case study of a non-conventional roundabout, in terms of geometric design, in a small town in India. These types of roundabouts should be analyzed for their functionality in mixed traffic conditions, prevalent in many developing countries. Microscopic traffic simulation is an effective tool to analyze traffic conditions and estimate various measures of operational performance of intersections such as capacity, vehicle delay, queue length and Level of Service (LOS) of urban roadway network. This study involves analyzation of an unsymmetrical non-circular 6-legged roundabout known as “Kala Aam Chauraha” in a small town Bulandshahr in Uttar Pradesh, India using VISSIM simulation package which is the most widely used software for microscopic traffic simulation. For coding in VISSIM, data are collected from the site during morning and evening peak hours of a weekday and then analyzed for base model building. The model is calibrated on driving behavior and vehicle parameters and an optimal set of calibrated parameters is obtained followed by validation of the model to obtain the base model which can replicate the real field conditions. This calibrated and validated model is then used to analyze the prevailing operational traffic performance of the roundabout which is then compared with a proposed alternative to improve efficiency of roundabout network and to accommodate pedestrians in the geometry. The study results show that the alternative proposed is an advantage over the present roundabout as it considerably reduces congestion, vehicle delay and queue length and hence, successfully improves roundabout performance without compromising on pedestrian safety. The study proposes similar designs for modification of existing non-conventional roundabouts experiencing excessive delays and queues in order to improve their efficiency especially in the case of developing countries. From this study, it can be concluded that there is a need to improve the current geometry of such roundabouts to ensure better traffic performance and safety of drivers and pedestrians negotiating the intersection and hence this proposal may be considered as a best fit.

Keywords: Operational performance, roundabout, simulation, VISSIM, traffic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
1 The Significance of Cultural Risks for Western Consultants Executing Gulf Cooperation Council Megaprojects

Authors: Alan Walsh, Peter Walker

Abstract:

Differences in commercial, professional and personal cultural traditions between western consultants and project sponsors in the Gulf Cooperation Council (GCC) region are potentially significant in the workplace, and this can impact on project outcomes. These cultural differences can, for example, result in conflict amongst senior managers, which can negatively impact the megaproject. New entrants to the GCC often experience ‘culture shock’ as they attempt to integrate into their unfamiliar environments. Megaprojects are unique ventures with individual project characteristics, which need to be considered when managing their associated risks. Megaproject research to date has mostly ignored the significance of the absence of cultural congruence in the GCC, which is surprising considering that there are large volumes of megaprojects in various stages of construction in the GCC. An initial step to dealing with cultural issues is to acknowledge culture as a significant risk factor (SRF). This paper seeks to understand the criticality for western consultants to address these risks. It considers the cultural barriers that exist between GCC sponsors and western consultants and examines the cultural distance between the key actors. Initial findings suggest the presence to a certain extent of ethnocentricity. Other cultural clashes arise out of a lack of appreciation of the customs, practices and traditions of ‘the Other’, such as the need for avoiding public humiliation and the hierarchal significance rankings. The concept and significance of cultural shock as part of the integration process for new arrivals are considered. Culture shock describes the state of anxiety and frustration resulting from the immersion in a culture distinctly different from one's own. There are potentially substantial project risks associated with underestimating the process of cultural integration. This paper examines two distinct but intertwined issues: the societal and professional culture differences associated with expatriate assignments. A case study examines the cultural congruences between GCC sponsors and American, British and German consultants, over a ten-year cycle. This provides indicators as to which nationalities encountered the most profound cultural issues and the nature of these. GCC megaprojects are typically intensive fast track demanding ventures, where consultant turnover is high. The study finds that building trust-filled relationships is key to successful project team integration and therefore, to successful megaproject execution. Findings indicate that both professional and social inclusion processes have steep learning curves. Traditional risk management practice is to approach any uncertainty in a structured way to mitigate the potential impact on project outcomes. This research highlights cultural risk as a significant factor in the management of GCC megaprojects. These risks arising from high staff turnover typically include loss of project knowledge, delays to the project, cost and disruption in replacing staff. This paper calls for cultural risk to be recognised as an SRF, as the first step to developing risk management strategies, and to reduce staff turnover for western consultants in GCC megaprojects.

Keywords: Western consultants in megaprojects, national culture impacts on GCC Megaprojects, significant risk factors in megaprojects, professional culture in megaprojects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 675