Search results for: distinct feature.
1031 Discrete Element Modeling on Bearing Capacity Problems
Authors: N. Li, Y. M. Cheng
Abstract:
In this paper, the classical bearing capacity problem is re-considered from discrete element analysis. In the discrete element approach, the bearing capacity problem is considered from the elastic stage to plastic stage to rupture stage (large displacement). The bearing capacity failure mechanism of a strip footing on soil is investigated, and the influence of micro-parameters on the bearing capacity of soil is also observed. It is found that the distinct element method (DEM) gives very good visualized results, and basically coincides well with that derived by the classical methods.
Keywords: Bearing capacity, distinct element method, failure mechanism, large displacement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14901030 The Utility of Wavelet Transform in Surface Electromyography Feature Extraction -A Comparative Study of Different Mother Wavelets
Authors: Farzaneh Akhavan Mahdavi, Siti Anom Ahmad, Mohd Hamiruce Marhaban, Mohammad-R. Akbarzadeh-T
Abstract:
Electromyography (EMG) signal processing has been investigated remarkably regarding various applications such as in rehabilitation systems. Specifically, wavelet transform has served as a powerful technique to scrutinize EMG signals since wavelet transform is consistent with the nature of EMG as a non-stationary signal. In this paper, the efficiency of wavelet transform in surface EMG feature extraction is investigated from four levels of wavelet decomposition and a comparative study between different mother wavelets had been done. To recognize the best function and level of wavelet analysis, two evaluation criteria, scatter plot and RES index are recruited. Hereupon, four wavelet families, namely, Daubechies, Coiflets, Symlets and Biorthogonal are studied in wavelet decomposition stage. Consequently, the results show that only features from first and second level of wavelet decomposition yields good performance and some functions of various wavelet families can lead to an improvement in separability class of different hand movements.
Keywords: Electromyography signal, feature extraction, wavelettransform, means absolute value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28411029 Practical Method for Digital Music Matching Robust to Various Sound Qualities
Authors: Bokyung Sung, Jungsoo Kim, Jinman Kwun, Junhyung Park, Jihye Ryeo, Ilju Ko
Abstract:
In this paper, we propose a practical digital music matching system that is robust to variation in sound qualities. The proposed system is subdivided into two parts: client and server. The client part consists of the input, preprocessing and feature extraction modules. The preprocessing module, including the music onset module, revises the value gap occurring on the time axis between identical songs of different formats. The proposed method uses delta-grouped Mel frequency cepstral coefficients (MFCCs) to extract music features that are robust to changes in sound quality. According to the number of sound quality formats (SQFs) used, a music server is constructed with a feature database (FD) that contains different sub feature databases (SFDs). When the proposed system receives a music file, the selection module selects an appropriate SFD from a feature database; the selected SFD is subsequently used by the matching module. In this study, we used 3,000 queries for matching experiments in three cases with different FDs. In each case, we used 1,000 queries constructed by mixing 8 SQFs and 125 songs. The success rate of music matching improved from 88.6% when using single a single SFD to 93.2% when using quadruple SFDs. By this experiment, we proved that the proposed method is robust to various sound qualities.
Keywords: Digital Music, Music Matching, Variation in Sound Qualities, Robust Matching method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13701028 Improving Worm Detection with Artificial Neural Networks through Feature Selection and Temporal Analysis Techniques
Authors: Dima Stopel, Zvi Boger, Robert Moskovitch, Yuval Shahar, Yuval Elovici
Abstract:
Computer worm detection is commonly performed by antivirus software tools that rely on prior explicit knowledge of the worm-s code (detection based on code signatures). We present an approach for detection of the presence of computer worms based on Artificial Neural Networks (ANN) using the computer's behavioral measures. Identification of significant features, which describe the activity of a worm within a host, is commonly acquired from security experts. We suggest acquiring these features by applying feature selection methods. We compare three different feature selection techniques for the dimensionality reduction and identification of the most prominent features to capture efficiently the computer behavior in the context of worm activity. Additionally, we explore three different temporal representation techniques for the most prominent features. In order to evaluate the different techniques, several computers were infected with five different worms and 323 different features of the infected computers were measured. We evaluated each technique by preprocessing the dataset according to each one and training the ANN model with the preprocessed data. We then evaluated the ability of the model to detect the presence of a new computer worm, in particular, during heavy user activity on the infected computers.Keywords: Artificial Neural Networks, Feature Selection, Temporal Analysis, Worm Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17281027 Performance Analysis of Genetic Algorithm with kNN and SVM for Feature Selection in Tumor Classification
Authors: C. Gunavathi, K. Premalatha
Abstract:
Tumor classification is a key area of research in the field of bioinformatics. Microarray technology is commonly used in the study of disease diagnosis using gene expression levels. The main drawback of gene expression data is that it contains thousands of genes and a very few samples. Feature selection methods are used to select the informative genes from the microarray. These methods considerably improve the classification accuracy. In the proposed method, Genetic Algorithm (GA) is used for effective feature selection. Informative genes are identified based on the T-Statistics, Signal-to-Noise Ratio (SNR) and F-Test values. The initial candidate solutions of GA are obtained from top-m informative genes. The classification accuracy of k-Nearest Neighbor (kNN) method is used as the fitness function for GA. In this work, kNN and Support Vector Machine (SVM) are used as the classifiers. The experimental results show that the proposed work is suitable for effective feature selection. With the help of the selected genes, GA-kNN method achieves 100% accuracy in 4 datasets and GA-SVM method achieves in 5 out of 10 datasets. The GA with kNN and SVM methods are demonstrated to be an accurate method for microarray based tumor classification.
Keywords: F-Test, Gene Expression, Genetic Algorithm, k- Nearest-Neighbor, Microarray, Signal-to-Noise Ratio, Support Vector Machine, T-statistics, Tumor Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45401026 Combined Feature Based Hyperspectral Image Classification Technique Using Support Vector Machines
Authors: Mrs.K.Kavitha, S.Arivazhagan
Abstract:
A spatial classification technique incorporating a State of Art Feature Extraction algorithm is proposed in this paper for classifying a heterogeneous classes present in hyper spectral images. The classification accuracy can be improved if and only if both the feature extraction and classifier selection are proper. As the classes in the hyper spectral images are assumed to have different textures, textural classification is entertained. Run Length feature extraction is entailed along with the Principal Components and Independent Components. A Hyperspectral Image of Indiana Site taken by AVIRIS is inducted for the experiment. Among the original 220 bands, a subset of 120 bands is selected. Gray Level Run Length Matrix (GLRLM) is calculated for the selected forty bands. From GLRLMs the Run Length features for individual pixels are calculated. The Principle Components are calculated for other forty bands. Independent Components are calculated for next forty bands. As Principal & Independent Components have the ability to represent the textural content of pixels, they are treated as features. The summation of Run Length features, Principal Components, and Independent Components forms the Combined Features which are used for classification. SVM with Binary Hierarchical Tree is used to classify the hyper spectral image. Results are validated with ground truth and accuracies are calculated.
Keywords: Multi-class, Run Length features, PCA, ICA, classification and Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15231025 Multi-Scale Gabor Feature Based Eye Localization
Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Dusik Oh, Jaemin Kim, Seongwon Cho
Abstract:
Eye localization is necessary for face recognition and related application areas. Most of eye localization algorithms reported so far still need to be improved about precision and computational time for successful applications. In this paper, we propose an eye location method based on multi-scale Gabor feature vectors, which is more robust with respect to initial points. The eye localization based on Gabor feature vectors first needs to constructs an Eye Model Bunch for each eye (left or right eye) which consists of n Gabor jets and average eye coordinates of each eyes obtained from n model face images, and then tries to localize eyes in an incoming face image by utilizing the fact that the true eye coordinates is most likely to be very close to the position where the Gabor jet will have the best Gabor jet similarity matching with a Gabor jet in the Eye Model Bunch. Similar ideas have been already proposed in such as EBGM (Elastic Bunch Graph Matching). However, the method used in EBGM is known to be not robust with respect to initial values and may need extensive search range for achieving the required performance, but extensive search ranges will cause much more computational burden. In this paper, we propose a multi-scale approach with a little increased computational burden where one first tries to localize eyes based on Gabor feature vectors in a coarse face image obtained from down sampling of the original face image, and then localize eyes based on Gabor feature vectors in the original resolution face image by using the eye coordinates localized in the coarse scaled image as initial points. Several experiments and comparisons with other eye localization methods reported in the other papers show the efficiency of our proposed method.Keywords: Eye Localization, Gabor features, Multi-scale, Gabor wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18211024 More Realistic Model for Simulating Min Protein Dynamics: Lattice Boltzmann Method Incorporating the Role of Nucleoids
Authors: J.Yojina, W. Ngamsaad, N. Nuttavut, D.Triampo, Y. Lenbury, W. Triampo, P. Kanthang, S.Sriyab
Abstract:
The dynamics of Min proteins plays a center role in accurate cell division. Although the nucleoids may presumably play an important role in prokaryotic cell division, there is a lack of models to account for its participation. In this work, we apply the lattice Boltzmann method to investigate protein oscillation based on a mesoscopic model that takes into account the nucleoid-s role. We found that our numerical results are in reasonably good agreement with the previous experimental results On comparing with the other computational models without the presence of nucleoids, the highlight of our finding is that the local densities of MinD and MinE on the cytoplasmic membrane increases, especially along the cell width, when the size of the obstacle increases, leading to a more distinct cap-like structure at the poles. This feature indicated the realistic pattern and reflected the combination of Min protein dynamics and nucleoid-s role.Keywords: lattice Boltzmann method, cell division, Minproteins oscillation, nucleoid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12461023 Input Textural Feature Selection By Mutual Information For Multispectral Image Classification
Authors: Mounir Ait kerroum, Ahmed Hammouch, Driss Aboutajdine
Abstract:
Texture information plays increasingly an important role in remotely sensed imagery classification and many pattern recognition applications. However, the selection of relevant textural features to improve this classification accuracy is not a straightforward task. This work investigates the effectiveness of two Mutual Information Feature Selector (MIFS) algorithms to select salient textural features that contain highly discriminatory information for multispectral imagery classification. The input candidate features are extracted from a SPOT High Resolution Visible(HRV) image using Wavelet Transform (WT) at levels (l = 1,2). The experimental results show that the selected textural features according to MIFS algorithms make the largest contribution to improve the classification accuracy than classical approaches such as Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA).Keywords: Feature Selection, Texture, Mutual Information, Wavelet Transform, SVM classification, SPOT Imagery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15541022 A Relational Case-Based Reasoning Framework for Project Delivery System Selection
Authors: Yang Cui, Yong Qiang Chen
Abstract:
An appropriate project delivery system (PDS) is crucial to the success of a construction projects. Case-based Reasoning (CBR) is a useful support for PDS selection. However, the traditional CBR approach represents cases as attribute-value vectors without taking relations among attributes into consideration, and could not calculate the similarity when the structures of cases are not strictly same. Therefore, this paper solves this problem by adopting the Relational Case-based Reasoning (RCBR) approach for PDS selection, considering both the structural similarity and feature similarity. To develop the feature terms of the construction projects, the criteria and factors governing PDS selection process are first identified. Then feature terms for the construction projects are developed. Finally, the mechanism of similarity calculation and a case study indicate how RCBR works for PDS selection. The adoption of RCBR in PDS selection expands the scope of application of traditional CBR method and improves the accuracy of the PDS selection system.
Keywords: Relational Cased-based Reasoning, Case-based Reasoning, Project delivery system, Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19941021 Functional Near Infrared Spectroscope for Cognition Brain Tasks by Wavelets Analysis and Neural Networks
Authors: Truong Quang Dang Khoa, Masahiro Nakagawa
Abstract:
Brain Computer Interface (BCI) has been recently increased in research. Functional Near Infrared Spectroscope (fNIRs) is one the latest technologies which utilize light in the near-infrared range to determine brain activities. Because near infrared technology allows design of safe, portable, wearable, non-invasive and wireless qualities monitoring systems, fNIRs monitoring of brain hemodynamics can be value in helping to understand brain tasks. In this paper, we present results of fNIRs signal analysis indicating that there exist distinct patterns of hemodynamic responses which recognize brain tasks toward developing a BCI. We applied two different mathematics tools separately, Wavelets analysis for preprocessing as signal filters and feature extractions and Neural networks for cognition brain tasks as a classification module. We also discuss and compare with other methods while our proposals perform better with an average accuracy of 99.9% for classification.Keywords: functional near infrared spectroscope (fNIRs), braincomputer interface (BCI), wavelets, neural networks, brain activity, neuroimaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20371020 A Rigid Point Set Registration of Remote Sensing Images Based on Genetic Algorithms and Hausdorff Distance
Authors: F. Meskine, N. Taleb, M. Chikr El-Mezouar, K. Kpalma, A. Almhdie
Abstract:
Image registration is the process of establishing point by point correspondence between images obtained from a same scene. This process is very useful in remote sensing, medicine, cartography, computer vision, etc. Then, the task of registration is to place the data into a common reference frame by estimating the transformations between the data sets. In this work, we develop a rigid point registration method based on the application of genetic algorithms and Hausdorff distance. First, we extract the feature points from both images based on the algorithm of global and local curvature corner. After refining the feature points, we use Hausdorff distance as similarity measure between the two data sets and for optimizing the search space we use genetic algorithms to achieve high computation speed for its inertial parallel. The results show the efficiency of this method for registration of satellite images.Keywords: Feature extraction, Genetic algorithms, Hausdorff distance, Image registration, Point registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19311019 Multisensor Agent Based Intrusion Detection
Authors: Richard A. Wasniowski
Abstract:
In this paper we propose a framework for multisensor intrusion detection called Fuzzy Agent-Based Intrusion Detection System. A unique feature of this model is that the agent uses data from multiple sensors and the fuzzy logic to process log files. Use of this feature reduces the overhead in a distributed intrusion detection system. We have developed an agent communication architecture that provides a prototype implementation. This paper discusses also the issues of combining intelligent agent technology with the intrusion detection domain.Keywords: Intrusion detection, fuzzy logic, agents, networksecurity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19191018 On the Learning of Causal Relationships between Banks in Saudi Equities Market Using Ensemble Feature Selection Methods
Authors: Adel Aloraini
Abstract:
Financial forecasting using machine learning techniques has received great efforts in the last decide . In this ongoing work, we show how machine learning of graphical models will be able to infer a visualized causal interactions between different banks in the Saudi equities market. One important discovery from such learned causal graphs is how companies influence each other and to what extend. In this work, a set of graphical models named Gaussian graphical models with developed ensemble penalized feature selection methods that combine ; filtering method, wrapper method and a regularizer will be shown. A comparison between these different developed ensemble combinations will also be shown. The best ensemble method will be used to infer the causal relationships between banks in Saudi equities market.
Keywords: Causal interactions , banks, feature selection, regularizere,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17481017 A New Spectral-based Approach to Query-by-Humming for MP3 Songs Database
Authors: Leon Fu, Xiangyang Xue
Abstract:
In this paper, we propose a new approach to query-by-humming, focusing on MP3 songs database. Since MP3 songs are much more difficult in melody representation than symbolic performance data, we adopt to extract feature descriptors from the vocal sounds part of the songs. Our approach is based on signal filtering, sub-band spectral processing, MDCT coefficients analysis and peak energy detection by ignorance of the background music as much as possible. Finally, we apply dual dynamic programming algorithm for feature similarity matching. Experiments will show us its online performance in precision and efficiency. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17811016 Fragile Watermarking for Color Images Using Thresholding Technique
Authors: Kuo-Cheng Liu
Abstract:
In this paper, we propose ablock-wise watermarking scheme for color image authentication to resist malicious tampering of digital media. The thresholding technique is incorporated into the scheme such that the tampered region of the color image can be recovered with high quality while the proofing result is obtained. The watermark for each block consists of its dual authentication data and the corresponding feature information. The feature information for recovery iscomputed bythe thresholding technique. In the proofing process, we propose a dual-option parity check method to proof the validity of image blocks. In the recovery process, the feature information of each block embedded into the color image is rebuilt for high quality recovery. The simulation results show that the proposed watermarking scheme can effectively proof the tempered region with high detection rate and can recover the tempered region with high quality.
Keywords: thresholding technique, tamper proofing, tamper recovery
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16321015 An Evaluation of Algorithms for Single-Echo Biosonar Target Classification
Authors: Turgay Temel, John Hallam
Abstract:
A recent neurospiking coding scheme for feature extraction from biosonar echoes of various plants is examined with avariety of stochastic classifiers. Feature vectors derived are employedin well-known stochastic classifiers, including nearest-neighborhood,single Gaussian and a Gaussian mixture with EM optimization.Classifiers' performances are evaluated by using cross-validation and bootstrapping techniques. It is shown that the various classifers perform equivalently and that the modified preprocessing configuration yields considerably improved results.
Keywords: Classification, neuro-spike coding, non-parametricmodel, parametric model, Gaussian mixture, EM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16711014 Smartphone-Based Human Activity Recognition by Machine Learning Methods
Authors: Yanting Cao, Kazumitsu Nawata
Abstract:
As smartphones are continually upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described more refined, complex and detailed. In this context, we analyzed a set of experimental data, obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model become extremely challenging. After a series of feature selection and parameters adjustments, a well-performed SVM classifier has been trained.
Keywords: smart sensors, human activity recognition, artificial intelligence, SVM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6391013 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring
Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti
Abstract:
Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., entropy, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one-class classification (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, principal component analysis (PCA), kernel principal component analysis (KPCA), and autoassociative neural network (ANN) are presented and their performance are compared. It is also shown that, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 95%.
Keywords: Anomaly detection, dimensionality reduction, frequencies selection, modal analysis, neural network, structural health monitoring, vibration measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7091012 Efficient Aggregate Signature Algorithm and Its Application in MANET
Authors: Daxing Wang, Jikai Teng
Abstract:
An aggregate signature scheme can aggregate n signatures on n distinct messages from n distinct signers into a single signature. Thus, n verification equations can be reduced to one. So the aggregate signature adapts to Mobile Ad hoc Network (MANET). In this paper, we propose an efficient ID-based aggregate signature scheme with constant pairing computations. Compared with the existing ID-based aggregate signature scheme, this scheme greatly improves the efficiency of signature communication and verification. In addition, in this work, we apply our ID-based aggregate sig- nature to authenticated routing protocol to present a secure routing scheme. Our scheme not only provides sound authentication and a secure routing protocol in ad hoc networks, but also meets the nature of MANET.
Keywords: Identity-based cryptography, Aggregate signature, Bilinear pairings, Authenticated routing scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21111011 A Multimodal Approach for Biometric Authentication with Multiple Classifiers
Authors: Sorin Soviany, Cristina Soviany, Mariana Jurian
Abstract:
The paper presents a multimodal approach for biometric authentication, based on multiple classifiers. The proposed solution uses a post-classification biometric fusion method in which the biometric data classifiers outputs are combined in order to improve the overall biometric system performance by decreasing the classification error rates. The paper shows also the biometric recognition task improvement by means of a carefully feature selection, as much as not all of the feature vectors components support the accuracy improvement.
Keywords: biometric fusion, multiple classifiers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20831010 Human Verification in a Video Surveillance System Using Statistical Features
Authors: Sanpachai Huvanandana
Abstract:
A human verification system is presented in this paper. The system consists of several steps: background subtraction, thresholding, line connection, region growing, morphlogy, star skelatonization, feature extraction, feature matching, and decision making. The proposed system combines an advantage of star skeletonization and simple statistic features. A correlation matching and probability voting have been used for verification, followed by a logical operation in a decision making stage. The proposed system uses small number of features and the system reliability is convincing.Keywords: Human verification, object recognition, videounderstanding, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15061009 Off-Line Signature Recognition Based On Angle Features and GRNN Neural Networks
Authors: Laila Y. Fannas, Ahmed Y. Ben Sasi
Abstract:
This research presents a handwritten signature recognition based on angle feature vector using Artificial Neural Network (ANN). Each signature image will be represented by an Angle vector. The feature vector will constitute the input to the ANN. The collection of signature images will be divided into two sets. One set will be used for training the ANN in a supervised fashion. The other set which is never seen by the ANN will be used for testing. After training, the ANN will be tested for recognition of the signature. When the signature is classified correctly, it is considered correct recognition otherwise it is a failure.
Keywords: Signature Recognition, Artificial Neural Network, Angle Features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24961008 Frequent Itemset Mining Using Rough-Sets
Authors: Usman Qamar, Younus Javed
Abstract:
Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and roughsets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.
Keywords: Rough-sets, Classification, Feature Selection, Entropy, Outliers, Frequent itemset mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24351007 Reducing SAGE Data Using Genetic Algorithms
Authors: Cheng-Hong Yang, Tsung-Mu Shih, Li-Yeh Chuang
Abstract:
Serial Analysis of Gene Expression is a powerful quantification technique for generating cell or tissue gene expression data. The profile of the gene expression of cell or tissue in several different states is difficult for biologists to analyze because of the large number of genes typically involved. However, feature selection in machine learning can successfully reduce this problem. The method allows reducing the features (genes) in specific SAGE data, and determines only relevant genes. In this study, we used a genetic algorithm to implement feature selection, and evaluate the classification accuracy of the selected features with the K-nearest neighbor method. In order to validate the proposed method, we used two SAGE data sets for testing. The results of this study conclusively prove that the number of features of the original SAGE data set can be significantly reduced and higher classification accuracy can be achieved.Keywords: Serial Analysis of Gene Expression, Feature selection, Genetic Algorithm, K-nearest neighbor method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16101006 Feature-Based Summarizing and Ranking from Customer Reviews
Authors: Dim En Nyaung, Thin Lai Lai Thein
Abstract:
Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.
Keywords: Opinion Mining, Opinion Summarization, Sentiment Analysis, Text Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29331005 View-Point Insensitive Human Pose Recognition using Neural Network and CUDA
Authors: Sanghyeok Oh, Keechul Jung
Abstract:
Although lots of research work has been done for human pose recognition, the view-point of cameras is still critical problem of overall recognition system. In this paper, view-point insensitive human pose recognition is proposed. The aims of the proposed system are view-point insensitivity and real-time processing. Recognition system consists of feature extraction module, neural network and real-time feed forward calculation. First, histogram-based method is used to extract feature from silhouette image and it is suitable for represent the shape of human pose. To reduce the dimension of feature vector, Principle Component Analysis(PCA) is used. Second, real-time processing is implemented by using Compute Unified Device Architecture(CUDA) and this architecture improves the speed of feed-forward calculation of neural network. We demonstrate the effectiveness of our approach with experiments on real environment.Keywords: computer vision, neural network, pose recognition, view-point insensitive, PCA, CUDA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13391004 Analysis of Combined Use of NN and MFCC for Speech Recognition
Authors: Safdar Tanweer, Abdul Mobin, Afshar Alam
Abstract:
The performance and analysis of speech recognition system is illustrated in this paper. An approach to recognize the English word corresponding to digit (0-9) spoken by 2 different speakers is captured in noise free environment. For feature extraction, speech Mel frequency cepstral coefficients (MFCC) has been used which gives a set of feature vectors from recorded speech samples. Neural network model is used to enhance the recognition performance. Feed forward neural network with back propagation algorithm model is used. However other speech recognition techniques such as HMM, DTW exist. All experiments are carried out on Matlab.
Keywords: Speech Recognition, MFCC, Neural Network, classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32681003 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.
Keywords: Corporate credit rating prediction, feature selection, genetic algorithms, instance selection, multiclass support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14111002 Nanoindentation Behaviour and Microstructural Evolution of Annealed Single-Crystal Silicon
Authors: Woei-Shyan Lee, Shuo-Ling Chang
Abstract:
The nanoindentation behaviour and phase transformation of annealed single-crystal silicon wafers are examined. The silicon specimens are annealed at temperatures of 250, 350 and 450ºC, respectively, for 15 minutes and are then indented to maximum loads of 30, 50 and 70 mN. The phase changes induced in the indented specimens are observed using transmission electron microscopy (TEM) and micro-Raman scattering spectroscopy (RSS). For all annealing temperatures, an elbow feature is observed in the unloading curve following indentation to a maximum load of 30 mN. Under higher loads of 50 mN and 70 mN, respectively, the elbow feature is replaced by a pop-out event. The elbow feature reveals a complete amorphous phase transformation within the indented zone, whereas the pop-out event indicates the formation of Si XII and Si III phases. The experimental results show that the formation of these crystalline silicon phases increases with an increasing annealing temperature and indentation load. The hardness and Young’s modulus both decrease as the annealing temperature and indentation load are increased.Keywords: Nanoindentation, silicon, phase transformation, amorphous, annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882